新教材高一數(shù)學(xué)必修一教案(實(shí)用20篇)

格式:DOC 上傳日期:2023-11-16 13:03:15
新教材高一數(shù)學(xué)必修一教案(實(shí)用20篇)
時(shí)間:2023-11-16 13:03:15     小編:琴心月

教案具有一定的可復(fù)制性和可變通性,適應(yīng)不同的教學(xué)環(huán)境和學(xué)生群體。教案的設(shè)計(jì)應(yīng)該根據(jù)學(xué)科性質(zhì)和教材內(nèi)容進(jìn)行合理的選擇和組織。教案范文庫中包含了豐富多樣的教案樣本,希望能夠激發(fā)大家的教學(xué)創(chuàng)意。

新教材高一數(shù)學(xué)必修一教案篇一

教學(xué)目標(biāo)。

3.讓學(xué)生深刻理解向量在處理平面幾何問題中的優(yōu)越性.

教學(xué)重難點(diǎn)。

教學(xué)重點(diǎn):用向量方法解決實(shí)際問題的基本方法:向量法解決幾何問題的“三步曲”.

教學(xué)難點(diǎn):如何將幾何等實(shí)際問題化歸為向量問題.

教學(xué)過程。

由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長度、夾角等都可以由向量的線性運(yùn)算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個(gè)具體實(shí)例,說明向量方法在平面幾何中的運(yùn)用。

思考:

運(yùn)用向量方法解決平面幾何問題可以分哪幾個(gè)步驟?

運(yùn)用向量方法解決平面幾何問題可以分哪幾個(gè)步驟?

“三步曲”:

(2)通過向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問題;。

(3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系.

新教材高一數(shù)學(xué)必修一教案篇二

1. 閱讀課本 練習(xí)止.

2. 回答問題

(1)課本內(nèi)容分成幾個(gè)層次?每個(gè)層次的中心內(nèi)容是什么?

(2)層次間的聯(lián)系是什么?

(3)對數(shù)函數(shù)的定義是什么?

(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?

3. 完成 練習(xí)

4. 小結(jié).

二、方法指導(dǎo)

1. 在學(xué)習(xí)對數(shù)函數(shù)時(shí),同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時(shí),既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

一、提問題

1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?

2.兩個(gè)函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?

3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.

二、變題目

1. 試求下列函數(shù)的反函數(shù):

(1) ; (2) ;

(3) ; (4) .

2. 求下列函數(shù)的定義域:

(1) ; (2) ; (3) .

3. 已知 則 = ; 的定義域?yàn)?.

1.對數(shù)函數(shù)的'有關(guān)概念

(1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);

(2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);

(3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).

2. 反函數(shù)的概念

在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個(gè)函數(shù)叫做互為反函數(shù).

3. 與對數(shù)函數(shù)有關(guān)的定義域的求法:

4. 舉例說明如何求反函數(shù).

一、課外作業(yè): 習(xí)題3-5 a組 1,2,3, b組1,

二、課外思考:

1. 求定義域: .

2. 求使函數(shù) 的函數(shù)值恒為負(fù)值的 的取值范圍.

新教材高一數(shù)學(xué)必修一教案篇三

>教學(xué)目標(biāo)

落實(shí)情況.

解?絕對值不等式注意不要丟掉?這部分解集.。

五、作業(yè)。

1.閱讀課本?含絕對值不等式解法.。

2.習(xí)題?2、3、4。

課堂教學(xué)設(shè)計(jì)說明。

1.抓住解型絕對值不等式的關(guān)鍵是絕對值的意義,為此首先通過復(fù)習(xí)讓學(xué)生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎(chǔ).

2.在解與絕對值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點(diǎn)撥,讓學(xué)生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達(dá)到提高學(xué)生解題能力的目的.

3.針對學(xué)生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯(cuò)誤,在教學(xué)中應(yīng)根據(jù)絕對值的意義從數(shù)軸進(jìn)行突破,并在練習(xí)中糾正這個(gè)錯(cuò)誤,以提高學(xué)生的運(yùn)算能力.

