直線和圓的位置關(guān)系說課稿大全(16篇)

格式:DOC 上傳日期:2023-11-16 17:40:18
直線和圓的位置關(guān)系說課稿大全(16篇)
時間:2023-11-16 17:40:18     小編:靈魂曲

總結(jié)是一種提煉與總結(jié)經(jīng)驗和智慧的方式,有助于我們更好地發(fā)展??偨Y(jié)是對過去所取得成果和失敗的一種自省和總結(jié),它有助于我們提高和成長。以下是小編為大家推薦的一些舞蹈教學(xué)資源和演出視頻,希望能激發(fā)大家的舞蹈激情。

直線和圓的位置關(guān)系說課稿篇一

在本屆貴陽市中青年教師教學(xué)研討會中,修文中學(xué)提出打造有自己特色的“良知高效課堂”,整個課堂進程分四步八環(huán)節(jié)。本人承擔(dān)的是直線與圓的位置關(guān)系這一堂課與大家交流,有不足之外請老師們批評指正。

1、教材地位。

從知識結(jié)構(gòu)來看,直線與圓的位置關(guān)系是對圓的方程應(yīng)用的延續(xù)和拓展,又是后續(xù)研究圓與圓的位置關(guān)系和直線與圓錐曲線的位置關(guān)系等內(nèi)容的基礎(chǔ)。在直線與圓的位置關(guān)系的判斷方法的建立過程中蘊涵著諸多的數(shù)學(xué)思想方法,這對于進一步探索、研究后續(xù)內(nèi)容有很強的啟發(fā)與示范作用。

2、學(xué)生情況。

對于直線和圓,學(xué)生已經(jīng)非常熟悉,并且知道直線與圓有三種位置關(guān)系:相離,相切和相交。從直線與圓的直觀感受上,學(xué)生懂得從圓心到直線的距離與圓的半徑相比較來研究直線與圓的位置關(guān)系。本節(jié)課,學(xué)生將進一步挖掘直線與圓的位置關(guān)系中的“數(shù)”的關(guān)系,學(xué)會從不同角度分析思考問題,為后續(xù)學(xué)習(xí)打下基礎(chǔ)。另外學(xué)生在探究問題的能力,合作交流的意識及反思總結(jié)等方面有待加強。

3、教學(xué)目標。

新課程標準的要求是能根據(jù)直線與圓的方程判斷其位置關(guān)系(相交、相切、相離),體會用代數(shù)方法處理幾何問題的思想,感受“形”與“數(shù)”的對立和統(tǒng)一;初步掌握數(shù)形結(jié)合的思想方法在研究數(shù)學(xué)問題中的應(yīng)用。

根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)和心理特征,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標:

4、知識與技能。

直線和圓的位置關(guān)系說課稿篇二

各位評委、老師,大家晚上好!我說課的題目是《直線與圓的位置關(guān)系》,我將通過以下五方面對本節(jié)課進行解說。分別是教材分析、學(xué)情分析、教法分析、學(xué)法分析、過程分析。

一、教材分析。

本節(jié)課位于高中數(shù)學(xué)人教a版必修二第四章第二節(jié)(第一課時),它是在學(xué)生初中已經(jīng)學(xué)習(xí)了直線與圓的位置關(guān)系的基礎(chǔ)上,通過直線方程和圓的方程,利用坐標法對直線與圓的位置關(guān)系的進一步研究與探討。是從初等數(shù)學(xué)過渡到高等數(shù)學(xué)的開始和階梯。同時,這節(jié)課的方法和思想也為今后解決圓與圓的位置關(guān)系,以及圓錐曲線等幾何問題奠定了基礎(chǔ)。它起到了承前啟后的作用。

2.教學(xué)目標。

知識與技能:理解直線與圓的位置關(guān)系;學(xué)會利用幾何法和代數(shù)法解決直線和圓的有關(guān)問題。

過程與方法:通過直線與圓位置關(guān)系的探究活動,經(jīng)歷知識的建構(gòu)過程,培養(yǎng)學(xué)生獨立思考、自主探究、動手實踐、合作交流的學(xué)習(xí)方式。強化學(xué)生用坐標法解決幾何問題的意識,培養(yǎng)學(xué)生分析問題和靈活解決問題的能力。

情感、態(tài)度與價值觀:通過學(xué)生的自主探究、小組討論合作,培養(yǎng)學(xué)生的團隊精神和主動學(xué)習(xí)的良好習(xí)慣。

3.教學(xué)重、難點。

難點:把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,建立相應(yīng)的數(shù)學(xué)模型;靈活地運用“數(shù)形結(jié)合”、解析法來解決直線與圓的相關(guān)問題。

二、學(xué)情分析。

學(xué)生在初中已經(jīng)學(xué)習(xí)了直線與圓的位置關(guān)系,在高中又學(xué)習(xí)了直線方程與圓的方程,并會用坐標法解決簡單幾何問題。這些都有助于學(xué)生進一步學(xué)習(xí)直線與圓的位置關(guān)系。而我們的學(xué)生已經(jīng)具備了獨立思考和探究學(xué)習(xí)的能力,但又欠缺空間想象和實際應(yīng)用能力。

三、教法分析。

根據(jù)以上分析,本節(jié)依據(jù)布魯納發(fā)現(xiàn)教學(xué)法,要學(xué)生通過建立模型、方法探究、合作交流、歸納總結(jié)的學(xué)習(xí)方式,以活動為主線,體現(xiàn)學(xué)生的主體地位。教師在本環(huán)節(jié)中作為問題的設(shè)計者、組織者、引導(dǎo)者、合作者,體現(xiàn)其主導(dǎo)地位。

