總結是思考的過程,讓我們更好地理解和認識自己??偨Y是對自己一段時間內的努力和收獲進行總結,同時也是對自己的肯定和鼓勵。以下是小編為大家收集的總結范文,希望對大家的總結有一定的啟發(fā)和參考作用。
高中數(shù)學必修教學設計篇一
1、數(shù)學知識:掌握等比數(shù)列的概念,通項公式,及其有關性質;。
2、數(shù)學能力:通過等差數(shù)列和等比數(shù)列的類比學習,培養(yǎng)學生類比歸納的'能力;。
歸納——猜想——證明的數(shù)學研究方法;。
3、數(shù)學思想:培養(yǎng)學生分類討論,函數(shù)的數(shù)學思想。
重點:等比數(shù)列的概念及其通項公式,如何通過類比利用等差數(shù)列學習等比數(shù)列;。
難點:等比數(shù)列的性質的探索過程。
教學過程:
1、問題引入:
前面我們已經研究了一類特殊的數(shù)列——等差數(shù)列。
問題1:滿足什么條件的數(shù)列是等差數(shù)列?如何確定一個等差數(shù)列?
(學生口述,并投影):如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。
要想確定一個等差數(shù)列,只要知道它的首項a1和公差d。
已知等差數(shù)列的首項a1和d,那么等差數(shù)列的通項公式為:(板書)an=a1+(n-1)d。
師:事實上,等差數(shù)列的關鍵是一個“差”字,即如果一個數(shù)列,從第2項起,每一項與它前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。
(第一次類比)類似的,我們提出這樣一個問題。
問題2:如果一個數(shù)列,從第2項起,每一項與它的前一項的……等于同一個常數(shù),那么這個數(shù)列叫做……數(shù)列。
(這里以填空的形式引導學生發(fā)揮自己的想法,對于“和”與“積”的情況,可以利用具體的例子予以說明:如果一個數(shù)列,從第2項起,每一項與它的前一項的“和”(或“積”)等于同一個常數(shù)的話,這個數(shù)列是一個各項重復出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個常數(shù)的情況。而這個數(shù)列就是我們今天要研究的等比數(shù)列了。)。
2、新課:
1)等比數(shù)列的定義:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做公比。
師生共同簡要回顧等差數(shù)列的通項公式推導的方法:累加法和迭代法。
公式的推導:(師生共同完成)。
若設等比數(shù)列的公比為q和首項為a1,則有:
方法一:(累乘法)。
3)等比數(shù)列的性質:
下面我們一起來研究一下等比數(shù)列的性質。
通過上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質提供了一條思路:我們可以利用等差數(shù)列的性質,通過類比得到等比數(shù)列的性質。
問題4:如果{an}是一個等差數(shù)列,它有哪些性質?
(根據(jù)學生實際情況,可引導學生通過具體例子,尋找規(guī)律,如:
3、例題鞏固:
例1、一個等比數(shù)列的第二項是2,第三項與第四項的和是12,求它的第八項的值。
答案:1458或128。
例2、正項等比數(shù)列{an}中,a6·a15+a9·a12=30,則log15a1a2a3…a20=_10____.
(本題為開放題,沒有唯一的答案,如對于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項是等差數(shù)列中的第2k-1項。關鍵是對通項公式的理解)。
1、小結:
今天我們主要學習了有關等比數(shù)列的概念、通項公式、以及它的性質,通過今天的學習。
我們不僅學到了關于等比數(shù)列的有關知識,更重要的是我們學會了由類比——猜想——證明的科學思維的過程。
2、作業(yè):
p129:1,2,3。
1、教學目標和重難點:首先作為等比數(shù)列的第一節(jié)課,對于等比數(shù)列的概念、通項公式及其性質是學生接下來學習等比數(shù)列的基礎,是必須要落實的;其次,數(shù)學教學除了要傳授知識,更重要的是傳授科學的研究方法,等比數(shù)列是在等差數(shù)列之后學習的因此對等比數(shù)列的學習必然要和等差數(shù)列結合起來,通過等比數(shù)列和等差數(shù)列的類比學習,對培養(yǎng)學生類比——猜想——證明的科學研究方法是有利的。這也就成了本節(jié)課的重點。
2、教學設計過程:本節(jié)課主要從以下幾個方面展開:
1)通過復習等差數(shù)列的定義,類比得出等比數(shù)列的定義;。
2)等比數(shù)列的通項公式的推導;。
3)等比數(shù)列的性質;。
有意識的引導學生復習等差數(shù)列的定義及其通項公式的探求思路,一方面使學生回顧舊。
知識,另一方面使學生通過聯(lián)想,為類比地探索等比數(shù)列的定義、通項公式奠定基礎。
在類比得到等比數(shù)列的定義之后,再對幾個具體的數(shù)列進行鑒別,旨在遵循“特殊——一般——特殊”的認識規(guī)律,使學生體會觀察、類比、歸納等合情推理方法的應用。培養(yǎng)學生應用知識的能力。
在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項公式又是一個重點。這里通過問題3的設計,使學生產生不得不考慮通項公式的心理傾向,造成學生認知上的沖突,從而使學生主動完成對知識的接受。
