教案是教師為開(kāi)展教學(xué)活動(dòng)而制訂的一種指導(dǎo)教學(xué)的重要工具,它包括教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)方法、教學(xué)過(guò)程等內(nèi)容。通過(guò)編寫(xiě)教案,可以提高教學(xué)效果,確保教學(xué)的有序進(jìn)行,促進(jìn)學(xué)生的學(xué)習(xí)和發(fā)展。教案的編寫(xiě)需要根據(jù)學(xué)生的評(píng)價(jià)和反饋進(jìn)行及時(shí)修正和調(diào)整。下面是一些經(jīng)驗(yàn)豐富的老師分享的教案設(shè)計(jì),希望能夠給各位啟示和指導(dǎo)。
高一數(shù)學(xué)函數(shù)教案篇一
1.掌握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用.
(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對(duì)數(shù)函數(shù)的定義,了解對(duì)底數(shù)的要求,及對(duì)定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對(duì)數(shù)函數(shù)的圖象.
(2)能把握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識(shí)對(duì)數(shù)函數(shù)的性質(zhì),初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)解決簡(jiǎn)單的問(wèn)題.
2.通過(guò)對(duì)數(shù)函數(shù)概念的學(xué)習(xí),樹(shù)立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過(guò)對(duì)數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力.
3.通過(guò)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)在圖象與性質(zhì)上的對(duì)比,對(duì)學(xué)生進(jìn)行對(duì)稱美,簡(jiǎn)潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.
教學(xué)建議。
教材分析。
(1)對(duì)數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過(guò)對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解.對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問(wèn)題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ).
(2)本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì).難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì).由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn).
(1)對(duì)數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫(huà)對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問(wèn)題也可以多選幾個(gè)不同的底,畫(huà)在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
高一數(shù)學(xué)函數(shù)教案篇二
函數(shù)是數(shù)學(xué)中最重要的基本概念之一,它揭示了現(xiàn)實(shí)世界中數(shù)量關(guān)系之間相互依存和變化的實(shí)質(zhì),是刻畫(huà)和研究現(xiàn)實(shí)世界變化規(guī)律的重要模型。托馬斯稱:函數(shù)是現(xiàn)代數(shù)學(xué)思想之花。
《集合與函數(shù)概念》一章在高中數(shù)學(xué)中起著承上啟下的作用。本課學(xué)習(xí)的函數(shù)概念及其反映出來(lái)的數(shù)學(xué)思想方法已廣泛滲透到數(shù)學(xué)的各個(gè)領(lǐng)域,是進(jìn)一步學(xué)習(xí)數(shù)學(xué)的重要基礎(chǔ)。函數(shù)的思想方法貫穿了高中數(shù)學(xué)課程的始終。
本小節(jié)是繼學(xué)習(xí)集合語(yǔ)言之后,運(yùn)用集合與對(duì)應(yīng)語(yǔ)言,在初中學(xué)習(xí)的基礎(chǔ)上,進(jìn)一步刻畫(huà)函數(shù)概念,目的是讓學(xué)生認(rèn)識(shí)到它們優(yōu)越性,從根本上揭示函數(shù)的本質(zhì)。因此本課的教學(xué)重點(diǎn)是:學(xué)會(huì)用集合與對(duì)應(yīng)語(yǔ)言刻畫(huà)函數(shù)概念,進(jìn)一步認(rèn)識(shí)函數(shù)是描述客觀世界中變量間依賴關(guān)系的數(shù)學(xué)模型。
二、目標(biāo)和目標(biāo)解析。
1.正確理解函數(shù)的概念,會(huì)用集合與對(duì)應(yīng)語(yǔ)言刻畫(huà)函數(shù)。通過(guò)實(shí)例分析,體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用;強(qiáng)化數(shù)學(xué)的應(yīng)用與建模意識(shí);培養(yǎng)學(xué)生的學(xué)習(xí)興趣。
2.理解函數(shù)三要素,會(huì)求簡(jiǎn)單函數(shù)的定義域。通過(guò)例題教學(xué)與練習(xí),培養(yǎng)歸納概括能力。
3.理解符號(hào)y=f(x)的含義,明確f(x)與f(a)的區(qū)別與聯(lián)系。體會(huì)函數(shù)思想,代換思想,提高思維品質(zhì)。