新教材高一數(shù)學(xué)必修一教案篇四

(2)了解區(qū)間的概念;。

(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。

【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對學(xué)生來說一個(gè)難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。

問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.

1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

1.2高度變量h與時(shí)間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

設(shè)計(jì)意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個(gè)變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對應(yīng)關(guān)系,都有的一個(gè)高度h與之對應(yīng)。

問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個(gè)臭氧層空洞面積s與之相對應(yīng)。

問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。

設(shè)計(jì)意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。

新教材高一數(shù)學(xué)必修一教案篇五

教學(xué)目標(biāo)。

熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。

掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。

教學(xué)重難點(diǎn)。

熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。

教學(xué)過程。

復(fù)習(xí)。

兩角差的余弦公式。

用-b代替b看看有什么結(jié)果?

新教材高一數(shù)學(xué)必修一教案篇六

(3)會用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問題、

用坐標(biāo)法解決幾何問題的步驟:

第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;

第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論、

重點(diǎn)與難點(diǎn):直線與圓的方程的應(yīng)用、

問 題設(shè)計(jì)意圖師生活動

生:回顧,說出自己的看法、

2、解決直線與圓的位置關(guān)系,你將采用什么方法?

生:回顧、思考、討論、交流,得到解決問題的方法、

問 題設(shè)計(jì)意圖師生活動

3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題

生:自 學(xué)例4,并完成練習(xí)題1、2、

生:建立適當(dāng)?shù)闹苯亲鴺?biāo)系, 探求解決問題的方法、

8、小結(jié):

(1)利用“坐標(biāo)法”解決問對知識進(jìn)行歸納概括,體會利 師:指導(dǎo) 學(xué)生完成練習(xí)題、

生:閱讀教科書的例3,并完成第

問 題設(shè)計(jì)意圖師生活動

題的需要準(zhǔn)備什么工作?

(2)如何建立直角坐標(biāo)系,才能易于解決平面幾何問題?

(3)你認(rèn)為學(xué)好“坐標(biāo)法”解決問題的關(guān)鍵是什么?

新教材高一數(shù)學(xué)必修一教案篇七

教學(xué)目標(biāo)。

理解以兩角差的余弦公式為基礎(chǔ),推導(dǎo)兩角和、差正弦和正切公式的方法,體會三角恒等變換特點(diǎn)的過程,理解推導(dǎo)過程,掌握其應(yīng)用.

教學(xué)重難點(diǎn)。

1.教學(xué)重點(diǎn):兩角和、差正弦和正切公式的推導(dǎo)過程及運(yùn)用;。

2.教學(xué)難點(diǎn):兩角和與差正弦、余弦和正切公式的靈活運(yùn)用.

教學(xué)過程。

新教材高一數(shù)學(xué)必修一教案篇八

1.要讀好課本。

有些“自我感覺良好”的學(xué)生,常輕視課本中基礎(chǔ)知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠(yuǎn),重“量”輕“質(zhì)”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。因此,同學(xué)們應(yīng)從高一開始,增強(qiáng)自己從課本入手進(jìn)行研究的意識。

2.要記好筆記。

首先,在課堂教學(xué)中培養(yǎng)好的聽課習(xí)慣是很重要的。當(dāng)然聽是主要的,聽能使注意力集中,要把老師講的關(guān)鍵性部分聽懂、聽會。聽的時(shí)候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應(yīng)適當(dāng)?shù)赜心康男缘挠浐霉P記,領(lǐng)會課上老師的主要精神與意圖??茖W(xué)的記筆記可以提高45分鐘課堂效益。

3.要做好作業(yè)。

在課堂、課外練習(xí)中培養(yǎng)良好的作業(yè)習(xí)慣也很有必要.在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨(dú)立完成。同時(shí)可以培養(yǎng)一種獨(dú)立思考和解題正確的責(zé)任感。在作業(yè)時(shí)要提倡效率,應(yīng)該十分鐘完成的作業(yè),不拖到半小時(shí)完成,疲疲憊憊的作業(yè)習(xí)慣使思維松散、精力不集中,這對培養(yǎng)數(shù)學(xué)能力是有害而無益的。