通過等差數(shù)列和等比數(shù)列的通項公式的比較使學生初步體會到等差和等比的相似性,為下面類比學習等比數(shù)列的性質,做好鋪墊。
等比性質的研究是本節(jié)課的高潮,通過類比。
關于例題設計:重知識的應用,具有開放性,為使學生更好的掌握本節(jié)課的內容。
高中數(shù)學必修教學設計篇二
高中數(shù)學教學應鼓勵學生用數(shù)學去解決問題,甚至去探索一些數(shù)學本身的問題。教學中,教師不僅要培養(yǎng)學生嚴謹?shù)倪壿嬐评砟芰?、空間想象能力和運算能力,還要培養(yǎng)學生數(shù)學建模能力與數(shù)據(jù)處理能力,加強在“用數(shù)學”方面的教育。最好的方式就是用多媒體電腦和諸如《幾何畫板》、《幾何畫王》、《幾何專家》等工具軟件,為學生創(chuàng)設數(shù)學實驗情境。例如,在上“棱柱和異面直線”課時,我們指導學生用硬紙制作“長方體”和“正三棱柱”等模型。教師用《幾何畫板》設計并創(chuàng)作“長方體中的異面直線”課件,引導學生利用自己制作的“長方體”模型和上述課件,思考以下問題:“長方體中所有體對角線(4條)與所有面對角線(12條)共組成多少對異面直線?”、“長方體中所有體對角線(4條)與所有棱(12條)共組成多少對異面直線?”、“長方體中所有棱(12條)之間相互組成多少對異面直線?”、“長方體所有面對角線(12條)與所有棱(12條)共組成多少對異面直線?”、“長方體中所有面對角線(12條)之間相互組成多少對異面直線?”。然后由學生獨立進行數(shù)學實驗,探討上述問題。
此外,教師還要根據(jù)數(shù)學思想發(fā)展脈絡,充分利用實驗手段尤其是運用現(xiàn)代教育技術,創(chuàng)設教學實驗情景、設計系列問題、增加輔助環(huán)節(jié),有助于引導學生通過操作、實踐,探索數(shù)學定理的證明和數(shù)學問題的解決方法,讓學生親自體驗數(shù)學建模過程,培養(yǎng)學生的數(shù)學創(chuàng)新能力和實踐能力,提高數(shù)學素養(yǎng)。
巧設情境,增加學生的投入感。
為了構建生動活潑富有個性的數(shù)學課堂,我把創(chuàng)設情境,激發(fā)學生的學習興趣當成數(shù)學教學的重頭戲,使之成為數(shù)學課的一道亮麗的風景。《數(shù)學課程標準》強調數(shù)學課堂教學必須注意從學生熟悉的生活情境和感興趣的事物出發(fā),使學生有更多的機會從周圍熟悉的事物中學習數(shù)學,理解數(shù)學,讓學生感受到數(shù)學就在他們周圍。因此,我從學生已有的生活經驗出發(fā),創(chuàng)設有趣的教學情境,強化學生的感性認識,豐富學生的學習過程,引導學生在情境中觀察、操作、交流,感受數(shù)學與日常生活的密切聯(lián)系,感受數(shù)學在生活中的作用,加深對數(shù)學的理解,并運用數(shù)學知識解決現(xiàn)實生活中的問題。如《課程標準》在綜合實踐的教學建議部分提供了這樣一個案例:
要求學生統(tǒng)計自己家庭一周內丟棄的塑料袋個數(shù),并依據(jù)所收集的數(shù)據(jù)展開討論。其程序是:(1)作為家庭作業(yè)提出此問題;(2)學生自主進行統(tǒng)計活動;(3)請某學生在課堂上對結果做現(xiàn)場統(tǒng)計(列出統(tǒng)計表,老師也把自己的統(tǒng)計結果融入其中);(4)統(tǒng)計分析(引導學生根據(jù)數(shù)據(jù)對全班一周丟棄塑料袋情況用不同的算法進行描述和評價);(5)結合問題情境深入領會有關概念(如平均數(shù)、中位數(shù)、眾數(shù)等)的含義,并通過問題的層層深入讓學生進一步感受不同統(tǒng)計量來表示同一問題的必要性;(6)問題自然延伸(計算這些袋對土地造成的污染,先估計一個袋的污染,然后通過多種方式計算推及到一周呢?一年呢?全校同學的家庭呢?照此速度要多久就會污染整個學校呢?)。由此例可以看出,這種模式的一個關鍵點就是圍繞著學生日常生活來展開的,由學生身邊的事所引出的數(shù)學問題,使學生體會到數(shù)學與生活的緊密和諧關系,樸素的問題情境自然讓學生產生一種情感上的親和力和感召力,可以讓他們真正應用數(shù)學,并引導他們學會做事。
高中數(shù)學必修教學設計篇三
掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題.
掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題.
等比數(shù)列性質請同學們類比得出.
【方法規(guī)律】。
1、通項公式與前n項和公式聯(lián)系著五個基本量,“知三求二”是一類最基本的運算題.方程觀點是解決這類問題的基本數(shù)學思想和方法.
2、判斷一個數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個實數(shù)。
a,b,c成等差(比)數(shù)列時,常用(注:若為等比數(shù)列,則a,b,c均不為0)。
3、在求等差數(shù)列前n項和的最大(小)值時,常用函數(shù)的思想和方法加以解決.
【示范舉例】。
例1:(1)設等差數(shù)列的`前n項和為30,前2n項和為100,則前3n項和為.
(2)一個等比數(shù)列的前三項之和為26,前六項之和為728,則a1=,q=.
例2:四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項之和為21,中間兩項之和為18,求此四個數(shù).
例3:項數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項之和為44,偶數(shù)項之和為33,求該數(shù)列的中間項.