三、教學(xué)問(wèn)題診斷分析。
本堂課作為一堂公開(kāi)課,我曾在多個(gè)班級(jí)試教。主要問(wèn)題有:
首先,由三個(gè)實(shí)例歸納共性會(huì)遇到困難。原因是由具體實(shí)例到抽象的數(shù)學(xué)語(yǔ)言,要求學(xué)生具備較強(qiáng)的歸納概括能力;而對(duì)高一學(xué)生抽象思維能力相對(duì)較弱。
其次,學(xué)生不容易認(rèn)識(shí)到函數(shù)概念的整體性。原因是把函數(shù)單一地理解成函數(shù)中的對(duì)應(yīng)關(guān)系,甚至認(rèn)為函數(shù)就是函數(shù)值。
第三,函數(shù)符號(hào)y=f(x)比較抽象,學(xué)生難以理解。
因此本課的教學(xué)難點(diǎn)是:1、從主觀知識(shí)抽象成為客觀概念。2、函數(shù)符號(hào)y=f(x)的理解。
四、學(xué)習(xí)行為分析。
在初中學(xué)生已學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,具體研究了幾類最簡(jiǎn)單的函數(shù),對(duì)函數(shù)并不陌生;學(xué)生已經(jīng)會(huì)把函數(shù)看成變量之間的依賴關(guān)系;同時(shí),雖然函數(shù)概念比較抽象,但函數(shù)現(xiàn)象大量存在于學(xué)生周圍,學(xué)生能列舉出函數(shù)的實(shí)例,已具備初步的數(shù)學(xué)建模能力。我們目前所教的學(xué)生經(jīng)歷了初中新課程改革,他們普遍思維活躍,表達(dá)能力強(qiáng),有較強(qiáng)的獨(dú)立解決問(wèn)題的能力。在平時(shí)的學(xué)習(xí)過(guò)程中,他們更喜歡教師創(chuàng)造疑問(wèn),然后自己想辦法解決問(wèn)題,通過(guò)教師的啟發(fā)點(diǎn)撥,學(xué)生以自己的努力找到解決問(wèn)題的方法。學(xué)生作為教學(xué)主體隨時(shí)對(duì)所學(xué)知識(shí)產(chǎn)生有意注意,努力思索解決疑問(wèn)的方式,使自己的能力通過(guò)教師的點(diǎn)撥得到發(fā)揮。
針對(duì)學(xué)生這一學(xué)習(xí)方式,我們?cè)诮虒W(xué)過(guò)程中從學(xué)生已有的知識(shí)經(jīng)驗(yàn)出發(fā),讓學(xué)生明白新問(wèn)題產(chǎn)生的背景,引導(dǎo)學(xué)生對(duì)三個(gè)實(shí)例進(jìn)行分析,然后歸納共性,抽象出用集合與對(duì)應(yīng)語(yǔ)言刻畫(huà)的函數(shù)概念。其間采用了多媒體動(dòng)畫(huà)演示、教師引導(dǎo)、學(xué)生探究、討論、交流一系列活動(dòng),讓學(xué)生感到“概念的.得出是水到渠成的,自然的而不是強(qiáng)加于人的”。
對(duì)函數(shù)概念的整體性的理解,通過(guò)設(shè)計(jì)“想一想”、“練一練”、“試一試”等問(wèn)題情景激發(fā)學(xué)生積極參與,在問(wèn)題解決的過(guò)程中鞏固函數(shù)概念。而對(duì)函數(shù)符號(hào)y=f(x),則讓學(xué)生分析實(shí)例和動(dòng)手操作,來(lái)認(rèn)識(shí)和理解符號(hào)的內(nèi)涵;并進(jìn)一步滲透函數(shù)思想、代換思想。如三個(gè)實(shí)例用統(tǒng)一的符號(hào)表示、例4中計(jì)算當(dāng)自變量是數(shù)字、字母不同情況時(shí)的函數(shù)值。讓學(xué)生在做數(shù)學(xué)中領(lǐng)會(huì)含義,學(xué)會(huì)解題方法,提高解決問(wèn)題的能力。
五、教學(xué)支持條件分析。
《標(biāo)準(zhǔn)》提倡運(yùn)用信息技術(shù)呈現(xiàn)以往教學(xué)難以呈現(xiàn)的課程內(nèi)容,數(shù)學(xué)的理解需要直觀的觀察、視覺(jué)的感知,特別是幾何圖形的性質(zhì),復(fù)雜的計(jì)算過(guò)程,函數(shù)的動(dòng)態(tài)變化過(guò)程、幾何直觀背景等,若能利用信息技術(shù)來(lái)直觀呈現(xiàn)使其可視化將會(huì)有助于學(xué)生的理解。本節(jié)課將充分利用信息技術(shù)支持課堂教學(xué)。
1、多媒體動(dòng)畫(huà)演示炮彈發(fā)射。在形象生動(dòng)的情景中感受高度h隨時(shí)間t的變化而變化的運(yùn)動(dòng)規(guī)律。
2、用幾何畫(huà)板畫(huà)出h=130t-5t2的圖象。在圖象上任取一點(diǎn)p(t,h),然后拖動(dòng)點(diǎn)p的位置,觀察點(diǎn)p的橫坐標(biāo)t與縱坐標(biāo)h的變化規(guī)律。
3、制作幻燈片展示問(wèn)題情景。
高一數(shù)學(xué)函數(shù)教案篇三
(1)掌握與()型的絕對(duì)值不等式的解法.
(2)掌握與()型的絕對(duì)值不等式的解法.
(3)通過(guò)用數(shù)軸來(lái)表示含絕對(duì)值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;。
教學(xué)重點(diǎn):型的不等式的解法;。
教學(xué)難點(diǎn):利用絕對(duì)值的意義分析、解決問(wèn)題.
教學(xué)過(guò)程設(shè)計(jì)。
教師活動(dòng)。
學(xué)生活動(dòng)。
設(shè)計(jì)意圖。
一、導(dǎo)入新課。
【提問(wèn)】正數(shù)的絕對(duì)值什么?負(fù)數(shù)的絕對(duì)值是什么?零的絕對(duì)值是什么?舉例說(shuō)明?
【概括】。
?
口答。
二、新課。
【提問(wèn)】如何解絕對(duì)值方程?.。
【質(zhì)疑】?的解集有幾部分?為什么?也是它的解集?
【練習(xí)】解下列不等式:
(1)?;
(2)。
【設(shè)問(wèn)】如果在?中的?,也就是?怎樣解?
【點(diǎn)撥】可以把?看成一個(gè)整體,也就是把?看成?,按照?的解法來(lái)解.。
所以,原不等式的解集是。
【設(shè)問(wèn)】如果?中的?是?,也就是?怎樣解?