4.要寫好總結(jié)。

一個(gè)人不斷接受新知識,不斷遭遇挫折產(chǎn)生疑問,不斷地總結(jié),才有不斷地提高。“不會總結(jié)的同學(xué),他的能力就不會提高,挫折經(jīng)驗(yàn)是成功的基石。”自然界適者生存的生物進(jìn)化過程便是最好的例證。學(xué)習(xí)要經(jīng)??偨Y(jié)規(guī)律,目的就是為了更一步的發(fā)展。

通過與老師、同學(xué)平時(shí)的接觸交流,逐步總結(jié)出一般性的學(xué)習(xí)步驟,它包括:制定計(jì)劃、課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面,簡單概括為四個(gè)環(huán)節(jié)(預(yù)習(xí)、上課、整理、作業(yè))和一個(gè)步驟(復(fù)習(xí)總結(jié))。每一個(gè)環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強(qiáng)的目的性、針對性,要落實(shí)到位。堅(jiān)持“兩先兩后一小結(jié)”(先預(yù)習(xí)后聽課,先復(fù)習(xí)后做作業(yè),寫好每個(gè)單元的總結(jié))的學(xué)習(xí)習(xí)慣。

1.課前預(yù)習(xí)教材。課前可以把教材上第二天老師要講的內(nèi)容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時(shí)候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。

2.上課專心聽講。這是很重要的,很多同學(xué)以為自己什么都弄懂了,就自己做自己的題目。其實(shí)即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時(shí)候講比自己看更好。

小編推薦:高一數(shù)學(xué)怎么學(xué)才能學(xué)好。

3.課后認(rèn)真復(fù)習(xí)。剛學(xué)的知識,還沒完全被消化吸收成為自己的知識,如果不及時(shí)復(fù)習(xí),就很容易忘記。所以,課后一定要抽出一些時(shí)間,及時(shí)對所學(xué)進(jìn)行鞏固。

4.通過習(xí)題鞏固。數(shù)學(xué)是理科,需要通過一定量的習(xí)題來鞏固,量變積累到了一定量才能質(zhì)變嘛。這個(gè)并非要各位打題海戰(zhàn)術(shù),只要求各位做到熟練為止。

5.錯(cuò)題反復(fù)研究。自己準(zhǔn)備一個(gè)錯(cuò)題本,把考試時(shí)候做錯(cuò)的題目記錄下來,寫上做錯(cuò)的原因,反復(fù)研究,避免再次出錯(cuò)。

新教材高一數(shù)學(xué)必修一教案篇九

教學(xué)目標(biāo)。

1、理解平面向量的坐標(biāo)的概念;。

2、掌握平面向量的坐標(biāo)運(yùn)算;。

3、會根據(jù)向量的坐標(biāo),判斷向量是否共線.

教學(xué)重難點(diǎn)。

教學(xué)重點(diǎn):平面向量的坐標(biāo)運(yùn)算。

教學(xué)難點(diǎn):向量的坐標(biāo)表示的理解及運(yùn)算的準(zhǔn)確性.

教學(xué)過程。

平面向量基本定理:。

什么叫平面的一組基底?

平面的基底有多少組?

引入:。

1.平面內(nèi)建立了直角坐標(biāo)系,點(diǎn)a可以用什么來。

表示?

2.平面向量是否也有類似的表示呢?

新教材高一數(shù)學(xué)必修一教案篇十

3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的愛好.

教學(xué)重點(diǎn)是通項(xiàng)公式的熟悉;教學(xué)難點(diǎn)是對公式的靈活運(yùn)用.

實(shí)物投影儀,多媒體軟件,電腦.

研探式.

一.復(fù)習(xí)提問

等差數(shù)列的概念是從相鄰兩項(xiàng)的關(guān)系加以定義的,這個(gè)關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項(xiàng)公式作進(jìn)一步的理解與應(yīng)用.