四、學(xué)法分析。

問題是數(shù)學(xué)的核心,教師在學(xué)生思維發(fā)展的最近區(qū),通過不斷地設(shè)問,為學(xué)生創(chuàng)設(shè)情景,搭建平臺,提供一個自主探究,合作交流的環(huán)境,讓學(xué)生通過不斷地發(fā)現(xiàn)問題、分析問題、解決問題,以培養(yǎng)學(xué)生的思維能力。

五、教學(xué)過程。

教學(xué)就像一條河流,如何讓學(xué)生到達知識的彼岸,教師在這一過程中的設(shè)計與引導(dǎo)起到了至關(guān)重要的作用。而本節(jié)課我將從六個方面根據(jù)學(xué)生的實際情況進行一個設(shè)計。

(一)情境設(shè)計,鋪墊導(dǎo)入(三分鐘)。

教育的藝術(shù)在于創(chuàng)設(shè)恰當(dāng)?shù)那榫?。本?jié)課創(chuàng)設(shè)的情景是以釣魚島問題導(dǎo)入(本環(huán)節(jié)大約三分鐘)。一艘日本漁船企圖非法登陸我國釣魚島,我國艦艇此刻正在附近海域巡邏。它們?nèi)咧g的位置關(guān)系如下:我國艦艇的雷達掃描半徑為30km,如果日本漁船不改變航線,我國艦艇能否通過雷達掃描發(fā)現(xiàn)它呢?情景一設(shè)計的目的在于讓學(xué)生構(gòu)建恰當(dāng)?shù)臄?shù)學(xué)模型,本質(zhì)在于探究“直線與圓的位置關(guān)系”引出了課題,讓學(xué)生從數(shù)學(xué)角度看待日常生活中的問題,增強學(xué)習(xí)的趣味性,使愛國熱情轉(zhuǎn)化為探索和學(xué)習(xí)的動力。

問題作為引導(dǎo)的核心,在這個問題上,我設(shè)計了如下問題:問題1:你能利用已有的平面幾何知識建立適當(dāng)?shù)臄?shù)學(xué)模型,來解決這一問題嗎?目的在于引導(dǎo)學(xué)生主動回憶初中所學(xué)的“直線與圓的三種位置關(guān)系”。并能說明這三種位置關(guān)系中公共點的個數(shù)以及圓心到直線的距離與半徑的大小關(guān)系。通過舊知識的回顧使學(xué)生發(fā)現(xiàn)新的問題,也使新的知識在原有的知識結(jié)構(gòu)中找到伸展點,而這個伸展點就是問題2.(二)切入主題、提出課題(2分鐘)。

問題2:如何用直線方程和圓的方程來判斷它們之間的關(guān)系呢?

問題2切入了本節(jié)的中心議題,讓學(xué)生用自主探究的學(xué)習(xí)方式,引導(dǎo)學(xué)生用方程思想解決幾何的問題。

在此教師不用急于讓學(xué)生回答這個問題,而是通過一個具體的問題來進行解答。這一具體問題我選擇了課本的例1,之所以選擇例1是因為例1直間給出了直線與圓的方程。學(xué)生只需要思考能用幾種方法來解決和判斷直線與圓的位置關(guān)系。引出了本節(jié)的重點。而第二問還要求學(xué)生求出交點坐標,目的在于讓學(xué)生進一步認識方程組解得意義。

(三)探索研究、解決問題(10分鐘)。

通過例1這一具體問題之后,可以讓學(xué)生嘗試歸納判斷直線與圓的位置關(guān)系的方法,在此我設(shè)置了兩個活動?;顒佣阂獙W(xué)生通過合作交流的方式將全班分成小組進行合作交流探究?;顒尤阂獙W(xué)生通過歸納小結(jié)的學(xué)習(xí)方法,將各小組的成果進行分享,最后進行歸納總結(jié)。教師在這一過程中只需要做好引導(dǎo)者和組織者的作用。目的是讓學(xué)生主動的參與課堂,通過分析問題、解決問題培養(yǎng)學(xué)生的能力。而這種由特殊例子到一般方法的歸納,也符合學(xué)生的認知結(jié)構(gòu)。讓學(xué)生在交流、探討和歸納的過程中理解和掌握本節(jié)課的重點。即直線與圓的位置關(guān)系的判斷方法。這里的方法可由學(xué)生歸納得出。第一種,幾何法,第二種,代數(shù)發(fā)。這兩種方法都體現(xiàn)了數(shù)學(xué)的思想,并且代數(shù)法對于今后解析幾何的方法應(yīng)用較多,也為后面解決圓錐曲線問題提供了方法依據(jù)。

(四)新知應(yīng)用、深化理解(20分鐘)。

掌握了方法接下來就是應(yīng)用,請學(xué)生利用“幾何法”和“代數(shù)法”解決情景一中的問題,達到學(xué)以致用,鞏固方法的目的。在此教師可以讓兩名學(xué)生通過不同的方法在黑板上演練,再讓其他學(xué)生進行點評,教師在進行小結(jié)即可。

例2是本節(jié)的難點,如何突破難點呢?我將從例1的一個變式引出。求直線l被圓c截得的弦長ab.在此教師可以作適當(dāng)?shù)狞c撥,求弦長的方法很多,如兩點間距離公式,弦長公式以及圓心到直線的距離與半徑構(gòu)建直角三角形利用勾股定理進行求解。通過一題多變,一題多解,不僅體現(xiàn)了新課標的要求,還讓學(xué)生在練習(xí)中拓展思維、活用方法,為接下來解決例2這一難點突破奠定基礎(chǔ)。

例2通過剛才的變式,由淺入深,引入例2,環(huán)環(huán)相扣,讓學(xué)生體會利用“幾何法”和“代數(shù)法”解決直線和圓相交時有關(guān)弦長的問題,突破本節(jié)難點。

掌握本節(jié)重點,突破難點之后,可以讓學(xué)生根據(jù)情景做適當(dāng)?shù)难由?。情景二:若我國艦艇雷達掃描半徑為rkm,此時日本非法漁船航線剛好和我國艦艇雷達掃描的圓形區(qū)域的邊緣相切,計算雷達掃描的半徑r的值。

情景二研究的是直線與圓相切的情況,同時是含有參數(shù)的問題,引導(dǎo)學(xué)生從運動變化的角度來看待問題,提高了思維的梯度。

情景三:對于同樣的情景,你還能根據(jù)“直線與圓的位置關(guān)系”設(shè)置出哪些問題呢?