【點(diǎn)撥】可以把?看成一個(gè)整體,也就是把?看成?,按照?的解法來(lái)解.。
或?。
由?得。
由?得。
所以,原不等式的解集是。
口答.畫(huà)出數(shù)軸后在數(shù)軸上表示絕對(duì)值等于2的數(shù).。
畫(huà)出數(shù)軸,思考答案。
不等式?的解集表示為。
畫(huà)出數(shù)軸。
思考答案。
???不等式?的解集為。
或表示為?,或。
筆答。
(1)。
(2)?,或。
筆答。
筆答。
根據(jù)絕對(duì)值的意義自然引出絕對(duì)值方程?(?)的解法.。
由淺入深,循序漸進(jìn),在?()型絕對(duì)值方程的基礎(chǔ)上引出(?)型絕對(duì)值方程的解法.。
針對(duì)解?(?)絕對(duì)值不等式學(xué)生常出現(xiàn)的情況,運(yùn)用數(shù)軸質(zhì)疑、解惑.。
落實(shí)會(huì)正確解出?與?(?)絕對(duì)值不等式。
高一數(shù)學(xué)函數(shù)教案篇四
2cos2α=1+cos2α2sin2α=1-cos2α。
注意:倍角公式揭示了具有倍數(shù)關(guān)系的兩個(gè)角的三角函數(shù)的運(yùn)算規(guī)律,可實(shí)現(xiàn)函數(shù)式的降冪的變化。
注:(1)兩角和與差的三角函數(shù)公式能夠解答的三類基本題型:求值題,化簡(jiǎn)題,證明題。
(2)對(duì)公式會(huì)“正用”,“逆用”,“變形使用”;。
(3)掌握“角的演變”規(guī)律,
(4)將公式和其它知識(shí)銜接起來(lái)使用。
重點(diǎn)難點(diǎn)。
重點(diǎn):幾組三角恒等式的應(yīng)用。
難點(diǎn):靈活應(yīng)用和、差、倍角等公式進(jìn)行三角式化簡(jiǎn)、求值、證明恒等式。
【精典范例】。
例1已知。
求證:
例2已知求的取值范圍。
分析難以直接用的式子來(lái)表達(dá),因此設(shè),并找出應(yīng)滿足的等式,從而求出的取值范圍.
例3求函數(shù)的值域.
例4已知。
且、、均為鈍角,求角的值.
【選修延伸】。
例5已知。
求的值.
例6已知,
求的值.
例7已知。
求的值.
例8求值:(1)(2)。
【追蹤訓(xùn)練】。
1.等于()。
a.b.c.d.
2.已知,且。
則的值等于()。
a.b.c.d.
3.求值:=.
4.求證:(1)。
高一數(shù)學(xué)函數(shù)教案篇五
知識(shí)與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會(huì)運(yùn)用定義判斷函數(shù)的奇偶性。
過(guò)程與方法:通過(guò)設(shè)置問(wèn)題情境培養(yǎng)學(xué)生判斷、推斷的能力。
情感態(tài)度與價(jià)值觀:通過(guò)繪制和展示優(yōu)美的函數(shù)圖象來(lái)陶冶學(xué)生的情操,通過(guò)組織學(xué)生分組討論,培養(yǎng)學(xué)生主動(dòng)交流的合作精神,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。
難點(diǎn):函數(shù)奇偶性的判斷。
學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行合作交流,在思考、探索和交流的過(guò)程中獲得對(duì)函數(shù)奇偶性的全面的體驗(yàn)和理解。對(duì)于奇偶性的應(yīng)用采取講練結(jié)合的方式進(jìn)行處理,使學(xué)生邊學(xué)邊練,及時(shí)鞏固。
1、復(fù)習(xí)在初中學(xué)習(xí)的軸對(duì)稱圖形和中心對(duì)稱圖形的定義:
2、分別畫(huà)出函數(shù)f(x)=x3與g(x)=x2的圖象,并說(shuō)出圖象的對(duì)稱性。
(1)對(duì)于函數(shù),其定義域關(guān)于原點(diǎn)對(duì)稱:
如果______________________________________,那么函數(shù)為偶函數(shù)。
(2)奇函數(shù)的圖象關(guān)于__________對(duì)稱,偶函數(shù)的圖象關(guān)于_________對(duì)稱。
(3)奇函數(shù)在對(duì)稱區(qū)間的增減性;偶函數(shù)在對(duì)稱區(qū)間的增減性。
(1)f(x)=x4;(2)f(x)=x5;。
(3)f(x)=x+(4)f(x)=。
a2、二次函數(shù)()是偶函數(shù),則b=___________。
b3、已知,其中為常數(shù),若,則。
_______。
b4、若函數(shù)是定義在r上的奇函數(shù),則函數(shù)的圖象關(guān)于()。
(a)軸對(duì)稱(b)軸對(duì)稱(c)原點(diǎn)對(duì)稱(d)以上均不對(duì)。
b5、如果定義在區(qū)間上的函數(shù)為奇函數(shù),則=_____。
c6、若函數(shù)是定義在r上的奇函數(shù),且當(dāng)時(shí),,那么當(dāng)。
時(shí),=_______。
d7、設(shè)是上的奇函數(shù),,當(dāng)時(shí),,則等于()。
(a)0.5(b)(c)1.5(d)。
d8、定義在上的奇函數(shù),則常數(shù)____,_____。
本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì)。
高一數(shù)學(xué)函數(shù)教案篇六
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對(duì)底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫(huà)出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識(shí)指數(shù)函數(shù)的性質(zhì).
(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用指數(shù)函數(shù)的圖象畫(huà)出形如。
的圖象.
2.通過(guò)對(duì)指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法.
3.通過(guò)對(duì)指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問(wèn)題,解決問(wèn)題.
教學(xué)建議。
教材分析。
(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見(jiàn)函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.
(2)本節(jié)的教學(xué)重點(diǎn)是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點(diǎn)是對(duì)底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分.
(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問(wèn)題,所以從指數(shù)函數(shù)的研究過(guò)程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究.
教法建議。
(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說(shuō)法它是一種形式定義即解析式的特征必須是。
的樣子,不能有一點(diǎn)差異,諸如。
(2)對(duì)底數(shù)。
的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說(shuō)明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)指數(shù)函數(shù)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來(lái).
關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡(jiǎn)單的討論,取得對(duì)要畫(huà)圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.
高一數(shù)學(xué)函數(shù)教案篇七
2.通過(guò)對(duì)抽象符號(hào)的認(rèn)識(shí)與使用,使學(xué)生在符號(hào)表示方面的能力得以提高.。
難點(diǎn):重點(diǎn)是在映射的基礎(chǔ)上理解的概念;
難點(diǎn)是對(duì)抽象符號(hào)的認(rèn)識(shí)與使用.。
投影儀。
自學(xué)研究與啟發(fā)討論式.。
(要求學(xué)生盡量用自己的話描述初中的定義,并試舉出各類學(xué)過(guò)的例子)。
提問(wèn)1.是嗎?