高中數(shù)學必修教學設計篇四
進一步掌握直線方程的各種形式,會根據(jù)條件求直線的方程。
【過程與方法】。
在分析問題、動手解題的過程中,提升邏輯思維、計算能力以及分析問題、解決問題的能力。
【情感、態(tài)度與價值觀】。
在學習活動中獲得成功的體驗,增強學習數(shù)學的興趣與信心。
二、教學重難點。
【重點】根據(jù)條件求直線的方程。
【難點】根據(jù)條件求直線的方程。
(一)課堂導入。
直接點明最近學習了直線方程的多種形式,這節(jié)課將練習求直線的方程。
(二)回顧舊知。
帶領學生復習回顧直線斜率的求法,以及直線方程的點斜式、兩點式和一般式。
為了加深學生的運用和理解,繼續(xù)引導學生思考,是否有其他解題思路。預設大部分學生能夠想到用點斜式進行計算。教師肯定學生想法并組織學生動手計算,之后請學生上黑板板演。
預設學生有多種解題方法,如ab、ac所在直線方程用兩點式求解,bc所在直線方程用點斜式求解。
學生板演后教師講解,點明不足,提示學生,計算結束后要記得將所求得方程整理為直線方程的一般式。
師生總結解題思路:求直線所在方程時,若給出兩點坐標,在符合條件的情況下,可直接套用公式,也可利用點斜式進行求解,注意一題多解的情況。
(四)小結作業(yè)。
小結:學生暢談收獲。
作業(yè):完成課后相應練習題,根據(jù)已知條件求直線的方程。
高中數(shù)學必修教學設計篇五
《普通高中課程標準實驗教科書·數(shù)學(1)》(人教a版)第44頁?!秾嵙曌鳂I(yè)》。本節(jié)課程體現(xiàn)數(shù)學文化的特色,學生通過了解函數(shù)的發(fā)展歷史進一步感受數(shù)學的魅力。學生在自己動手收集、整理資料信息的過程中,對函數(shù)的概念有更深刻的理解;感受新的學習方式帶給他們的學習數(shù)學的樂趣。
二、學生學習情況分析。
該內容在《普通高中課程標準實驗教科書·數(shù)學(1)》(人教a版)第44頁。學生第一次完成《實習作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經驗,所以需要教師精心設計,做好準備工作,充分體現(xiàn)教師的“導演”角色。特別在分組時注意學生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達能力等),選題時,各組之間盡量不要重復,盡量多地選不同的題目,可以讓所有的學生在學習共享的過程中受到更多的數(shù)學文化的熏陶。
三、設計思想。
《標準》強調數(shù)學文化的重要作用,體現(xiàn)數(shù)學的文化的價值。數(shù)學教育不僅應該幫助學生學習和掌握數(shù)學知識和技能,還應該有助于學生了解數(shù)學的價值。讓學生逐步了解數(shù)學的思想方法、理性精神,體會數(shù)學家的創(chuàng)新精神,以及數(shù)學文明的深刻內涵。
四、教學目標。
1、了解函數(shù)概念的形成、發(fā)展的歷史以及在這個過程中起重大作用的歷史事件和人物;。
2、體驗合作學習的方式,通過合作學習品嘗分享獲得知識的快樂;。
3、在合作形式的小組學習活動中培養(yǎng)學生的領導意識、社會實踐技能和民主價值觀。
五、教學重點和難點。
重點:了解函數(shù)在數(shù)學中的核心地位,以及在生活里的廣泛應用;。
難點:培養(yǎng)學生合作交流的能力以及收集和處理信息的能力。
【課堂準備】。
1、分組:4~6人為一個實習小組,確定一人為組長。教師需要做好協(xié)調工作,確保每位學生都參加。
2、選題:根據(jù)個人興趣初步確定實習作業(yè)的題目。教師應該到各組中去了解選題情況,盡量多地選擇不同的題目。
高中數(shù)學必修教學設計篇六
首先,可以聯(lián)系實際生活。數(shù)學知識在生活中有著廣泛的應用,與實際生活有著廣泛的聯(lián)系,在進行課堂導入設計時,教師可以聯(lián)系學生的實際生活,激發(fā)學生的好奇心。例如在學習拋物線的知識時,可以這樣導入:讓學生回想一下打籃球的情景,由于場地限制,在課堂上可以用乒乓球代替籃球,做投籃動作,讓學生仔細觀察籃球(乒乓球)落地時的軌跡,在學生積極參討論時,引入拋物線的知識。在導入中聯(lián)系實際生活,不僅能夠激發(fā)學生的興趣,并且能夠拉近學生與數(shù)學之間的距離。
其次,教師可以利用數(shù)學史進行導入。數(shù)學教材中很多知識都與數(shù)學史相關,學生對這部分知識充滿興趣,因此在教學過程中,教師設計課堂導入時可以從這一點入手,先通過提問或者介紹的方式,讓學生了解數(shù)學史上的重大事件和重要人物等,引起學生的敬佩和仰慕之情,然后引入相關的數(shù)學知識。興趣是最好的老師,在學生的期待下展開數(shù)學教學,無疑會提高課堂教學效率。課堂導入的方式有很多種,在具體的操作環(huán)節(jié),教師要注意導入方式的多樣性,才能更好地激發(fā)學生的興趣,在高中數(shù)學教學中教師要根據(jù)實際情況進行合理選擇使用。
做好課堂提問設計。
首先,教師要精心設計問題。提問的目的是為了激發(fā)學生的興趣和思維,因此,教師提問的問題不能是單調、重復的,而應該是具有啟發(fā)性和針對性,能夠激發(fā)學生的思考,引導學生進行步步深入。最重要的是,教師提出的問題要符合學生的知識水平和認知能力,教師不僅應該了解教材,并且要全面了解學生,這樣才能使提出的問題符合學生的需要。學生的數(shù)學水平是不同的,接受能力也有差異,因此教師要注意提出問題的層次性,并針對不同水平的學生設計不同難度的問題,促進每個學生獲得進步和發(fā)展。
其次,課堂提問的方式要多樣化。如同教學方式需要多樣化一樣,提問的方式也要具有多樣化的特點,這樣才能更好地激發(fā)學生興趣,達到教學目的,否則,無論教師設計的問題多么巧妙,學生也會感到厭煩。根據(jù)問題的內容和學生實際情況,提問可以是直接問答;可以是導思式;可以教師提問、學生回答;也可以是學生提問、教師回答。在教學過程中教師要注意培養(yǎng)學生的問題意識,鼓勵學生自己提出問題,問題是思考的開端,對于學生來說提出問題比解決問題更重要,因此,教師要為學生創(chuàng)造機會,讓學生在認真閱讀教材的基礎上,根據(jù)自己的理解提出不懂的問題。提出的問題教師可以進行點撥,讓學生思考,也可以組織學生進行討論,培養(yǎng)學生分析問題和解決問題的能力。
高中數(shù)學必修教學設計篇七
解三角形及應用舉例。
解三角形及應用舉例。
一.基礎知識精講。
掌握三角形有關的定理。
利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;。
(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;。
(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關三角形中的三角函數(shù)問題.