二.主體設(shè)計(jì)

通項(xiàng)公式反映了項(xiàng)與項(xiàng)數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項(xiàng)與公差確定后,數(shù)列的每一項(xiàng)便確定了,可以求指定的項(xiàng)(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項(xiàng),公差,求.”這是通項(xiàng)公式的簡單應(yīng)用,由學(xué)生解答后,要求每個(gè)學(xué)生出一些運(yùn)用等差數(shù)列通項(xiàng)公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.

1.方程思想的運(yùn)用

(1)已知等差數(shù)列中,首項(xiàng),公差,則-397是該數(shù)列的第x項(xiàng).

(2)已知等差數(shù)列中,首項(xiàng),則公差

(3)已知等差數(shù)列中,公差,則首項(xiàng)

這一類問題先由學(xué)生解決,之后教師點(diǎn)評,四個(gè)量,在一個(gè)等式中,運(yùn)用方程的思想方法,已知其中三個(gè)量的值,可以求得第四個(gè)量.

2.基本量方法的使用

(1)已知等差數(shù)列中,求的值.

(2)已知等差數(shù)列中,求.

若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(請出題者、解題者概括):因?yàn)橐阎獥l件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項(xiàng)公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個(gè)條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.

教師提出新的問題,已知等差數(shù)列的一個(gè)條件(等式),能否確定一個(gè)等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個(gè)條件可得到關(guān)于和的二元方程,這是一個(gè)和的`制約關(guān)系,從這個(gè)關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).

如:已知等差數(shù)列中,…

由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項(xiàng)的值么?能否與兩項(xiàng)有關(guān)?多項(xiàng)有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題(3)已知等差數(shù)列中,求;;;;….

類似的還有

(4)已知等差數(shù)列中,求的值.

以上屬于對數(shù)列的項(xiàng)進(jìn)行定量的研究,有無定性的判定?引出

3.研究等差數(shù)列的單調(diào)性

4.研究項(xiàng)的符號

這是為研究等差數(shù)列前項(xiàng)和的最值所做的預(yù)備工作.可配備的題目如

(1)已知數(shù)列的通項(xiàng)公式為,問數(shù)列從第幾項(xiàng)開始小于0?

(2)等差數(shù)列從第x項(xiàng)起以后每項(xiàng)均為負(fù)數(shù).

三.小結(jié)

1.用方程思想熟悉等差數(shù)列通項(xiàng)公式;

2.用函數(shù)思想解決等差數(shù)列問題.

四.板書設(shè)計(jì)

等差數(shù)列通項(xiàng)公式1.方程思想的運(yùn)用

2.基本量方法的使用

3.研究等差數(shù)列的單調(diào)性

4.研究項(xiàng)的符號

新教材高一數(shù)學(xué)必修一教案篇十一

1、教材(教學(xué)內(nèi)容)。

2、設(shè)計(jì)理念。

3、教學(xué)目標(biāo)。

情感態(tài)度與價(jià)值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、

4、重點(diǎn)難點(diǎn)。

重點(diǎn):任意角三角函數(shù)的定義、

難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、

5、學(xué)情分析。

6、教法分析。

7、學(xué)法分析。

本課時(shí)先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認(rèn)識結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)。

新教材高一數(shù)學(xué)必修一教案篇十二

(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。

(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。

二、重點(diǎn)難點(diǎn)分析。

(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉。教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實(shí)。

(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫。單調(diào)性的證實(shí)是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實(shí),也沒有意識到它的重要性,所以單調(diào)性的證實(shí)自然就是教學(xué)中的難點(diǎn)。

三、教法建議。

(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏。如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來。在這個(gè)過程中對一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來。

(2)函數(shù)單調(diào)性證實(shí)的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。

函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來。經(jīng)歷了這樣的過程,再得到等式時(shí),就比較輕易體會它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式。關(guān)于定義域關(guān)于原點(diǎn)對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時(shí)還可以借助圖象(如)說明定義域關(guān)于原點(diǎn)對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。

新教材高一數(shù)學(xué)必修一教案篇十三

高一xx班共有學(xué)生55人,其中男生42人,女生13人。高一新生剛進(jìn)入高中,學(xué)習(xí)環(huán)境新,好奇心強(qiáng).但是普遍學(xué)習(xí)習(xí)慣不好,數(shù)學(xué)基礎(chǔ)較差,學(xué)習(xí)興趣不濃.所以工作的重心在于提高學(xué)生對數(shù)學(xué)科的興趣,以及在補(bǔ)足初中知識漏洞的前提下,進(jìn)一步的夯實(shí)學(xué)生基礎(chǔ).