(由學(xué)生討論,發(fā)表各自的意見(jiàn),有的認(rèn)為它不是,理由是沒(méi)有兩個(gè)變量,也有的認(rèn)為是,理由是可以可做.)。
現(xiàn)在請(qǐng)同學(xué)們打開(kāi)書(shū)翻到第50頁(yè),從這開(kāi)始閱讀有關(guān)的內(nèi)容,再回答我的問(wèn)題.(約2-3分鐘或開(kāi)始提問(wèn))。
提問(wèn)2.新的的定義是什么?能否用最簡(jiǎn)單的語(yǔ)言來(lái)概括一下.。
(板書(shū))2.2。
一、的概念。
問(wèn)題3:映射與有何關(guān)系?(一定是映射嗎?映射一定是嗎?)。
引導(dǎo)學(xué)生發(fā)現(xiàn),是特殊的映射,特殊在集合a,b必是非空的數(shù)集.。
2.本質(zhì):是非空數(shù)集到非空數(shù)集的映射.(板書(shū))。
然后讓學(xué)生試回答剛才關(guān)于是不是的問(wèn)題,要求從映射的角度解釋.。
此時(shí)學(xué)生可以清楚的看到滿足映射觀點(diǎn)下的定義,故是一個(gè),這樣解釋就很自然.。
教師繼續(xù)把問(wèn)題引向深入,提出在映射的觀點(diǎn)下如何解釋是個(gè)?
從映射角度看可以是其中定義域是,值域是.。
3.的三要素及其作用(板書(shū))。
例1以下關(guān)系式表示嗎?為什么?
(1);(2).。
解:(1)由有意義得,解得.由于定義域是空集,故它不能表示.。
(2)由有意義得,解得.定義域?yàn)?,值域?yàn)椋?/p>
由以上兩題可以看出三要素的作用。
(1)判斷一個(gè)關(guān)系是否存在.(板書(shū))。
例2下列各中,哪一個(gè)與是同一個(gè).。
(1);(2)(3);(4).。
解:先認(rèn)清,它是(定義域)到(值域)的映射,其中。
.
再看(1)定義域?yàn)榍?,是不同的?2)定義域?yàn)椋遣煌模?/p>
(4),法則是不同的;
而(3)定義域是,值域是,法則是乘2減1,與完全相同.。
(2)判斷兩個(gè)是否相同.(板書(shū))。
4.對(duì)符號(hào)的理解(板書(shū))。
例3已知試求(板書(shū))。
分析:首先讓學(xué)生認(rèn)清的含義,要求學(xué)生能從變量觀點(diǎn)和映射觀點(diǎn)解釋,再進(jìn)行計(jì)算.。
含義1:當(dāng)自變量取3時(shí),對(duì)應(yīng)的值即;
含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.。
計(jì)算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個(gè)特殊值.。
1.的定義。
2.對(duì)三要素的認(rèn)識(shí)。
3.對(duì)符號(hào)的認(rèn)識(shí)。
五、
2.2例1.例3.。
一.的概念。
1.定義。
2.本質(zhì)例2.小結(jié):
3.三要素的認(rèn)識(shí)及作用。
4.對(duì)符號(hào)的理解。
探究活動(dòng)。
答案:
高一數(shù)學(xué)函數(shù)教案篇八
1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。
2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會(huì)求出另一個(gè)量的值。
3、會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問(wèn)題。
過(guò)程與方法。
1、通過(guò)函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。
2、經(jīng)歷具體實(shí)例的抽象概括過(guò)程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。
情感與價(jià)值觀。
1、經(jīng)歷函數(shù)概念的抽象概括過(guò)程,體會(huì)函數(shù)的模型思想。
2、讓學(xué)生主動(dòng)地從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。
1、掌握函數(shù)概念。
2、判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。
3、能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。
1、理解函數(shù)的概念。
2、能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。
一、創(chuàng)設(shè)問(wèn)題情境,導(dǎo)入新課。
『師』:同學(xué)們,你們看下圖上面那個(gè)像車輪狀的物體是什么?
高一數(shù)學(xué)函數(shù)教案篇九
2.能較熟練地運(yùn)用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問(wèn)題;。
指數(shù)函數(shù)的性質(zhì)的應(yīng)用;。
指數(shù)函數(shù)圖象的平移變換.
1.復(fù)習(xí)指數(shù)函數(shù)的概念、圖象和性質(zhì)。
練習(xí):函數(shù)y=ax(a0且a1)的定義域是_____,值域是______,函數(shù)圖象所過(guò)的定點(diǎn)坐標(biāo)為.若a1,則當(dāng)x0時(shí),y1;而當(dāng)x0時(shí),y1.若00時(shí),y1;而當(dāng)x0時(shí),y1.
例1解不等式:
(1);(2);。
(3);(4).
小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個(gè)指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運(yùn)用,關(guān)鍵是底數(shù)所在的范圍.
例2說(shuō)明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關(guān)系,并畫(huà)出它們的示意圖:
(1);(2);(3);(4).
小結(jié):指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移y=f(x+k)(當(dāng)k0時(shí),向左平移,反之向右平移),上下平移y=f(x)+h(當(dāng)h0時(shí),向上平移,反之向下平移).
練習(xí):
(1)將函數(shù)f(x)=3x的圖象向右平移3個(gè)單位,再向下平移2個(gè)單位,可以得到函數(shù)的圖象.
(2)將函數(shù)f(x)=3x的圖象向右平移2個(gè)單位,再向上平移3個(gè)單位,可以得到函數(shù)的圖象.
(3)將函數(shù)圖象先向左平移2個(gè)單位,再向下平移1個(gè)單位所得函數(shù)的解析式是.
(4)對(duì)任意的a0且a1,函數(shù)y=a2x1的圖象恒過(guò)的定點(diǎn)的坐標(biāo)是.函數(shù)y=a2x-1的圖象恒過(guò)的定點(diǎn)的坐標(biāo)是.
小結(jié):指數(shù)函數(shù)的定點(diǎn)往往是解決問(wèn)題的突破口!定點(diǎn)與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡(jiǎn)圖,從而許多問(wèn)題就可以找到解決的突破口.
(5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?
(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x-1|的圖象?