二.問題討論。
思維點撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的情況的討論.
思維點撥::三角形中的三角變換,應靈活運用正、余弦定理.在求值時,要利用三角函數(shù)的有關性質.
例6:在某海濱城市附近海面有一臺風,據(jù)檢測,當前臺風中心位于城市o(如圖)的東偏南方向300km的海面p處,并以20km/h的速度向西偏北的方向移動,臺風侵襲的范圍為圓形區(qū)域,當前半徑為60km,并以10km/h的速度不斷增加,問幾小時后該城市開始受到臺風的侵襲。
一.小結:
1.利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;。
(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);。
2.利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;。
(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
3.邊角互化是解三角形問題常用的手段.
三.作業(yè):p80闖關訓練。
高中數(shù)學必修教學設計篇八
教學設計的優(yōu)劣對于提高教學質量,培養(yǎng)學生思維,調動學生的積極性有著十分重要的意義。在實施高中數(shù)學新課改的今天,怎樣完成一個優(yōu)秀的教學設計呢?我們認為應該從以下幾個方面著手:
一、教學設計應有利于讓學生學會學習,發(fā)揮學生的主體作用。
傳統(tǒng)的課堂設計,常常是“教師問,學生答,教師寫,學生記,教師考,學生背。”在這樣教學下,學生機械被動地學習,不能主動對話、溝通、交流。久而久之,他們學習數(shù)學的興趣會逐漸褪去。新課程標準要求教師必需轉變角色,尊重學生的主體性,以新的理念指導設計教學。在教學過程中,要根據(jù)不同學習內容,使學習成為在教師指導下自動的、建構過程。教師是教學過程的組織者和引導者,教師在設計教學目標,組織教學活動等方面,應面向全體學生,突出學生的主體性,充分發(fā)揮學生的主觀能動性,讓學生自主參與探究問題。
二、教學設計應注重初高中知識的銜接問題。
總結。
提高學生的自學能力善于思考、勇于鉆研的意識。
三、
教學設計應考慮到學生當前的知識水平。
我校學生,大部分是居于中等及以下的學生,基礎知識、基本技能、基本數(shù)學思想方法差,思維能力、運算能力較低,空間想象能力以及實踐和創(chuàng)新意識能力更無須談說。因此數(shù)學學習還處在比較被動的狀態(tài),存在問題較多,主要表現(xiàn)在:
1、學習懶散,不肯動腦;
2、不訂計劃,慣性運轉;
5、死記硬背,機械模仿,教師講的聽得懂,例題看得懂,就是書上的作業(yè)做不起;
6、不懂不問,一知半解;
8、不重總結,輕視復習。因此教師需多花時間了解學生具體情況、學習狀態(tài),對學生數(shù)學學習方法進行指導,力求做到轉變思想與傳授方法結合,課上與課下結合,學法與教法結合,統(tǒng)一指導與個別指導結合,促進學生掌握正確的學習方法。只有憑借著良好的學習方法,才能達到“事半功倍”的學習效果。
四、教學設計中教師應以科學的眼光審視教材。
高中數(shù)學新課程是具有厚實的數(shù)學專業(yè)和教育教學理論與實踐水平的專家群體,經過深思熟慮、系統(tǒng)地分析教學的情況和學生的實際來編寫的。很多內容編排很好,我們應該尊重教材,但我們不應迷信教材,認請教材的思路與意圖,理解教材中所蘊藏的知識、技能、情感與價值等層面上的內涵,同時也應該用批判的眼光去審視它,不迷信教材,在此基礎上,要挖掘和超越教材,做到既忠實教材,又不拘泥于教材,結合本校、本班學生的實際情況,創(chuàng)新出最適合自己所教學生的題目,啟發(fā)、誘導學生進行深入的體驗和感悟,真正做到“走進教材,又走出教材?!?/p>
五、教學設計應注重新課的導入與新知識的形成過程。
教師在授課過程中,應適時、適度地引出新課題,創(chuàng)設出最佳的教學氣氛,引起學生對本課題的興趣。
常用的課題導入的幾種類型有1.創(chuàng)設生產生活化情境導入課題2.講故事引入課題。
3.設置懸念,以疑激趣引入課題。
六、教學設計應注重從學生的角度進行教學反思。
教學行為的本質在于使學生受益,教得好是為了促進學得好。在講習題時,當我們向學生介紹一些精巧奇妙的解法時,特別是一些奇思妙解時,學生表面上聽懂了,但當他自己解題時卻茫然失措。我們教師在備課時把要講的問題設計的十分精巧,連板書都設計好了,表面上看天衣無縫,其實,任何人都會遭遇失敗,教師把自己思維過程中失敗的部分隱瞞了,最有意義,最有啟發(fā)的東西抽掉了,學生除了贊嘆我們教師的高超的解題能力以外,又有什么收獲呢?所以貝爾納說“構成我們學習上最大障礙的是已知的東西,而不是未知的東西”大數(shù)學家希爾伯特的老師富士在講課時就常把自己置于困境中,并再現(xiàn)自己從中走出來的過程,讓學生看到老師的真實思維過程是怎樣的。人的能力只有在逆境中才能得到最好的鍛煉。經常去問問學生,對數(shù)學學習的感受,借助學生的眼睛看一看自己的教學行為,是促進教學的必要手段。
高中數(shù)學必修教學設計篇九
1、在初中學過原命題、逆命題知識的基礎上,初步理解四種命題。
2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。