這一問題,目的在于培養(yǎng)學(xué)生的創(chuàng)新意識,可以作為課后的拓展題,讓學(xué)生通過小組探究來完成。實際上學(xué)生創(chuàng)設(shè)問題的過程就是檢驗我們教學(xué)成果的過程。

(五)總結(jié)提升、形成方法(5分鐘)。

在課后總結(jié)中,讓學(xué)生通過三個方面進行總結(jié)。第一,方法總結(jié),在直線與圓的位置關(guān)系中,你掌握了哪些方法呢?學(xué)會了哪些應(yīng)用呢?你自己的思想上又得到了哪些提升呢?目的在于以自我小結(jié)的形式,對本節(jié)課進行簡單的回顧與梳理,也是對所學(xué)內(nèi)容的再次鞏固與提升。

(六)課后作業(yè),鞏固提高在課后訓(xùn)練中,針對學(xué)生不同層次,我設(shè)計了這三種題型:1.鞏固題,2.提高題,探究題。目的在于尊重學(xué)生的個體差異性,調(diào)動學(xué)生的積極性,使每一個學(xué)生在教學(xué)中都能夠有所發(fā)展。

(七)板書設(shè)計。

這是我的板書設(shè)計,本節(jié)課以多媒體演示為主,板書設(shè)計以簡潔明了為主,左邊主要羅列了主要的方法和應(yīng)用。右邊作為例題演示和學(xué)生演練。

教學(xué)反思。

作為教育工作者,目的在于授之以漁。而教學(xué)過程意在于把科學(xué)知識作為培養(yǎng)學(xué)生思維能力的一個階梯。

本節(jié)課,以活動為主線,問題為載體,通過釣魚島問題導(dǎo)入,由淺入深,環(huán)環(huán)相扣,一個情景,兩種方法,三種問題,一氣呵成,這節(jié)課的重難點也得以突破。另外本節(jié)課還有許多不足,如合作學(xué)習(xí)沒達到預(yù)想的效果,組長沒能起到應(yīng)有的作用。教師對有些知識強調(diào)、點評不到位等。

我的說課到此結(jié)束,不妥之處,敬請各位老師批評指正,謝謝!

直線和圓的位置關(guān)系說課稿篇三

已知直線都是正數(shù))與圓相切,則以為三邊長的三角形是________三角形.

三、解答題。

當(dāng)為何值時,直線與圓有兩個公共點?有一個公共點?無公共點?

四、填空題。

若直線與圓相切,則實數(shù)的值等于________.

圓心為且與直線相切的圓的方程為________.

直線與圓相切,則實數(shù)等于________.

直線與圓相切,則________.

過點作圓的切線,且直線與平行,則與間的距離是________.

過點,作圓的切線,則切線的條數(shù)為________條.

過點的圓與直線相切于點,則圓的方程為________.

五、解答題。

過點作圓的切線,求此切線的方程.。

圓與直線相切于點,且與直線也相切,求圓的方程.。

六、填空題。

由直線上的一點向圓引切線,則切線長的最小值為_____________.

七、解答題。

求滿足下列條件的圓的切線方程:

(1)經(jīng)過點;

(2)斜率為;

(3)過點.。

已知圓的方程為,求過的圓的切線方程.。

八、填空題。

直線被圓截得的弦長等于________.

直線被圓截得的弦長等于________.

直線被圓所截得的弦長為________.

圓截直線所得弦的長度為4,則實數(shù)的值是________.

設(shè)直線與圓相交于兩點,若,則圓的面積為________.

直線被圓截得的弦長為________.

直線被圓所截得的弦長為________.

圓心坐標為的圓在直線上截得的弦長為,那么這個圓的方程為________.

過點的直線被圓截得的弦長為,則直線的斜率為________.

過原點的直線與圓相交所得弦的長為2,則該直線的方程為________.

九、解答題。

圓心在直線上,圓過點,且截直線所得弦長為,求圓的方程.。

十、填空題。

過點作圓的弦,其中最短弦的長為________.

十一、解答題。

已知圓,直線.

(1)求證:對,直線與圓總有兩個不同的交點;

(2)若直線與圓交于兩點,當(dāng)時,求的值.。

設(shè)圓上的點關(guān)于直線的對稱點仍在圓上,且直線被圓截得的弦長為,求圓的方程.。

已知圓,直線.。

證明:不論取什么實數(shù),直線與圓恒交于兩點。

求直線被圓截得的弦長最小時的方程,并求此時的弦長。

十二、填空題。

圓上到直線的距離等于1的點有________個.

在平面直角坐標系中,已知圓上有且僅有四個點到直線的距離為1,則實數(shù)的取值范圍是________.

設(shè)圓上有且僅有兩個點到直線的距離等于1,則圓半徑的取值范圍是________.

直線與曲線有且只有一個公共點,則b的取值范圍是_________。

若直線與圓恒有兩個交點,則實數(shù)的取值范圍為________.

已知點滿足,則的取值范圍是________.