小結(jié):函數(shù)圖象的對(duì)稱變換規(guī)律.
例3已知函數(shù)y=f(x)是定義在r上的奇函數(shù),且x0時(shí),f(x)=1-2x,試畫(huà)出此函數(shù)的圖象.
例4求函數(shù)的最小值以及取得最小值時(shí)的x值.
小結(jié):復(fù)合函數(shù)常常需要換元來(lái)求解其最值.
練習(xí):
(1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于;。
(2)函數(shù)y=2x的值域?yàn)?。
(4)當(dāng)x0時(shí),函數(shù)f(x)=(a2-1)x的值總大于1,求實(shí)數(shù)a的取值范圍.
1.指數(shù)函數(shù)的性質(zhì)及應(yīng)用;。
2.指數(shù)型函數(shù)的定點(diǎn)問(wèn)題;。
3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.
課本p55-6,7.
(1)函數(shù)f(x)的定義域?yàn)?0,1),則函數(shù)的定義域?yàn)?
(2)對(duì)于任意的x1,x2r,若函數(shù)f(x)=2x,試比較的大小.
高一數(shù)學(xué)函數(shù)教案篇十
在函數(shù)教學(xué)中,我們不僅要在教會(huì)函數(shù)知識(shí)上下功夫,而且還應(yīng)該追求解決問(wèn)題的“常規(guī)方法”——基本函數(shù)知識(shí)中所蘊(yùn)含的思想方法,要從數(shù)學(xué)思想方法的高度進(jìn)行函數(shù)教學(xué)。在函數(shù)的教學(xué)中,應(yīng)突出“類比”的思想和“數(shù)形結(jié)合”的思想。
2.注重“數(shù)學(xué)結(jié)合”的教學(xué)。
數(shù)形結(jié)合的思想方法是初中數(shù)學(xué)中一種重要的思想方法。數(shù)學(xué)是研究現(xiàn)實(shí)世界數(shù)量關(guān)系和空間形式的科學(xué)。而數(shù)形結(jié)合就是通過(guò)數(shù)與形之間的對(duì)應(yīng)和轉(zhuǎn)化來(lái)解決數(shù)學(xué)問(wèn)題。它包含以形助數(shù)和以數(shù)解形兩個(gè)方面,利用它可使復(fù)雜問(wèn)題簡(jiǎn)單化,抽象問(wèn)題具體化,它兼有數(shù)的嚴(yán)謹(jǐn)與形的直觀之長(zhǎng)。
(1)讓學(xué)生經(jīng)歷繪制函數(shù)圖象的具體過(guò)程。
(2)切莫急于呈現(xiàn)畫(huà)函數(shù)圖象的簡(jiǎn)單畫(huà)法。
(3)注意讓學(xué)生體會(huì)研究具體函數(shù)圖象規(guī)律的方法。
目標(biāo)。
1、理解直線y=kx+b與y=kx之間的位置關(guān)系;。
2、會(huì)選擇兩個(gè)合適的點(diǎn)畫(huà)出一次函數(shù)的圖象;
3、掌握一次函數(shù)的性質(zhì).
過(guò)程與方法目標(biāo)。
2、通過(guò)一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗(yàn)數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
2、在探究一次函數(shù)的圖象和性質(zhì)的活動(dòng)中,通過(guò)一系列富有探究性的問(wèn)題,滲透與他人交流、合作的意識(shí)和探究精神。
一次函數(shù)的圖象和性質(zhì)。
由一次函數(shù)的圖像歸納得出一次函數(shù)的性質(zhì)及對(duì)性質(zhì)的理解。
高一數(shù)學(xué)函數(shù)教案篇十一
1.掌握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用。
(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對(duì)數(shù)函數(shù)的定義,了解對(duì)底數(shù)的要求,及對(duì)定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對(duì)數(shù)函數(shù)的圖象。
(2)能把握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識(shí)對(duì)數(shù)函數(shù)的性質(zhì),初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)解決簡(jiǎn)單的問(wèn)題。
2.通過(guò)對(duì)數(shù)函數(shù)概念的學(xué)習(xí),樹(shù)立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過(guò)對(duì)數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力。
3.通過(guò)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)在圖象與性質(zhì)上的對(duì)比,對(duì)學(xué)生進(jìn)行對(duì)稱美,簡(jiǎn)潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
(1)對(duì)數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過(guò)對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解。對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問(wèn)題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ)。
(2)本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì)。難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì)。由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn)。
(3)本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問(wèn)題都應(yīng)圍繞著這條主線展開(kāi)。而通過(guò)互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn)。
(1)對(duì)數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫(huà)對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問(wèn)題也可以多選幾個(gè)不同的底,畫(huà)在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
(2)在本節(jié)課中結(jié)合對(duì)數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向。這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問(wèn)題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣。
高一數(shù)學(xué)函數(shù)教案篇十二
3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系.
利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.
(1). ;(2). ;(3). .
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問(wèn)題.
由sin300= 出發(fā),用三角的定義引導(dǎo)學(xué)生求出 sin(-300),sin1500值,讓學(xué)生聯(lián)想若已知sin = ,能否求出sin( ),sin( )的值.
1.探究任意角 與 的三角函數(shù)又有什么關(guān)系;
2.探究任意角 與 的三角函數(shù)之間又有什么關(guān)系.
遺忘的規(guī)律是先快后慢,過(guò)程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問(wèn)題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過(guò)程,從特殊到一般,數(shù)形結(jié)合,學(xué)生對(duì)知識(shí)的理解與掌握以深入腦中,此時(shí)以類同問(wèn)題的提出,大膽的放手讓學(xué)生分組討論,重現(xiàn)了探索的整個(gè)過(guò)程,加深了知識(shí)的深刻記憶,對(duì)學(xué)生無(wú)形中鼓舞了氣勢(shì),增強(qiáng)了自信,加大了挑戰(zhàn).而新知識(shí)點(diǎn)的自主探討,對(duì)教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進(jìn)步.