3、通過對四種命題之間關系的學習,培養(yǎng)學生邏輯推理能力。
4、初步培養(yǎng)學生反證法的數(shù)學思維。
二、教學分析。
重點:四種命題;難點:四種命題的關系。
1、本小節(jié)首先從初中數(shù)學的命題知識,給出四種命題的概念,接著,講述四種命題的關系,最后,在初中的基礎上,結合四種命題的知識,進一步講解反證法。
3、“若p則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學生,只要求能分清命題“若p則q”中的條件與結論就可以了,不必考慮p與q是命題,還是開語句。
三、教學手段和方法(演示教學法和循序漸進導入法)。
1、以故事形式入題。
2、多媒體演示。
四、教學過程。
(一)引入:一個生活中有趣的與命題有關的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數(shù)學思想嗎?通過這節(jié)課的學習我們就能揭開它的廬山真面,學生的興奮點被緊緊抓住,躍躍欲試!
設計意圖:創(chuàng)設情景,激發(fā)學生學習興趣。
(二)復習提問:
1.命題“同位角相等,兩直線平行”的條件與結論各是什么?
2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?
3.原命題真,逆命題一定真嗎?
學生活動:
設計意圖:通過復習舊知識,打下學習否命題、逆否命題的基礎.。
(三)新課講解:
1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結論作為條件,條件作為結論,得到的命題就叫做原命題的逆命題。
2.把命題“同位角相等,兩直線平行”的條件與結論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。
3.把命題“同位角相等,兩直線平行”的條件與結論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。
(四)組織討論:
讓學生歸納什么是否命題,什么是逆否命題。
例1及例2。
學生活動:
討論后回答。
這兩個逆否命題都真.。
原命題真,逆否命題也真。
引導學生討論原命題的真假與其他三種命題的真。
假有什么關系?舉例加以說明,同學們踴躍發(fā)言。
(六)課堂小結:
1、一般地,用p和q分別表示原命題的條件和結論,用vp和vq分別表示p和q否定時,四種命題的形式就是:
原命題若p則q;
逆命題若q則p;(交換原命題的條件和結論)。
否命題,若vp則vq;(同時否定原命題的條件和結論)。
逆否命題若vq則vp。(交換原命題的條件和結論,并且同時否定)。
2、四種命題的關系。
(1).原命題為真,它的逆命題不一定為真.。
(2).原命題為真,它的否命題不一定為真.。
(3).原命題為真,它的逆否命題一定為真。
(七)回扣引入。
分析引入中的笑話,先討論,后總結:現(xiàn)在我們來分析一下主人說的四句話:
第一句:“該來的沒來”
其逆否命題是“不該來的來了”,甲認為自己是不該來的,所以甲走了。
第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認為自己該走,所以乙也走了。
第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認為說的是自己,所以丙也走了。
同學們,生活中處處是數(shù)學,期待我們善于發(fā)現(xiàn)的眼睛。
五、作業(yè)。
1.設原命題是“若。
斷它們的真假.,則”,寫出它的逆命題、否命題與逆否命題,并分別判。
高中數(shù)學必修教學設計篇十
合理制定三維目標,明確重點與難點。
《普通高中數(shù)學課程標準》提出的三維教學目標是:知識與技能,過程與方法,情感態(tài)度與價值觀。知識與技能目標包括學生要知道、了解、理解的基礎知識、基本原理目標和學生必須達到的基本技能目標;過程與方法目標包括實現(xiàn)數(shù)學科學中的探究過程和探究方法、優(yōu)化學生的學習過程,強調學生探索新知識的經歷和獲得新知識的體驗;情感態(tài)度與價值觀目標中包括學生的學習興趣與熱情、戰(zhàn)勝困難的精神、認識數(shù)學之美感和塑造學生的人格。三維目標之間的關系是“在實現(xiàn)知識與技能的過程中有機地融合、滲透過程與方法目標、情感態(tài)度與價值觀目標的達成?!比S目標是課堂教學活動的出發(fā)點與歸宿。
教學設計時教師要依據(jù)教材的具體內容,結合學生的學習實際,以促進每一個學生的發(fā)展為本,合理地制訂三維目標,注意體現(xiàn)三維目標的整體性,相輔相成。所謂重點,指一節(jié)課中最重要的新知識,即聯(lián)動全局,帶動全面的重要之點,是學生認知發(fā)生轉折與質變的地方,是教學的重心所在,是課堂教學中需要解決的主要矛盾。所謂難點是一節(jié)課中學習起來最困難的地方,是學生的認知能力與知識要求之間存在較大矛盾、知識跨越最大的地方,是學生難于理解和掌握的內容。例如“等差數(shù)列前n項和”這節(jié)課中的重點是“等差數(shù)列前n項和公式”,難點是“等差數(shù)列前n項和公式的推導——倒序相加法”。只有合理制訂三維目標和確定好重點與難點,才能圍繞三維目標和重點與難點的突破,制定出出色的教學設計。