若過點的直線與曲線有公共點,則直線的斜率的取值范圍為。

直線和圓的位置關(guān)系說課稿篇四

本節(jié)課的教學(xué),我認為成功之處有以下幾點:

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標下的數(shù)學(xué)教學(xué)的基本特點之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。

2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。

3.本著學(xué)習(xí)----總結(jié)----再學(xué)習(xí)的思維教學(xué)模式,讓學(xué)生逐步理解知識掌握知識能夠很好的應(yīng)用知識。

同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點:1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,我設(shè)計的是直接給出定義可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。

2.本節(jié)課中擴展應(yīng)用環(huán)節(jié)圖形給的不是很明確,如果能給出精確的圖形那么學(xué)生會容易一些。

3.由于前邊時間有些過長,所以小結(jié)部分有些倉促。

直線和圓的位置關(guān)系說課稿篇五

《普通高中數(shù)學(xué)課程標準》指出:在平面解析幾何初步的教學(xué)中,教師應(yīng)幫助學(xué)生經(jīng)歷如下過程:首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。這種思想應(yīng)貫穿平面解析幾何教學(xué)的始終,幫助學(xué)生不斷地體會“數(shù)形結(jié)合”的思想方法。

《直線與圓的位置關(guān)系》這一節(jié)內(nèi)容出現(xiàn)在必修2的第二章《平面解析幾何初步》的第二節(jié)《圓與圓的方程》的第三小節(jié)的位置。就整套教材而言,《平面解析幾何初步》一章的教學(xué)主要是讓學(xué)生體會到用代數(shù)方法處理幾何問題的思想,為選修教材中的《圓錐曲線與方程》一章打好基礎(chǔ)。它是前兩節(jié)《直線與直線方程》和《圓與圓的方程》的綜合應(yīng)用,也為后一小節(jié)《圓與圓的位置關(guān)系》提供研究方法的一個重要示例,是整個《平面解析幾何初步》章節(jié)的重要內(nèi)容,起著貫穿始終、應(yīng)用反饋的重要作用,而且是貫徹“用代數(shù)方法處理幾何問題”思想和“數(shù)形結(jié)合”方法的重要的反映內(nèi)容和工具。在本章中的作用非常重要。

1、知識目標:

2、能力目標:

要使學(xué)生體會用代數(shù)方法處理幾何問題的思路和“數(shù)形結(jié)合”的思想方法。

四、教法分析:

1、教學(xué)方法:啟發(fā)式講授法、演示法、輔導(dǎo)法。

2、教材處理:

(1)例題1(1)(2)用兩種不同的辦法求解,讓學(xué)生自己體會這兩種方法。

通過老師引導(dǎo)和讓學(xué)生自己探索解決,反饋學(xué)生的解決情況。

(2)增加一個過一點求圓的切線方程的題型,幫助學(xué)生增加對直線與圓的認識。

3、學(xué)法指導(dǎo):本節(jié)課的學(xué)法是繼續(xù)指導(dǎo)學(xué)生把新問題轉(zhuǎn)化為已有知識解決的化歸思想。

4、教具:多媒體電腦、投影儀、自做多媒體。

五、過程分析:

教學(xué)。

環(huán)節(jié)。

教學(xué)內(nèi)容。

設(shè)計意圖。

新課引入。

1、學(xué)生觀察日出照片,把觀察到的情況用自己的語言說出來,抽象出幾何圖形,在學(xué)生回答的基礎(chǔ)上,通過多媒體演示圓與直線的三種位置關(guān)系。讓學(xué)生感受到數(shù)學(xué)產(chǎn)生于生活,與生活密切相關(guān),并能使學(xué)生更好的直觀感受直線和圓的三種位置關(guān)系。然后引入本節(jié)課的課題。

2、在上一章,我們在學(xué)習(xí)了直線的方程后,研究了點和直線、直線與直線的位置關(guān)系,本章我們已經(jīng)學(xué)習(xí)了圓的方程,現(xiàn)在我們要研究直線與圓以及圓與圓的位置關(guān)系。

1數(shù)學(xué)產(chǎn)生于生活,與生活密切相關(guān)。

2、以實際問題引入有利于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,有利于擴展學(xué)生的視野。

新課講解。

一、知識點撥:

答:把圓心到直線的距離d和半徑r比較大?。?/p>

2、我們?nèi)绾卫米鴺朔▽⒊踔信袛嘀本€和圓的位置關(guān)系代數(shù)化?

答:先利用點到直線的距離公式求圓心到直線的距離,再和半徑比較大小。

答:在直線與直線的方程這一節(jié)里,我們先把兩直線的方程聯(lián)立解方程組。

在思考直線和圓的位置關(guān)系時,我們可類似地把直線和圓的方程聯(lián)立解方程組。

二、例題講解:

1、讓學(xué)生先自學(xué)例1并回答下列問題:

(1)第二小題中,消去x的步驟怎樣?如何判斷方程組有沒有解?

(2)你認為這兩種方法哪一種較簡單,為什么?