誘導(dǎo)公式(三)、(四)
給出本節(jié)課的課題
三角函數(shù)誘導(dǎo)公式
標(biāo)題的后出,讓學(xué)生在經(jīng)歷整個(gè)探索過(guò)程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來(lái)知識(shí)點(diǎn)已經(jīng)輕松掌握,同時(shí)也是對(duì)本節(jié)課內(nèi)容的小結(jié).
的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個(gè)把 看成銳角時(shí)原函數(shù)值的符合.(即:函數(shù)名不變,符號(hào)看象限.)
設(shè)計(jì)意圖
簡(jiǎn)便記憶公式.
求下列三角函數(shù)的值:(1).sin( ); (2). co.
設(shè)計(jì)意圖
本練習(xí)的設(shè)置重點(diǎn)體現(xiàn)一題多解,讓學(xué)生不僅學(xué)會(huì)靈活運(yùn)用應(yīng)用三角函數(shù)的誘導(dǎo)公式,還能養(yǎng)成靈活處理問(wèn)題的良好習(xí)慣.這里還要給學(xué)生指出課本中的“負(fù)角”化為“正角”是針對(duì)具體負(fù)角而言的.
學(xué)生練習(xí)
化簡(jiǎn): .
設(shè)計(jì)意圖
重點(diǎn)加強(qiáng)對(duì)三角函數(shù)的誘導(dǎo)公式的綜合應(yīng)用.
1.小結(jié)使用誘導(dǎo)公式化簡(jiǎn)任意角的三角函數(shù)為銳角的步驟.
2.體會(huì)數(shù)形結(jié)合、對(duì)稱、化歸的思想.
3.“學(xué)會(huì)”學(xué)習(xí)的習(xí)慣.
1.課本p-27,第1,2,3小題;
2.附加課外題 略.
設(shè)計(jì)意圖
加強(qiáng)學(xué)生對(duì)三角函數(shù)的誘導(dǎo)公式的記憶及靈活應(yīng)用,附加題的設(shè)置有利于有能力的同學(xué)“更上一樓”.
八.課后反思
對(duì)本節(jié)內(nèi)容在進(jìn)行教學(xué)設(shè)計(jì)之前,本人反復(fù)閱讀了課程標(biāo)準(zhǔn)和教材,針對(duì)教材的內(nèi)容,編排了一系列問(wèn)題,讓學(xué)生親歷知識(shí)發(fā)生、發(fā)展的過(guò)程,積極投入到思維活動(dòng)中來(lái),通過(guò)與學(xué)生的互動(dòng)交流,關(guān)注學(xué)生的思維發(fā)展,在逐漸展開(kāi)中,引導(dǎo)學(xué)生用已學(xué)的知識(shí)、方法予以解決,并獲得知識(shí)體系的更新與拓展,收到了一定的預(yù)期效果,尤其是練習(xí)的處理,讓學(xué)生通過(guò)個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),感受“觀察——?dú)w納——概括——應(yīng)用”等環(huán)節(jié),在知識(shí)的形成、發(fā)展過(guò)程中展開(kāi)思維,逐步培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、探索問(wèn)題、解決問(wèn)題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識(shí),達(dá)到了設(shè)計(jì)中所預(yù)想的目標(biāo)。
然而還有一些缺憾:對(duì)本節(jié)內(nèi)容,難度不高,本人認(rèn)為,教師的干預(yù)(講解)還是太多。
在以后的教學(xué)中,對(duì)于一些較簡(jiǎn)單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來(lái)設(shè)計(jì)課堂教學(xué),關(guān)注學(xué)生個(gè)性和潛能的發(fā)展,使教學(xué)過(guò)程更加切合《課程標(biāo)準(zhǔn)》的要求。用全新的理論來(lái)武裝自己,讓自己的課堂更有效。
高一數(shù)學(xué)函數(shù)教案篇十三
(二)能畫(huà)出簡(jiǎn)單函數(shù)的圖象,會(huì)列表、描點(diǎn)、連線;。
(三)能從圖象上由自變量的值求出對(duì)應(yīng)的函數(shù)的近似值。
重點(diǎn):認(rèn)識(shí)函數(shù)圖象的意義,會(huì)對(duì)簡(jiǎn)單的函數(shù)列表、描點(diǎn)、連線畫(huà)出函數(shù)圖象。
難點(diǎn):對(duì)已恬圖象能讀圖、識(shí)圖,從圖象解釋函數(shù)變化關(guān)系。
1.什么叫函數(shù)?
2.什么叫平面直角坐標(biāo)系?
3.在坐標(biāo)平面內(nèi),什么叫點(diǎn)的橫坐標(biāo)?什么叫點(diǎn)的.縱坐標(biāo)?
4.如果點(diǎn)a的橫坐標(biāo)為3,縱坐標(biāo)為5,請(qǐng)用記號(hào)表示a(3,5).
5.請(qǐng)?jiān)谧鴺?biāo)平面內(nèi)畫(huà)出a點(diǎn)。
6.如果已知一個(gè)點(diǎn)的坐標(biāo),可在坐標(biāo)平面內(nèi)畫(huà)出幾個(gè)點(diǎn)?反過(guò)來(lái),如果坐標(biāo)平面內(nèi)的一個(gè)點(diǎn)確定,這個(gè)點(diǎn)的坐標(biāo)有幾個(gè)?這樣的點(diǎn)和坐標(biāo)的對(duì)應(yīng)關(guān)系,叫做什么對(duì)應(yīng)?(答:叫做坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)一一對(duì)應(yīng))。
我們?cè)谇皫坠?jié)課已經(jīng)知道,函數(shù)關(guān)系可以用解析式表示,像y=2x+1就表示以x為自變量時(shí),y是x的函數(shù)。
這個(gè)函數(shù)關(guān)系中,y與x的函數(shù)。
這個(gè)函數(shù)關(guān)系中,y與x的對(duì)應(yīng)關(guān)系,我們還可通知在坐標(biāo)平面內(nèi)畫(huà)出圖象的方法來(lái)表示。
高一數(shù)學(xué)函數(shù)教案篇十四
教學(xué)目標(biāo):
知識(shí)與技能。
1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。
2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會(huì)求出另一個(gè)量的值。
3、會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問(wèn)題。
過(guò)程與方法。
1、通過(guò)函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。
2、經(jīng)歷具體實(shí)例的抽象概括過(guò)程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。
情感與價(jià)值觀。
1、經(jīng)歷函數(shù)概念的抽象概括過(guò)程,體會(huì)函數(shù)的模型思想。
2、讓學(xué)生主動(dòng)地從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。
教學(xué)重點(diǎn):
1、掌握函數(shù)概念。
2、判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。
3、能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。
教學(xué)難點(diǎn):
1、理解函數(shù)的概念。
2、能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。
教學(xué)過(guò)程設(shè)計(jì):
一、創(chuàng)設(shè)問(wèn)題情境,導(dǎo)入新課。
『師』:同學(xué)們,你們看下圖上面那個(gè)像車輪狀的物體是什么?