全面提高學(xué)生的科學(xué)文化素養(yǎng),圍著課堂教學(xué)這個(gè)中心,更新教育觀念,進(jìn)一步提高教學(xué)水平,培養(yǎng)學(xué)生分析問題解決問題的能力,同時(shí)扎扎實(shí)實(shí)抓好基礎(chǔ)知識,注意學(xué)生習(xí)慣的培養(yǎng),為三年后高考打下堅(jiān)實(shí)的基礎(chǔ)。

任務(wù):基礎(chǔ)模塊第一章至第四章。

第一章集合(9月份。

第二章不等式(10月份。

第三章函數(shù)(11月份。

第四章指數(shù)函數(shù)與對數(shù)函數(shù)(12月份-1月份。

措施:

1.夯實(shí)三基。

知識、技能和能力三者關(guān)系是互相依存、互相促進(jìn)的整體,能力是在知識的教學(xué)和技能的培訓(xùn)中形成的,通過數(shù)學(xué)思想的形成和數(shù)學(xué)方法的掌握,能力才得到培養(yǎng)和發(fā)展,同時(shí),能力的提高又會對知識的理解和掌握起促進(jìn)作用。因此,在教學(xué)中應(yīng)注意:

a.教學(xué)面向全體學(xué)生。

b.重視概念的歸納、規(guī)律的總結(jié)、技能的訓(xùn)練。

c.重視知識的產(chǎn)生、發(fā)展過程。

d.加強(qiáng)知識過關(guān)檢測,做好查漏補(bǔ)缺工作。

2.優(yōu)化課堂教學(xué)結(jié)構(gòu)。

a.精心設(shè)計(jì)課堂教學(xué):

b.課堂練習(xí)典型化;。

c.教學(xué)語言精練化。

d.板書規(guī)范化。

3.加強(qiáng)學(xué)習(xí)方法指導(dǎo):

a.指導(dǎo)學(xué)生看書,培養(yǎng)學(xué)生主動學(xué)習(xí)的習(xí)慣。

b.指導(dǎo)學(xué)生整理知識,總結(jié)解題規(guī)律,歸納典型例題解法及一題多解與多題一解。

4.加強(qiáng)學(xué)風(fēng)建設(shè)與學(xué)習(xí)習(xí)慣的培養(yǎng)。

適當(dāng)安排作業(yè),認(rèn)真檢查督促,加強(qiáng)優(yōu)生和后進(jìn)生的輔導(dǎo),對學(xué)生的作業(yè)盡量做到面批。

新教材高一數(shù)學(xué)必修一教案篇十四

(1)理解函數(shù)的概念;。

(2)了解區(qū)間的概念;。

2、目標(biāo)解析。

(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。

【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對學(xué)生來說一個(gè)難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。

【教學(xué)過程】。

問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.

1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

1.2高度變量h與時(shí)間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

設(shè)計(jì)意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個(gè)變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對應(yīng)關(guān)系,都有的一個(gè)高度h與之對應(yīng)。

問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個(gè)臭氧層空洞面積s與之相對應(yīng)。

問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。

設(shè)計(jì)意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。

新教材高一數(shù)學(xué)必修一教案篇十五

1、知識目標(biāo):使學(xué)生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質(zhì)。

2、能力目標(biāo):通過定義的引入,圖像特征的觀察、發(fā)現(xiàn)過程使學(xué)生懂得理論與實(shí)踐的辯證關(guān)系,適時(shí)滲透分類討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。

3、情感目標(biāo):通過學(xué)生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學(xué)習(xí)習(xí)慣和勇于探索、鍥而不舍的治學(xué)精神。