(2)方法一較簡單,因為方法二在求交點坐標時仍要解方程組。

圓的切線l,求切線l的方程。

4、練習(xí):課本第83頁練習(xí)1、2。

問題1涉及初中知識,可使得學(xué)生比較容易上手。

問題2體現(xiàn)了將幾何問題代數(shù)化的思想。

問題3以前一章知識做類比,有利于培養(yǎng)學(xué)生類比歸納的能力。

通過前面對知識的分析,例題1對學(xué)生來說應(yīng)該比較容易,又通過兩個問題檢查學(xué)生的理解程度。

例3該例題有利于培養(yǎng)學(xué)生全面考慮問題的良好思維習(xí)慣。

課堂小結(jié)。

作業(yè)布置。

課本p86,a組4、6、b組1。

一、復(fù)習(xí)回顧。

例1。

例2。

例3。

直線和圓的位置關(guān)系說課稿篇六

5、過程與方法。

理解直線和圓的三種位置關(guān)系,感受直線和圓的位置與它們的方程所組成的二元二次方程組的解的對應(yīng)關(guān)系;體驗通過比較圓心到直線的距離和半徑之間的大小及通過方程組的解的個數(shù)判斷直線與圓的位置關(guān)系,能用直線和圓的方程解決一些條件下圓的切線問題;領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力。

6、情感態(tài)度與價值觀。

通過對本節(jié)課知識的探究活動,加深學(xué)生對解析法解決幾何問題的認識,從而領(lǐng)悟其中所蘊涵的數(shù)學(xué)思想,體驗探索中成功的喜悅,激發(fā)學(xué)習(xí)熱情,養(yǎng)成良好的學(xué)習(xí)習(xí)慣和品質(zhì)。

教法學(xué)法為了實現(xiàn)上述教學(xué)目標,本節(jié)課采取以下教學(xué)方法:

(1)恰當(dāng)?shù)睦枚嗝襟w課件,通過學(xué)生熟悉的實際生活問題引入課題,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)學(xué)生的問題意識和求知欲,調(diào)動學(xué)生主體參與的積極性。

(2)采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,站在學(xué)生思維的最近發(fā)展區(qū)上啟發(fā)誘導(dǎo)。

(3)在整個數(shù)學(xué)教學(xué)過程中,既要體現(xiàn)學(xué)生的主體地位,更要強調(diào)教師的主導(dǎo)地位,在科學(xué)講授的同時教會學(xué)生清晰的思維和嚴謹?shù)耐评怼?/p>

在學(xué)法上注重以下幾點:

(2)在用代數(shù)法解決直線與圓的位置關(guān)系時,要能夠明確運算方向,把握關(guān)鍵步驟,正確的處理較為復(fù)雜數(shù)據(jù)。

課堂結(jié)構(gòu)設(shè)計:

整個教學(xué)過程是四步組成,自主學(xué)習(xí),合作探究,老師輔導(dǎo)、課堂展示。共分為八個環(huán)節(jié),復(fù)習(xí)、獨立訓(xùn)練、相互探討、老師參與、形成結(jié)論、課堂展示、評價(互評師評)、反思。

教學(xué)過程設(shè)計:

通過問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生找到要學(xué)的與以學(xué)知識之間的聯(lián)系;問題串的設(shè)置可讓學(xué)生主動參與到學(xué)習(xí)中來;在判斷方法的形成與應(yīng)用的探究中,師生的相互溝通調(diào)動學(xué)生的積極性,培養(yǎng)團隊精神;知識的生成和問題的解決,培養(yǎng)學(xué)生獨立思考的能力,激發(fā)學(xué)生的創(chuàng)新思維;通過練習(xí)檢測學(xué)生對知識的掌握情況;根據(jù)學(xué)生在課堂小結(jié)中的表現(xiàn)和課后作業(yè)情況,查缺補漏,以便調(diào)控教學(xué)。

回顧反思,拓展延伸:

直線和圓的位置關(guān)系說課稿篇七

20xx.11.17早上第二節(jié)授課班級:初三、1班授課教師:

過程與方法目標:

2.通過例題教學(xué),培養(yǎng)學(xué)生靈活運用知識的解決能力。

情感與態(tài)度目標:讓學(xué)生從運動的觀點來觀察直線和圓相交、相切、相離的關(guān)系、關(guān)注知識的生成,發(fā)展與變化的過程,主動探索,勇于發(fā)現(xiàn)。從而領(lǐng)悟世界上的一切物體都是運動變化著的,并且在一定的條件下可以轉(zhuǎn)化的辯證唯物主義觀點。

利用多媒體放映落日的動畫,初中數(shù)學(xué)教案《數(shù)學(xué)教案-直線和圓的位置關(guān)系(公開課)》。引導(dǎo)學(xué)生從公共點個數(shù)和圓心到直線的.距離兩方面體會直線和圓的不同位置關(guān)系。

學(xué)生看投影并思考問題。

調(diào)動學(xué)生積極主動參與數(shù)學(xué)活動中.。

探究新知。

1、通過觀察直線和圓的公共點個數(shù)得出直線和圓相離、相交、相切的定義。

布置作業(yè)。

1、課本第101頁7.3a組第2、3題。

2、課余時間,留心觀察周圍事物,找出直線和圓相交,相切,相離的實例,說給大家聽。

直線和圓的位置關(guān)系說課稿篇八

“思之不慎,行而失當(dāng)”,“學(xué)然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也?!狈此家庾R人類早就有之。作為教師,在教學(xué)中也應(yīng)適時反思教學(xué)過程的得與失。

開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關(guān)系。由此引入課題——直線與圓的位置關(guān)系,學(xué)生比較感興趣,充分感受生活中的數(shù)學(xué)知識,體驗數(shù)學(xué)來源于生活。然后提出問題,引導(dǎo)學(xué)生大膽猜想,思考,發(fā)現(xiàn)三種位置關(guān)系,激發(fā)學(xué)生學(xué)習(xí)興趣,營造探索問題的氛圍。同時讓學(xué)生從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),體會到數(shù)學(xué)知識無處不在,應(yīng)用數(shù)學(xué)無處不有。這也符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗出發(fā)”的新課程標準要求。

在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在研究過程中,采用小組討論的方法,給予學(xué)生足夠的探索、交流的時間,培養(yǎng)學(xué)生互助、協(xié)作的精神,讓學(xué)生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結(jié)論更準確。最后由學(xué)生小結(jié)這一知識點,我板書在黑板上,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力,同時感受收獲知識的快樂。