高一數(shù)學(xué)函數(shù)教案篇十五
1.使學(xué)生了解反函數(shù)的概念,初步掌握求反函數(shù)的方法.
2.通過(guò)反函數(shù)概念的學(xué)習(xí),培養(yǎng)學(xué)生分析問(wèn)題,解決問(wèn)題的能力及抽象概括的能力.
3.通過(guò)反函數(shù)的學(xué)習(xí),幫助學(xué)生樹(shù)立辨證唯物主義的世界觀.
重點(diǎn)是反函數(shù)概念的形成與認(rèn)識(shí).
難點(diǎn)是掌握求反函數(shù)的方法.
投影儀。
自主學(xué)習(xí)與啟發(fā)結(jié)合法。
一.揭示課題。
今天我們將學(xué)習(xí)函數(shù)中一個(gè)重要的概念----反函數(shù).
(一)反函數(shù)的概念(板書(shū))。
二.講解新課。
教師首先提出這樣一個(gè)問(wèn)題:在函數(shù)中,如果把當(dāng)作因變量,把當(dāng)作自變量,能否構(gòu)成一個(gè)函數(shù)呢?(讓學(xué)生思考后回答,要講明理由)可以根據(jù)函數(shù)的定義在的允許取值范圍內(nèi)的任一值,按照法則都有唯一的與之相對(duì)應(yīng).(還可以讓學(xué)生畫(huà)出函數(shù)的圖象,從形的角度解釋“任一對(duì)唯一”)。
學(xué)生很快會(huì)意識(shí)到是的反函數(shù),教師可再引申為與是互為反函數(shù)的.然后利用問(wèn)題再引申:是不是所有的函數(shù)都有反函數(shù)呢?如果有,請(qǐng)舉出例子.在教師啟發(fā)下學(xué)生可以舉出象這樣的函數(shù),若將當(dāng)自變量,當(dāng)作因變量,在允許取值范圍內(nèi)一個(gè)可能對(duì)兩個(gè)(可畫(huà)圖輔助說(shuō)明,當(dāng)時(shí),對(duì)應(yīng)),不能構(gòu)成函數(shù),說(shuō)明此函數(shù)沒(méi)有反函數(shù).
通過(guò)剛才的例子,了解了什么是反函數(shù),把對(duì)的反函數(shù)的研究過(guò)程一般化,概括起來(lái)就可以得到反函數(shù)的定義,但這個(gè)數(shù)學(xué)的抽象概括,要求比較高,因此我們一起閱讀書(shū)上相關(guān)的內(nèi)容.
1.反函數(shù)的定義:(板書(shū))(用投影儀打出反函數(shù)的定義)。
為了幫助學(xué)生理解,還可以把定義中的換成某個(gè)具體簡(jiǎn)單的函數(shù)如解釋每一步驟,如得,再判斷它是個(gè)函數(shù),最后改寫(xiě)為.給出定義后,再對(duì)概念作點(diǎn)深入研究.
2.對(duì)概念得理解(板書(shū))。
教師先提出問(wèn)題:反函數(shù)的“反”字應(yīng)當(dāng)是相對(duì)原來(lái)給出的函數(shù)而言,指的是兩者的關(guān)系你能否從函數(shù)三要素的角度解釋“反”的含義呢?(仍可以與為例來(lái)說(shuō))。
學(xué)生很容易先想到對(duì)應(yīng)法則是“反”過(guò)來(lái)的,把與的位置換位了,教師再追問(wèn)它們的互換還會(huì)帶來(lái)什么變化?啟發(fā)學(xué)生找出另兩個(gè)要素之間的關(guān)系.最后得出結(jié)論:的定義域和值域分別由的值域和定義域決定的.再把結(jié)論從特殊發(fā)展到一般,概括為:反函數(shù)的三要素是由原來(lái)函數(shù)的三要素決定的.給出的函數(shù)確定了,反函數(shù)的三要素就已經(jīng)確定了.簡(jiǎn)記為“三定”.
(1)“三定”(板書(shū))。
最后教師進(jìn)一步明確“反”實(shí)際體現(xiàn)為“三反”,“三反”中起決定作用的是與的位置的反置,正是由于它的反置,才把它的范圍也帶走了,引起了另外兩“反”.
(2)“三反”(板書(shū))。
此時(shí)教師可把問(wèn)題再次引向深入,提出:如果一個(gè)函數(shù)存在反函數(shù),應(yīng)怎樣求這個(gè)反函數(shù)呢?下面我給出兩個(gè)函數(shù),請(qǐng)同學(xué)們根據(jù)自己對(duì)概念的理解來(lái)求一下它們的反函數(shù).
例1.求的反函數(shù).(板書(shū))。
(由學(xué)生說(shuō)求解過(guò)程,有錯(cuò)或不規(guī)范之處,暫時(shí)不追究,待例2解完之后再一起講評(píng))。
解:由得,所求反函數(shù)為.(板書(shū))。
例2.求,的反函數(shù).(板書(shū))。
解:由得,又得,。
故所求反函數(shù)為.(板書(shū))。
求完后教師請(qǐng)同學(xué)們作評(píng)價(jià),學(xué)生之間可以討論,充分暴露表述中得問(wèn)題,讓學(xué)生自行發(fā)現(xiàn),自行解決.最后找代表發(fā)表意見(jiàn),指出例2中問(wèn)題,結(jié)果應(yīng)為,.