創(chuàng)設生活情景,使數(shù)學生活化。
為學生提供充分從事數(shù)學活動和交流的機會,促使他們在自主探索的過程中真正理解和掌握基本的數(shù)學知識和技能、數(shù)學思想和方法,獲得廣泛的數(shù)學體驗,將數(shù)學應用于生活,提高自主探究數(shù)學知識的能力和學生學習數(shù)學能力。
認知最牢靠和最根深蒂固的部分就是生活中經常接觸和經常使用的知識,有些已經進入了他們的潛意識。如果能把新知識巧妙地溶于生活情境中,那將會是學生非常歡迎的,一旦接受也會被牢固掌握。而現(xiàn)代教學手段比以往更容易讓現(xiàn)實生活中的現(xiàn)象再現(xiàn)或模擬于課堂。因此,從學生的生活經驗和知識背景出發(fā),提供學生充分進行數(shù)學實踐活動和交流的機會課堂效果一定會很好。用與學生年齡特征相適應的大眾化、生活化的方式呈現(xiàn)數(shù)學內容,也是數(shù)學課程改革的一個基本思路。教師要敢于走出教材,走出課堂,走進豐富多彩的生活。比如在引入兩個平面垂直的判定定理時,教師提出:建造一座大樓,怎樣才能使墻面與地面垂直呢?學生很快會聯(lián)想到建筑工人常常用一端系著鉛錘的細繩讓其垂直地面,并以這根繩子為參照,看看所砌的墻是否經過這條細繩。然后問:為什么若墻面經過這條繩子,所砌的墻就與地面垂直呢?還可以引導學生觀察教室門板與地面的位置關系,它們是否垂直?轉動門扇是否還與地面保持垂直,奇怪嗎?為什么?到底隱藏著數(shù)學上的什么奧秘?由這些親切真實情景,導出兩個平面垂直的判定定理就水到渠成了。
高中數(shù)學必修教學設計篇十一
掌握三角函數(shù)模型應用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型。
利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
(精確到0.001)。
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習:教材p65面3題。
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型。
2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
高中數(shù)學必修教學設計篇十二
1. 掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、會用數(shù)軸上的點表示有理數(shù);;會求一個有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過程與方法】 經歷從現(xiàn)實情景抽象出數(shù)軸的過程,體會數(shù)學與現(xiàn)實生活的聯(lián)系
【情感態(tài)度與價值觀】 感受數(shù)形結合的思想方法;
【教學重點】會說出數(shù)軸上已知點所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
【教學難點】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設情境,引入課題
(1)(出示投影1)問題:三個溫度計所表示的溫度是多少?
學生回答.
(2)在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學的內容―數(shù)軸(板書課題)
(二)得出定義,揭示內涵
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):
(1)畫直線,取原點
(2)標正方向
(3)選取單位長度,標數(shù)(強調:負數(shù)從0向左寫起)。
概念:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。
(三)強化概念,深入理解
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學生自己在練習本上畫一個數(shù)軸。教師在黑板上畫
(四)動手練習,歸納總結
1、在數(shù)軸上的點表示有理數(shù)。
一個學生在黑板上完成,其他同學在自己所畫數(shù)軸上完成。
明確“任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示”
2.指出數(shù)軸上a,b,c,d各點分別表示什么數(shù)。@師愿教育
3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計回答問題
(1)在數(shù)軸上表示的兩個數(shù),(右 ) 邊的數(shù)總比 ( 左)邊的數(shù)大;
(2)正數(shù)都(大于 )0,負數(shù)都(小于)0;正數(shù)(大于)一切負數(shù)。
例1、比較下列各數(shù)的.大小: -1.5 , 0.6, -3, -2
鞏固所學知識
(五)、歸納小結,強化思想
師生總結本課內容。
1、數(shù)軸的概念,數(shù)軸的三要素
2、數(shù)軸上兩個不同的點所表示的兩個有理數(shù)大小關系
3、所有的有理數(shù)都可以用數(shù)軸上的點來表示
師:你感到自己今天的表現(xiàn)怎樣?