在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學(xué)校?如果會影響,影響的時間有多長?新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),由于此題要學(xué)生回到生活中去運用數(shù)學(xué)知識解決生活中遇到的問題,學(xué)生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。

一堂課教學(xué)下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認識到自己需要繼續(xù)努力。歸納主要有以下三點:。

1、教師在課堂應(yīng)當(dāng)以引導(dǎo)者的身份出現(xiàn),把課堂和講臺讓位于學(xué)生,讓“教師的教”真正服務(wù)于“學(xué)生的學(xué)”,而我在這一節(jié)課中因為一方面擔(dān)心學(xué)生在自主研究知識的形成時會浪費時間,另一方面擔(dān)心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學(xué)生,比如學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學(xué)生自己下定義,教師適當(dāng)放手,以師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。

2、有些課堂提問欠合理化、科學(xué)化,提問隨意性大,缺乏針對性和啟發(fā)性,導(dǎo)致課堂教學(xué)引導(dǎo)不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應(yīng)該把一些提問設(shè)計再提煉,能達到精而準。

3、在處理課后練習(xí)時,做的不夠細致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學(xué)生掌握方法,而我在講解練習(xí)時,只展示了解題思路,并沒有及時進行方法上的總結(jié),致使部分學(xué)生在解決實際問題時思路不明確。這里教師要根據(jù)情況,簡要歸納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識,充分體現(xiàn)”授人以魚不如授人以漁"。

總之,這是我對自己本節(jié)課的一些教學(xué)反思,或者說是對新課程理念的淺薄認識。

將本文的word文檔下載到電腦,方便收藏和打印。

直線和圓的位置關(guān)系說課稿篇九

本節(jié)課教學(xué)我所面對的傳授對象是聾啞學(xué)生,根據(jù)聾生的特點在學(xué)生觀察教材123頁三幅照片時,我立刻告訴學(xué)生你說的對,這就是直線和圓的三種關(guān)系:相交、相切和相離。我認為是數(shù)學(xué)課而不是語文課,數(shù)學(xué)課只注重學(xué)生的觀察思維能力,不追求學(xué)生的語言表達能力和概括能力。

還有因為手語的手勢再多再細也不可能表達出所有的抽象的甚至連豐富的語言都不好表述的東西,因此在講解數(shù)學(xué)時,我追求細致,不要想很簡單,很明顯,而一帶而過。因此,教學(xué)時我多次強化學(xué)生對直線與圓的三種關(guān)系的理解,為學(xué)生探究點到直線的距離d和圓半徑r的大小關(guān)系。

然而數(shù)學(xué)教學(xué)時,該細的地方還是要細,這需要教師自己的把握,在學(xué)生輕而易舉回答出來的問題時,有時要帶領(lǐng)學(xué)生深入思考,并多問個為什么?比如在本課學(xué)生總結(jié)出:“圓的切線垂直于過切點的直徑”時。養(yǎng)成學(xué)生深入思考的好習(xí)慣,不要想當(dāng)然!

直線和圓的位置關(guān)系說課稿篇十

重點:的性質(zhì)和判定。因為它是本單元的基礎(chǔ)(如:“切線的判斷和性質(zhì)定理”是在它的基礎(chǔ)上研究的),也是高中解析幾何中研究的基礎(chǔ)。

難點:在對性質(zhì)和判定的研究中,既要有歸納概括能力,又要有轉(zhuǎn)換思想和能力,所以是本節(jié)的難點;另外對“相切”要分清直線與圓有唯一公共點是指有一個并且只有一個公共點,與有一個公共點含義不同(這一點到直線和曲線相切時很重要),學(xué)生較難理解。

3.教法建議。

本節(jié)內(nèi)容需要一個課時。

(2)在中,以“形”歸納“數(shù)”,以“數(shù)”判斷“形”為主線,開展在組織下,以學(xué)生為主體,活動式.

第12頁。

直線和圓的位置關(guān)系說課稿篇十一

本節(jié)課,我先讓學(xué)生在課前自行完成教學(xué)案中“課前預(yù)習(xí)與導(dǎo)學(xué)”這一部分,情況良好。上課后先信息反饋進行評講,然后引導(dǎo)學(xué)生回憶了點與圓的位置關(guān)系及如何用數(shù)量關(guān)系來判斷點與圓的位置關(guān)系。接著以《海上日出》圖創(chuàng)設(shè)情景,從而引出課題:直線和圓的位置關(guān)系。然后由學(xué)生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關(guān)系,給出定義,聯(lián)系實際,由學(xué)生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導(dǎo)學(xué)生探索三種位置關(guān)系下圓心到直線的距離與圓半徑的大小關(guān)系,由小“練習(xí)”進行應(yīng)用,最后通過“例題”“課堂檢測”去解決實際問題。通過本節(jié)課的教學(xué),我認為成功之處有以下幾點:

1、在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。

2、新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在小練習(xí)之后我及時地進行總結(jié)歸納方法,讓學(xué)生在以后解決實際問題過程中能一下子找到切入點,培養(yǎng)學(xué)生解決實際問題的能力。

同時,我也感覺到本節(jié)課的教學(xué)有不妥之處,主要有以下三點:

1、學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。講得過多,學(xué)生被動的接受,思考得不夠,對概念的理解不是很深刻??梢愿臑樽寣W(xué)生類比點與圓的位置關(guān)系下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。

2、對于我們學(xué)生的情況,初三的教學(xué)始終沒有擺脫灌輸式教學(xué),盡管課上也讓學(xué)生自主操作、思考,但老師講的太多,沒有給予學(xué)生足夠的探索、交流的時間,勢必會影響到部分學(xué)生的思維,限制了學(xué)生的發(fā)展。所以,我們也要學(xué)會該“放手時就放手”,大膽地讓學(xué)生去思考,也許會有意外的收獲。