新教材高一數(shù)學(xué)必修一教案篇十六

1、高一是大量閱讀名著的好時(shí)機(jī),一定要好好把握這個(gè)時(shí)間,多讀多看,拓展能力,不要浪費(fèi)了這一寶貴的黃金時(shí)期。成語詞典,古漢語常用字字典等輔導(dǎo)工具書是你的書桌上應(yīng)有的書具之一。成語,字詞,拼音等都要自己去自學(xué)積累,老師是很少再像初中那樣點(diǎn)著一個(gè)一個(gè)詞的教的。所以,這些書都是非常重要的。

2、態(tài)度決定高度,要有良好的對待語文的學(xué)習(xí)態(tài)度,才能真正學(xué)好語文。因?yàn)楦咭坏恼Z文,不再是單純的背誦與默寫,而是涵蓋了許多包括文言文基礎(chǔ)知識,課外閱讀綜合能力,甚至生活中的細(xì)節(jié)等知識面。這就要求我們多觀察生活,積累自己的語文視覺。

3、多看古文與古詩。因?yàn)樵诟咭坏恼Z文考試中,不再是課內(nèi)學(xué)習(xí)的古文閱讀與古詩鑒賞,而注重的是把課內(nèi)知識的遷移到課外的能力。例如,給一段你沒學(xué)過的古文閱讀或古詩,要你自己去分析文章的內(nèi)容與主旨等。剛開始會覺得很難,可是當(dāng)你接觸多了。自然就熟悉了。

新教材高一數(shù)學(xué)必修一教案篇十七

本節(jié)課是“空間幾何體的三視圖和直觀圖”的第一課時(shí),主要內(nèi)容是投影和三視圖,這部分知識是立體幾何的基礎(chǔ)之一,一方面它是對上一節(jié)空間幾何體結(jié)構(gòu)特征的再一次強(qiáng)化,畫出空間幾何體的三視圖并能將三視圖還原為直觀圖,是建立空間概念的基礎(chǔ)和訓(xùn)練學(xué)生幾何直觀能力的有效手段。另外,三視圖部分也是新課程高考的重要內(nèi)容之一,常常結(jié)合給出的三視圖求給定幾何體的表面積或體積設(shè)置在選擇或填空中。同時(shí),三視圖在工程建設(shè)、機(jī)械制造中有著廣泛應(yīng)用,同時(shí)也為學(xué)生進(jìn)入高一層學(xué)府學(xué)習(xí)有很大的幫助。所以在人們的日常生活中有著重要意義。

二、教學(xué)目標(biāo)。

(1)知識與技能:能畫出簡單空間圖形(長方體,球,圓柱,圓錐,棱柱等的簡易組合)的三視圖,能識別上述三視圖表示的立體模型,從而進(jìn)一步熟悉簡單幾何體的結(jié)構(gòu)特征。

(2)過程與方法:通過直觀感知,操作確認(rèn),提高學(xué)生的空間想象能力、幾何直觀能力,培養(yǎng)學(xué)生的應(yīng)用意識。

(3)情感、態(tài)度與價(jià)值觀:讓感受數(shù)學(xué)就在身邊,提高學(xué)生學(xué)習(xí)立體幾何的興趣,培養(yǎng)學(xué)生相互交流、相互合作的精神。

三、設(shè)計(jì)思路。

本節(jié)課的主要任務(wù)是引導(dǎo)學(xué)生完成由立體圖形到三視圖,再由三視圖想象立體圖形的復(fù)雜過程。直觀感知操作確認(rèn)是新課程幾何課堂的一個(gè)突出特點(diǎn),也是這節(jié)課的設(shè)計(jì)思路。通過大量的多媒體直觀,實(shí)物直觀使學(xué)生獲得了對三視圖的感性認(rèn)識,通過學(xué)生的觀察思考,動手實(shí)踐,操作練習(xí),實(shí)現(xiàn)認(rèn)知從感性認(rèn)識上升為理性認(rèn)識。培養(yǎng)學(xué)生的空間想象能力,幾何直觀能力為學(xué)習(xí)立體幾何打下基礎(chǔ)。