習題2.2 1、2、3
選作第4題
高中數(shù)學必修教學設計篇十三
要學好數(shù)學,最關鍵的是要有一個好的基礎。只有打牢數(shù)學基礎,才能夠把高中數(shù)學好,同樣只有打好基礎,才能夠數(shù)學取得高分。打好基礎是最關鍵的!比如:建一棟大樓,如果地基不穩(wěn),不管大樓有多么豪華,都只是華而不實。
想學好數(shù)學,對數(shù)學感興趣。
其實學好數(shù)學最好的辦法就是發(fā)自內心由衷的想要學習,渴望學習,才能體會到從學習中所收獲的樂趣。自己的成就感提升,對于學習數(shù)學的積極性也就提高了,覺得數(shù)學并沒有那么難,就愿意去多接觸了。
多做題反復做,有題感。
其實學好數(shù)學辦法就是要大量做題,反復去做,題做多了就知道哪些方面需要自己去加強學習,還有就是同樣做數(shù)學題做多了就會有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會做,你也會找到一些解題的思路和技巧。
高中數(shù)學必修教學設計篇十四
1.教師要解放思想,與時俱進。在傳統(tǒng)的高中數(shù)學教學中,大多數(shù)教師教學觀念陳舊,把教科書當成學生學習的惟一對象,照本宣科,不加分析的滿堂灌,學生則聽得很乏味,感覺有點看電影。改變教與學的方式,是高中新課程標準的基本理念,在高中數(shù)學教學中,教師應把學生當成學習的主人,充分挖掘學生的潛能,處處激發(fā)學生學習數(shù)學的興趣。教師不要大包大攬,把結論或推理直接展現(xiàn)給學生,要讓學生獨立思考,在此基礎上,讓師生、生生進行充分的合作與交流,努力實現(xiàn)多邊互動。積極倡導“自主、合作、探究”的教學模式。同時由于學生認知方式、水平、思維策略和學習能力的不同,一定會有個體差異,所以教師要實施“差異教學”使人人參與,人人獲得必需的數(shù)學,這樣也體現(xiàn)了教學中的民主、平等關系,采用這樣的教學方式,學生的學習熱情自然高漲,個性思維積極活躍,人格發(fā)展自然和諧。
2.學生要轉變學法,主動出擊。鑒于目前的教學實際,必須創(chuàng)造條件讓學生能夠探究他們自己感興趣的問題并自主解決問題。新的課堂教學模式的特點關注學生的情感體驗,激發(fā)學生的愛國熱情,創(chuàng)設良好的教學情景。滲透了民主平等、自然和諧的教學思想,注重自主合作與探究生成,重視對學生的評價,把課堂還給學生,學生參與的時間明顯增多,老師們能注重以學生為主體,師生互動形式多樣。讓學生主動站起回答教師提出的問題,讓學生主動上臺演排,讓學生間相互交流,分組討論,把課堂還給學生,讓學生在參與中實現(xiàn)知識的生成。
3.課堂要形式多樣,追求高效。新的數(shù)學課程理念倡導數(shù)學教學應該根據(jù)不同教學內容的要求,采用不同教學方式。數(shù)學課程要講推理,更要講道理。通過典型例子的分析和學生自主探索活動,使學生理解數(shù)學概念、結論的形成過程,體會蘊涵在其中的思想方法,追尋數(shù)學發(fā)展的歷史足跡。在內容上,新課程注意把算法的內容和思想融入到數(shù)學課程的各個相關部分。
將本文的word文檔下載到電腦,方便收藏和打印。
高中數(shù)學必修教學設計篇十五
1.掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、會用數(shù)軸上的點表示有理數(shù);;會求一個有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過程與方法】經歷從現(xiàn)實情景抽象出數(shù)軸的過程,體會數(shù)學與現(xiàn)實生活的聯(lián)系。
【情感態(tài)度與價值觀】感受數(shù)形結合的.思想方法;
【教學重點】會說出數(shù)軸上已知點所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
【教學難點】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設情境,引入課題。
(1)(出示投影1)問題:三個溫度計所表示的溫度是多少?
學生回答.。
(2)在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學的內容—數(shù)軸(板書課題)。
(二)得出定義,揭示內涵。
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):
(1)畫直線,取原點。
(2)標正方向。
(3)選取單位長度,標數(shù)(強調:負數(shù)從0向左寫起)。
概念:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。
(三)強化概念,深入理解。
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學生自己在練習本上畫一個數(shù)軸。教師在黑板上畫。
(四)動手練習,歸納總結。
1、在數(shù)軸上的點表示有理數(shù)。
一個學生在黑板上完成,其他同學在自己所畫數(shù)軸上完成。
明確“任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示”
2.指出數(shù)軸上a,b,c,d各點分別表示什么數(shù)。@師愿教育。
3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計回答問題。
(1)在數(shù)軸上表示的兩個數(shù),(右)邊的數(shù)總比(左)邊的數(shù)大;
(2)正數(shù)都(大于)0,負數(shù)都(小于)0;正數(shù)(大于)一切負數(shù)。
例1、比較下列各數(shù)的大小:-1.5,0.6,-3,-2。
鞏固所學知識。
(五)、歸納小結,強化思想。
師生總結本課內容。
1、數(shù)軸的概念,數(shù)軸的三要素。
2、數(shù)軸上兩個不同的點所表示的兩個有理數(shù)大小關系。
3、所有的有理數(shù)都可以用數(shù)軸上的點來表示。
師:你感到自己今天的表現(xiàn)怎樣?