3、對教材的把握,對學(xué)生的實情,在備課時都要考慮。在選題時不僅要照顧到基礎(chǔ)薄弱的同學(xué),也要照顧到基礎(chǔ)好些的同學(xué),適時選做。對于有些題可以適當(dāng)?shù)剡M行變式訓(xùn)練,拓展靈活運用,活躍學(xué)生的思維。

總之,在今后的數(shù)學(xué)教學(xué)中還有很多需要我學(xué)習(xí)和掌握的東西,希望能和學(xué)生們一起共同進步,真正成為一名合格的數(shù)學(xué)教師。

直線和圓的位置關(guān)系說課稿篇十二

:通過觀察、實驗、討論、合作研究等數(shù)學(xué)活動使學(xué)生了解探索問題的一般方法;由觀察得到“圓心與直線的距離和圓半徑大小的數(shù)量關(guān)系對應(yīng)等價于直線和圓的位置關(guān)系”從而實現(xiàn)位置關(guān)系與數(shù)量關(guān)系的轉(zhuǎn)化,滲透運動與轉(zhuǎn)化的數(shù)學(xué)思想。

:創(chuàng)設(shè)問題情景,激發(fā)學(xué)生好奇心;體驗數(shù)學(xué)活動中的探索與創(chuàng)造,感受數(shù)學(xué)的嚴謹性和數(shù)學(xué)結(jié)論的正確性,在學(xué)習(xí)活動中獲得成功的體驗;通過“轉(zhuǎn)化”數(shù)學(xué)思想的運用,讓學(xué)生認識到事物之間是普遍聯(lián)系、相互轉(zhuǎn)化的辨證唯物主義思想。

二、教學(xué)重、難點。

難點:學(xué)生能根據(jù)圓心到直線的距離d與圓的半徑r之間的數(shù)量關(guān)系,揭示直線與圓的位置關(guān)系;直線與圓的三種位置關(guān)系判定方法的運用。

三、教學(xué)設(shè)計。

問???題。

設(shè)計意圖。

師生活動。

2.圖形中的圓與直線的位置都是一樣的嗎?

師:讓學(xué)生之間進行討論、交流,引導(dǎo)學(xué)生觀察圖形,導(dǎo)入新課.

生:看圖,并說出自己的看法.

師:引導(dǎo)學(xué)生利用類比、歸納的思想,總結(jié)直線與圓的位置關(guān)系的種類,進一步深化“數(shù)形結(jié)合”的數(shù)學(xué)思想.

問???題。

設(shè)計意圖。

師生活動。

使學(xué)生回憶初中的數(shù)學(xué)知識,培養(yǎng)抽象概括能力.

師:引導(dǎo)學(xué)生從幾何的角度說明判斷方法和通過直線與圓的方程說明判斷方法.

生:利用圖形,尋找兩種方法的數(shù)學(xué)思想.

師:指導(dǎo)學(xué)生閱讀教科書上的例1.

生:閱讀科書上的例1,并完成教科書第128頁的練習(xí)題2.

師;分析例1,并展示解答過程;啟發(fā)學(xué)生概括判斷直線與圓的位置關(guān)系的基本步驟,注意給學(xué)生留有總結(jié)思考的時間.

生:交流自己總結(jié)的步驟.

師:展示解題步驟.

7.通過學(xué)習(xí)教科書上的例2,你能說明例2中體現(xiàn)出來的數(shù)學(xué)思想方法嗎?

進一步深化“數(shù)形結(jié)合”的數(shù)學(xué)思想.

師:指導(dǎo)學(xué)生閱讀并完成教科書上的例2,啟發(fā)學(xué)生利用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問題.

問???題。

設(shè)計意圖。

師生活動。

8.通過例2的學(xué)習(xí),你發(fā)現(xiàn)了什么?

明確弦長的運算方法.

師:引導(dǎo)并啟發(fā)學(xué)生探索直線與圓的相交弦的求法.

生:通過分析、抽象、歸納,得出相交弦長的運算方法.

9.完成教科書第128頁的練習(xí)題1、2、3、4.

師:引導(dǎo)學(xué)生完成練習(xí)題.

生:互相討論、交流,完成練習(xí)題.

10.課堂小結(jié):

教師提出下列問題讓學(xué)生思考:

作業(yè):習(xí)題4.2a組:1、3.

直線和圓的位置關(guān)系說課稿篇十三

節(jié)課的教學(xué),我認為成功之處有以下幾點:

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標下的數(shù)學(xué)教學(xué)的基本特點之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。

2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。

3.新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學(xué)生解決實際問題的能力。由于此題要學(xué)生回到生活中去運用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。

同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點:

1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生被動的接受,對概念的理解不是很深刻,可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。

2.雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點,讓學(xué)生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結(jié)論更準確。

直線和圓的位置關(guān)系說課稿篇十四

這節(jié)課,我由生活中的情景——日落引入,讓學(xué)生發(fā)現(xiàn)地平線和太陽位置關(guān)系的變化,從而引出課題:直線和圓的位置關(guān)系。然后由學(xué)生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關(guān)系,給出定義,聯(lián)系實際,由學(xué)生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導(dǎo)學(xué)生探索三種位置關(guān)系下圓心到直線的距離與圓半徑的大小關(guān)系,由“做一做”進行應(yīng)用,最后去解決實際問題。通過本節(jié)課的教學(xué),我認為成功之處有以下幾點:

1。由日落引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標下的數(shù)學(xué)教學(xué)的基本特點之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到數(shù)學(xué)無處不在,無時不有。

2。在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,讓學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。

3。新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學(xué)生解決實際問題的能力。由于此題要學(xué)生回到生活中去運用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。