教學(xué)的重點(diǎn)、難點(diǎn)。

(一)重點(diǎn):畫出空間幾何體及簡單組合體的三視圖,體會在作三視圖時(shí)應(yīng)遵循的“長對正、高平齊、寬相等”的原則。

(二)難點(diǎn):識別三視圖所表示的空間幾何體,即:將三視圖還原為直觀圖。

四、學(xué)生現(xiàn)實(shí)分析。

本節(jié)首先簡單介紹了中心投影和平行投影,中心投影和平行投影是日常生活中最常見的兩種投影形式,學(xué)生具有這方面的直接經(jīng)驗(yàn)和基礎(chǔ)。投影和三視圖雖為高中新增內(nèi)容,但學(xué)生在初中有一定基礎(chǔ),在七年級上冊“從不同方向看”的基礎(chǔ)上給出了三視圖的概念。到了九年級下冊則是在介紹了投影后,用投影的方法給出了三視圖的概念,這一概念已基本接近了高中的三視圖定義,只是在名字上略有差異。初中叫做主視圖、左視圖、俯視圖。進(jìn)入高中后特別是再次學(xué)習(xí)和認(rèn)識了柱、錐、臺等幾何體的概念后,學(xué)生在空間想象能力方面有了一定的提高,所以,給出了正視圖、側(cè)視圖、俯視圖的概念。這些概念的變化也說明了學(xué)生年齡特點(diǎn)和思維差異。

五、教學(xué)方法。

(1)教學(xué)方法及教學(xué)手段。

針對本節(jié)課知識是由抽象到具體再到抽象、空間思維難度較大的特點(diǎn),我采用的教法是直觀教學(xué)法、啟導(dǎo)發(fā)現(xiàn)法。

在教學(xué)中,通過創(chuàng)設(shè)問題情境,充分調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性,并引導(dǎo)啟發(fā)學(xué)生動眼、動腦、動手、同時(shí)采用多媒體的教學(xué)手段,加強(qiáng)直觀性和啟發(fā)性,解決了教師“口說無憑”的尷尬境地,增大了課堂容量,提高了課堂效率。

(2)學(xué)法指導(dǎo)。

力爭在新課程要求的大背景下組織教學(xué),為學(xué)生創(chuàng)設(shè)良好的問題情境,留給學(xué)生充分的思考空間,在學(xué)生的辯證和討論前提下,發(fā)揮教師的概括和引領(lǐng)的作用。

新教材高一數(shù)學(xué)必修一教案篇十八

一、除了高等植物成熟的篩管細(xì)胞和哺乳動物成熟的紅細(xì)胞等極少數(shù)細(xì)胞外,真核細(xì)胞都有細(xì)胞核。植物的導(dǎo)管細(xì)胞是死細(xì)胞(主要運(yùn)輸水分、無機(jī)鹽),篩管主要運(yùn)輸有機(jī)物。

二、細(xì)胞核控制著細(xì)胞的代謝和遺傳。

三、細(xì)胞核的結(jié)構(gòu)。

2.染色質(zhì)(主要由dna和蛋白質(zhì)組成,dna是遺傳信息的載體。

4.核孔(實(shí)現(xiàn)核質(zhì)之間頻繁的物質(zhì)交換和信息交流)核孔有選擇透過性,上面有載體,大分子物質(zhì)(蛋白質(zhì)和mrna)出入細(xì)胞需要能量和載體,細(xì)胞代謝越旺盛,核孔越多,核仁體積越大。

四、細(xì)胞分裂時(shí),細(xì)胞核解體,染色質(zhì)高度螺旋化,縮短變粗,成為光學(xué)顯微鏡下清晰可見的圓柱狀或桿狀的染色體。分裂結(jié)束時(shí),染色體解螺旋,重新成為細(xì)絲狀的染色質(zhì)。染色質(zhì)(分裂間期)和染色體(分裂時(shí))是同樣的物質(zhì)在細(xì)胞不同時(shí)期的兩種存在狀態(tài)。