習題2.21、2、3。
選作第4題。
高中數(shù)學必修教學設計篇十六
民權主義:創(chuàng)立民國,通過政治革命,推翻封建帝制,建立資產階級民主共和國。
民生主義:平均地權,現(xiàn)有地價歸原主所有,增長的歸國家所以,由國民共享。
局限性:1.時代局限:沒有明確反對帝國主義2.階級局限:沒有徹底的土地革命的綱領(因而決定了資產階級革命不可能徹底完成反帝反封的革命任務)。
根本原因:半殖半封社會,資本主義發(fā)展不充分,資產階級的軟弱性和妥協(xié)。
19,辛亥革命爆發(fā),推翻了清朝的封建統(tǒng)治。
19,孫中山根據(jù)三民主義原則制訂了《中華民國臨時約法》。
舊三民主義發(fā)展成為新三民主義:
內容:對外獨立,對內平等。
民族主義:一為中華民族自求解放,二為中國境內各民族一律平等。
民權主義:一般平民所以。
民生主義:平均地權,節(jié)約資本,實行“耕者有其田”
高中數(shù)學必修教學設計篇十七
本節(jié)課力的合成,是在學生了解力的基本性質和常見幾種力的基礎上,通過等效替代思想,研究多個力的合成方法,是對前幾節(jié)內容的深化。
本節(jié)重點介紹力的合成法則——平行四邊形定則,但實際這是所有矢量運算的共同工具,為學習其他矢量的運算奠定了基礎。
更重要的是,力的合成是解決力學問題的基礎,對今后牛頓運動定律、平衡問題、動量與能量問題的理解和應用都會產生重要影響。
因此,這節(jié)課承前啟后,在整個高中物理學習中占據(jù)著非常重要的地位。
二、教學目標定位。
為了讓學生充分進行實驗探究,體驗獲取知識的過程,本節(jié)內容分兩課時來完成,今天我說課的內容為本節(jié)內容的第一課時。根據(jù)上述教材分析,考慮到學生的實際情況,在本節(jié)課的教學過程中,我制定了如下教學目標:。
一、知識與技能。
理解合力、分力、力的合成的概念理解力的合成本質上是從等效的角度進行力的替代。
探究求合力的方法——力的平行四邊形定則,會用平行四邊形定則求合力。
二、過程與方法。
通過學習合力和分力的概念,了解物理學常用的方法——等效替代法。
通過實驗探究方案的設計與實施,體驗科學探究的過程。
三、情感態(tài)度與價值觀。
培養(yǎng)學生的合作精神,激發(fā)學生學習興趣,形成良好的學習方法和習慣。
培養(yǎng)認真細致、實事求是的實驗態(tài)度。
根據(jù)以上分析確定本節(jié)課的重點與難點如下:
一、重點。
合力和分力的概念以及它們的關系。
實驗探究力的合成所遵循的法則。
二、難點。
平行四邊形定則的理解和運用。
三、重、難點突破方法——教法簡介。
本堂課的重、難點為實驗探究力的合成所遵循的法則——平行四邊形定則,為了實現(xiàn)重難點的突破,讓學生真正理解平行四邊形定則,就要讓學生親自體驗規(guī)律獲得的過程。
因此,本堂課在學法上采用學生自主探究的實驗歸納法——通過重現(xiàn)獲取知識和方法的思維過程,讓學生親自去體驗、探究、歸納總結。體現(xiàn)學生主體性。
實驗歸納法的步驟如下。這樣設計讓學生不僅能知其然,更能知其所以然,這也是本堂課突破重點和難點的重要手段。
本堂課在教法上采用啟發(fā)式教學——通過設置問題,引導啟發(fā)學生,激發(fā)學生思維。體現(xiàn)教師主導作用。
四、教學過程設計。
采用六環(huán)節(jié)教學法,教學過程共有六個步驟。
教學過程第一環(huán)節(jié)、創(chuàng)設情景導入新課:
第二環(huán)節(jié)、新課教學:
展示合力與分力以及力的合成的概念,強調等效替代法。舉例說明等效替代法是一種重要的物理方法。
第三環(huán)節(jié)、合作探究:
首先,教師展示實驗儀器,讓學生思考如何設計實驗,,如何進行實驗呢?學生面對器材可能會覺得無從下手。再次設置問題引導學生思維,讓學生面對儀器分組討論以下四個問題。
問題1要用動畫輔助說明。在問題2中,教師要強調結點的問題,用動畫說明。問題3中,直觀簡潔的描述力必須用力的圖示,用圖片說明。問題4讓學生注意測力計的使用,減小實驗誤差。通過對這四個問題的討論,再結合多媒體動畫的展示,使學生對探究的步驟清晰明了。
然后,學生分組實驗,合作探究,記錄合力與兩分力的大小和方向,作出力的圖示。實驗完成后請學生展示實驗結果,應該立即可得出結論一:比較分力與合力的大小,可得互成角度的兩個力的合成,不能簡單地利用代數(shù)方法相加減.
那合力與分力到底滿足什么關系呢?
此時要引導學生思考:既然從數(shù)字上找不到關系,哪可不可以從幾何上找找關系呢?學生會立即猜想出o、a、c、b像是一個平行四邊形的四個頂點,ob可能是這個平行四邊形的對角線.哪么猜想是否正確呢?親自實踐才有發(fā)言權,學生動手作圖:以oa、oc為鄰邊作平行四邊形oacb,看平行四邊形的對角線與ob是否重合。
學生作圖后發(fā)現(xiàn)對角線與合力很接近。教師說明實驗的誤差是不可避免的,科學家經過很多次的、精細的實驗,最后確認對角線的長度、方向,跟合力的大小、方向一致,說明對角線就表示f1和f2的合力.由此得到結論二:力的合成法則——平行四邊形定則。
進入。
第四環(huán)節(jié):歸納總結。
將本文的word文檔下載到電腦,方便收藏和打印。
高中數(shù)學必修教學設計篇十八
一)、課內重視聽講,課后及時復習。
新知識的接受,數(shù)學能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,應盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網(wǎng)絡,納入自己的知識體系。
二)、適當多做題,養(yǎng)成良好的解題習慣。
要想學好數(shù)學,多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養(yǎng)成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關鍵時候,你所表現(xiàn)的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習慣是非常重要的。
三)、調整心態(tài),正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
【本文地址:http://mlvmservice.com/zuowen/12601633.html】