“國培計劃”初中數(shù)學(xué)——陳曉峰(江西省寧都五中)。

節(jié)課的教學(xué),我認為成功之處有以下幾點:

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標下的數(shù)學(xué)教學(xué)的基本特點之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。

2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。

3.新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學(xué)生解決實際問題的能力。由于此題要學(xué)生回到生活中去運用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。

同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點:

1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生被動的接受,對概念的理解不是很深刻,可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。

2.雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點,讓學(xué)生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結(jié)論更準確。

直線和圓的位置關(guān)系說課稿篇十五

“思之不慎,行而失當(dāng)”,“學(xué)然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也?!狈此家庾R人類早就有之。作為教師,在教學(xué)中也應(yīng)適時反思教學(xué)過程的得與失。

開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關(guān)系。由此引入課題——直線與圓的位置關(guān)系,學(xué)生比較感興趣,充分感受生活中的數(shù)學(xué)知識,體驗數(shù)學(xué)來源于生活。然后提出問題,引導(dǎo)學(xué)生大膽猜想,思考,發(fā)現(xiàn)三種位置關(guān)系,激發(fā)學(xué)生學(xué)習(xí)興趣,營造探索問題的氛圍。同時讓學(xué)生從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),體會到數(shù)學(xué)知識無處不在,應(yīng)用數(shù)學(xué)無處不有。這也符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗出發(fā)”的新課程標準要求。

在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在研究過程中,采用小組討論的方法,給予學(xué)生足夠的探索、交流的時間,培養(yǎng)學(xué)生互助、協(xié)作的精神,讓學(xué)生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結(jié)論更準確。最后由學(xué)生小結(jié)這一知識點,我板書在黑板上,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力,同時感受收獲知識的快樂。

在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學(xué)校?如果會影響,影響的時間有多長?新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),由于此題要學(xué)生回到生活中去運用數(shù)學(xué)知識解決生活中遇到的問題,學(xué)生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。

一堂課教學(xué)下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認識到自己需要繼續(xù)努力。歸納主要有以下三點:。

1、教師在課堂應(yīng)當(dāng)以引導(dǎo)者的身份出現(xiàn),把課堂和講臺讓位于學(xué)生,讓“教師的教”真正服務(wù)于“學(xué)生的學(xué)”,而我在這一節(jié)課中因為一方面擔(dān)心學(xué)生在自主研究知識的形成時會浪費時間,另一方面擔(dān)心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學(xué)生,比如學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學(xué)生自己下定義,教師適當(dāng)放手,以師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。

2、有些課堂提問欠合理化、科學(xué)化,提問隨意性大,缺乏針對性和啟發(fā)性,導(dǎo)致課堂教學(xué)引導(dǎo)不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應(yīng)該把一些提問設(shè)計再提煉,能達到精而準。

3、在處理課后練習(xí)時,做的不夠細致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學(xué)生掌握方法,而我在講解練習(xí)時,只展示了解題思路,并沒有及時進行方法上的總結(jié),致使部分學(xué)生在解決實際問題時思路不明確。這里教師要根據(jù)情況,簡要歸納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識,充分體現(xiàn)”授人以魚不如授人以漁"。

總之,這是我對自己本節(jié)課的一些教學(xué)反思,或者說是對新課程理念的淺薄認識。

直線和圓的位置關(guān)系說課稿篇十六

這是我第一次進入初三進行教學(xué),即緊張又興奮。經(jīng)過一個學(xué)期的歷練,在校領(lǐng)導(dǎo)和組內(nèi)老教師的無私幫助下我有了一些進步?,F(xiàn)以《直線和圓的位置關(guān)系》第一課時為例,反思如下。

在初三的教學(xué)過程中,我?guī)缀跏锹犚还?jié)上一節(jié)。而集體備課也給了我很大的幫助。通過集體備課和聽課,在《直線和圓的位置關(guān)系》這節(jié)課中,我首先引導(dǎo)學(xué)生回憶了點與圓的位置關(guān)系及所對應(yīng)的點到圓心的距離與圓半徑的數(shù)量關(guān)系。從而引出課題:直線和圓的位置關(guān)系。然后由學(xué)生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關(guān)系,給出定義,聯(lián)系實際,由學(xué)生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導(dǎo)學(xué)生探索三種位置關(guān)系下圓心到直線的距離與圓半徑的大小關(guān)系,由“做一做”進行應(yīng)用,最后去解決實際問題。通過本節(jié)課的教學(xué),我認為成功之處有以下幾點:

1、在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。

2、新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了兩道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”“公路邊的學(xué)校會不會受到噪聲的影響?”培養(yǎng)學(xué)生解決實際問題的能力。由于這兩題要學(xué)生回到生活中去運用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。

同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點:

1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。講得過多,學(xué)生被動的接受,思考得不夠,對概念的理解不是很深刻??梢愿臑樽寣W(xué)生類比點與圓的位置關(guān)系下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。

2、雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點,讓學(xué)生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結(jié)論更準確。

3.對“做一做”的處理不夠,這一環(huán)節(jié)是對探究的成績與效果的探索與檢驗,重在幫助學(xué)生掌握方法,我在講解“做一做”時,沒有充分展示解題思路,沒有及時進行方法上的總結(jié),致使部分學(xué)生在解決實際問題時思路不明確。并在進行下面的解題時體現(xiàn)出來。教師要根據(jù)情況,簡要歸納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,不能想當(dāng)然,否則會影響學(xué)生對知識的消化吸收。

總之,在今后的數(shù)學(xué)教學(xué)中還有很多需要我學(xué)習(xí)和掌握的東西,希望能和學(xué)生們一起共同進步,真正成為一名合格的數(shù)學(xué)教師。

【本文地址:http://mlvmservice.com/zuowen/12552179.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