五、細(xì)胞既是生物體結(jié)構(gòu)的基本單位,又是生物體代謝和遺傳的基本單位。

新教材高一數(shù)學(xué)必修一教案篇十九

(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。

(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。

(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。

2.過程與方法。

(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。

(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。

3.情感態(tài)度與價(jià)值觀。

(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。

(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

二、教學(xué)重點(diǎn)、難點(diǎn)。

重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。

難點(diǎn):柱、錐、臺、球的結(jié)構(gòu)特征的概括。

三、教學(xué)用具。

(1)學(xué)法:觀察、思考、交流、討論、概括。

(2)實(shí)物模型、投影儀。

四、教學(xué)思路。

(一)創(chuàng)設(shè)情景,揭示課題。

1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時(shí)給予評價(jià)。

2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。

(二)、研探新知。

1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。

3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個(gè)面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。

6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

7.讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。

8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。

1.有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。

2.棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?

3.課本p8,習(xí)題1.1a組第1題。

5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?

四、鞏固深化。

練習(xí):課本p7練習(xí)1、2(1)(2)。

課本p8習(xí)題1.1第2、3、4題。

五、歸納整理。

由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容。

六、布置作業(yè)。

課本p8練習(xí)題1.1b組第1題。

課外練習(xí)課本p8習(xí)題1.1b組第2題。

1.2.1空間幾何體的三視圖(1課時(shí))。

新教材高一數(shù)學(xué)必修一教案篇二十

三、在細(xì)胞質(zhì)中,除了細(xì)胞器外,還有呈膠質(zhì)狀態(tài)的細(xì)胞質(zhì)基質(zhì)。

細(xì)胞質(zhì):包括細(xì)胞器和細(xì)胞質(zhì)基質(zhì)。

四、電子顯微鏡下看到的是亞顯微結(jié)構(gòu),普通顯微鏡下看到顯微結(jié)構(gòu)。

光鏡能看到:細(xì)胞質(zhì),線粒體,葉綠體,液泡,細(xì)胞壁。

實(shí)驗(yàn):用高倍顯微鏡觀察葉綠體和線粒體。

健那綠染液是將活細(xì)胞中線粒體染色的專一性染料,可以使活細(xì)胞中的線粒體呈現(xiàn)藍(lán)綠色。

材料:新鮮的蘚類的葉(葉片薄,直接觀察)。

菠菜葉稍帶葉肉的下表皮(上表皮起保護(hù)作用,幾乎無葉綠體;下表皮海綿組織,有氣孔保衛(wèi)細(xì)胞,有葉綠體)。

五、分泌蛋白的合成和運(yùn)輸。

有些蛋白質(zhì)是在細(xì)胞內(nèi)合成后,分泌到細(xì)胞外起作用,這類蛋白叫分泌蛋白。如消化酶(催化作用)、抗體(免疫)和一部分激素(信息傳遞)。

核糖體內(nèi)質(zhì)網(wǎng)高爾基體細(xì)胞膜。

(合成肽鏈)(加工成蛋白質(zhì))(進(jìn)一步加工)(囊泡與細(xì)胞膜融合,蛋白質(zhì)釋放)。

分泌蛋白從合成至分泌到細(xì)胞外利用到的細(xì)胞器?

答:核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體。

分泌蛋白從合成至分泌到細(xì)胞外利用到的結(jié)構(gòu)?

核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體、細(xì)胞核、囊泡、細(xì)胞膜。

六、生物膜系統(tǒng)。

1、概念:細(xì)胞膜、核膜,各種細(xì)胞器的膜共同組成的生物膜系統(tǒng)。

2、作用:使細(xì)胞具有穩(wěn)定內(nèi)部環(huán)境物質(zhì)運(yùn)輸、能量轉(zhuǎn)換、信息傳遞;為各種酶提供大量附著位點(diǎn),是許多生化反應(yīng)的場所;把各種細(xì)胞器分隔開,保證生命活動高效、有序進(jìn)行。

3、內(nèi)質(zhì)網(wǎng)膜內(nèi)連核膜外連細(xì)胞膜還和線粒體膜直接相連。

經(jīng)過囊泡與高爾基體膜間接相連。

【本文地址:http://mlvmservice.com/zuowen/12459406.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