教師可先明知故問(wèn),與,有什么不同?讓學(xué)生明確指出兩個(gè)函數(shù)定義域分別是和,所以它們是不同的函數(shù).再追問(wèn)從何而來(lái)呢?讓學(xué)生能從三定和三反中找出理由,是從原來(lái)函數(shù)的值域而來(lái).
在此基礎(chǔ)上,教師最后明確要求,由于反函數(shù)的定義域必是原來(lái)函數(shù)的值域,而不是從自身解析式出發(fā)尋求滿足的條件,所以求反函數(shù),就必須先求出原來(lái)函數(shù)的值域.之后由學(xué)生調(diào)整剛才的求解過(guò)程.
解:由得,又得,。
又的值域是,。
故所求反函數(shù)為,.
(可能有的學(xué)生會(huì)提出例1中為什么不求原來(lái)函數(shù)的值域的問(wèn)題,此時(shí)不妨讓學(xué)生去具體算一算,會(huì)發(fā)現(xiàn)原來(lái)函數(shù)的值域域求出的函數(shù)解析式中所求定義域時(shí)一致的,所以使得最后結(jié)果沒(méi)有出錯(cuò).但教師必須指出結(jié)論得一致性只是偶然,而不是必然,因此為規(guī)范求解過(guò)程要求大家一定先求原來(lái)函數(shù)的值域,并且在最后所求結(jié)果上注明反函數(shù)的定義域,同時(shí)讓學(xué)生調(diào)整例的表述,將過(guò)程補(bǔ)充完整)。
最后讓學(xué)生一起概括求反函數(shù)的步驟.
3.求反函數(shù)的步驟(板書(shū))。
(1)反解:。
(2)互換。
(3)改寫(xiě):。
對(duì)以上環(huán)節(jié)教師可稍作解釋,然后提出再通過(guò)下面的練習(xí)來(lái)檢驗(yàn)是否真正理解了.
三.鞏固練習(xí)。
練習(xí):求下列函數(shù)的反函數(shù).
(1)(2).(由兩名學(xué)生上黑板寫(xiě))。
解答過(guò)程略.
教師可針對(duì)學(xué)生解答中出現(xiàn)的問(wèn)題,進(jìn)行講評(píng).(如正負(fù)的選取,值域的計(jì)算,符號(hào)的使用)。
四.小結(jié)。
1.對(duì)反函數(shù)概念的認(rèn)識(shí):。
2.求反函數(shù)的基本步驟:。
五.作業(yè)。
課本第68頁(yè)習(xí)題2.4第1題中4,6,8,第2題.
六.板書(shū)設(shè)計(jì)。
2.4反函數(shù)例1.練習(xí).
一.反函數(shù)的概念(1)(2)。
1.定義。
2.對(duì)概念的理解例2.
(1)三定(2)三反。
3.求反函數(shù)的步驟。
(1)反解(2)互換(3)改寫(xiě)。
高一數(shù)學(xué)函數(shù)教案篇十六
數(shù)學(xué)是一門(mén)培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過(guò)程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問(wèn)題情境——提出數(shù)學(xué)問(wèn)題——嘗試解決問(wèn)題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問(wèn)題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(人教a版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六).本節(jié)是第一課時(shí),教學(xué)內(nèi)容為公式(二)、(三)、(四).教材要求通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對(duì)稱思想發(fā)現(xiàn)任意角與終邊的對(duì)稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四).同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
本節(jié)課的授課對(duì)象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動(dòng)手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容.
(1).基礎(chǔ)知識(shí)目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過(guò)程,掌握正弦、余弦、正切的誘導(dǎo)公式;。
(4).個(gè)性品質(zhì)目標(biāo):通過(guò)誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀.
理解并掌握誘導(dǎo)公式.
正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡(jiǎn)三角函數(shù)式.
“授人以魚(yú)不如授之以魚(yú)”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實(shí)現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究.下面我從教法、學(xué)法、預(yù)期效果等三個(gè)方面做如下分析.
數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動(dòng)的教學(xué),而不僅僅是數(shù)學(xué)活動(dòng)的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識(shí),更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì).
在本節(jié)課的教學(xué)過(guò)程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問(wèn)題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”,由易到難,由特殊到一般,盡力營(yíng)造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂(lè)和成功的喜悅.
“現(xiàn)代的文盲不是不識(shí)字的人,而是沒(méi)有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識(shí)點(diǎn),卻忽略了學(xué)生接受知識(shí)需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情.如何能讓學(xué)生最大程度的消化知識(shí),提高學(xué)習(xí)熱情是教者必須思考的問(wèn)題.
在本節(jié)課的教學(xué)過(guò)程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問(wèn)題共同探討解決問(wèn)題簡(jiǎn)單應(yīng)用重現(xiàn)探索過(guò)程練習(xí)鞏固.讓學(xué)生參與探索的全部過(guò)程,讓學(xué)生在獲取新知識(shí)及解決問(wèn)題的方法后,合作交流、共同探索,使之由被動(dòng)學(xué)習(xí)轉(zhuǎn)化為主動(dòng)的自主學(xué)習(xí).
1.復(fù)習(xí)銳角300,450,600的三角函數(shù)值;。
2.復(fù)習(xí)任意角的三角函數(shù)定義;。
3.問(wèn)題:由,你能否知道sin2100的值嗎?引如新課.
自信的鼓勵(lì)是增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡(jiǎn)單易做的題加強(qiáng)了每個(gè)學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問(wèn)題的出現(xiàn),讓學(xué)生既有好像會(huì)做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機(jī)會(huì)證明我能行,從而思考解決的辦法.
1.讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;。
2100與sin300之間有什么關(guān)系.
由特殊問(wèn)題的引入,使學(xué)生容易了解,實(shí)現(xiàn)教學(xué)過(guò)程的平淡過(guò)度,為同學(xué)們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊.
【本文地址:http://mlvmservice.com/zuowen/12209075.html】