高一數(shù)學(xué)函數(shù)教案(通用18篇)

格式:DOC 上傳日期:2023-11-15 08:38:10
高一數(shù)學(xué)函數(shù)教案(通用18篇)
時(shí)間:2023-11-15 08:38:10     小編:書香墨

教案的編寫應(yīng)注重學(xué)生的主體地位,促進(jìn)學(xué)生的參與和積極學(xué)習(xí)。教案編寫過(guò)程中需要充分利用各種教學(xué)資源,如多媒體教具、實(shí)驗(yàn)器材等。以下是小編為大家整理的教案范本,僅供參考。大家可以在教學(xué)實(shí)踐中根據(jù)自己的需要進(jìn)行適當(dāng)?shù)男薷暮驼{(diào)整,以適應(yīng)不同學(xué)生的學(xué)習(xí)情況和教學(xué)環(huán)境。希望這些教案范本能給大家?guī)?lái)一些啟示和幫助,讓我們一起努力,提高教學(xué)質(zhì)量,培養(yǎng)優(yōu)秀的人才。%20教案是教師在備課過(guò)程中編寫的一種詳細(xì)的教學(xué)計(jì)劃,它包括了教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)方法、教學(xué)過(guò)程等內(nèi)容。教案的編寫可以幫助教師全面理解教材內(nèi)容,合理組織教學(xué)活動(dòng),有效提高教學(xué)效果。教案不僅是一份指導(dǎo)教學(xué)的工具,也是評(píng)估教學(xué)質(zhì)量的依據(jù)。因此,教師需要認(rèn)真編寫教案,確保教學(xué)過(guò)程的科學(xué)性和有效性。那么如何編寫一份優(yōu)秀的教案呢?首先,教師需要充分了解教學(xué)目標(biāo),明確教學(xué)內(nèi)容和任務(wù)。其次,教師應(yīng)根據(jù)學(xué)生的實(shí)際情況和學(xué)習(xí)特點(diǎn),合理選擇教學(xué)策略和方法。同時(shí),教師還需要精心設(shè)計(jì)教學(xué)過(guò)程和活動(dòng),確保教學(xué)環(huán)節(jié)的連貫性和邏輯性。此外,教師還需要注意教學(xué)資源的合理利用,為教學(xué)活動(dòng)提供必要的教具和素材。最后,在教學(xué)結(jié)束后,教師應(yīng)對(duì)教學(xué)過(guò)程進(jìn)行反思和總結(jié),及時(shí)調(diào)整和改進(jìn)教學(xué)方法,提高自身的教學(xué)水平。以下是小編為大家整理的教案范本,僅供參考。大家可以在教學(xué)實(shí)踐中根據(jù)自己的需要進(jìn)行適當(dāng)?shù)男薷暮驼{(diào)整,以適應(yīng)不同學(xué)生的學(xué)習(xí)情況和教學(xué)環(huán)境。希望這些教案范本能給大家?guī)?lái)一些啟示和幫助,讓我們一起努力,提高教學(xué)質(zhì)量,培養(yǎng)優(yōu)秀的人才。

高一數(shù)學(xué)函數(shù)教案篇一

1、知識(shí)與技能:

(1)結(jié)合實(shí)例,了解正整數(shù)指數(shù)函數(shù)的概念.

(2)能夠求出正整數(shù)指數(shù)函數(shù)的解析式,進(jìn)一步研究其性質(zhì).

2、過(guò)程與方法:

(1)讓學(xué)生借助實(shí)例,了解正整數(shù)指數(shù)函數(shù),體會(huì)從具體到一般,從個(gè)別到整體的研究過(guò)程和研究方法.

(2)從圖像上觀察體會(huì)正整數(shù)指數(shù)函數(shù)的性質(zhì),為這一章的學(xué)習(xí)作好鋪墊.

3、情感.態(tài)度與價(jià)值觀:使學(xué)生通過(guò)學(xué)習(xí)正整數(shù)指數(shù)函數(shù)體會(huì)學(xué)習(xí)指數(shù)函數(shù)的重要意義,增強(qiáng)學(xué)習(xí)研究函數(shù)的積極性和自信心.

正整數(shù)指數(shù)函數(shù)的定義.教學(xué)難點(diǎn):正整數(shù)指數(shù)函數(shù)的解析式的確定.

:學(xué)生觀察、思考、探究.教學(xué)方法:探究交流,講練結(jié)合。

(一)新課導(dǎo)入。

[互動(dòng)過(guò)程1]:

(1)請(qǐng)你用列表表示1個(gè)細(xì)胞分裂次數(shù)分別。

為1,2,3,4,5,6,7,8時(shí),得到的細(xì)胞個(gè)數(shù);。

(2)請(qǐng)你用圖像表示1個(gè)細(xì)胞分裂的次數(shù)n()與得到的細(xì)。

胞個(gè)數(shù)y之間的關(guān)系;。

(3)請(qǐng)你寫出得到的細(xì)胞個(gè)數(shù)y與分裂次數(shù)n之間的關(guān)系式,試用。

科學(xué)計(jì)算器計(jì)算細(xì)胞分裂15次、20次得到的細(xì)胞個(gè)數(shù).

解:。

(1)利用正整數(shù)指數(shù)冪的運(yùn)算法則,可以算出1個(gè)細(xì)胞分裂1,2,3,。

4,5,6,7,8次后,得到的細(xì)胞個(gè)數(shù)。

分裂次數(shù)12345678。

細(xì)胞個(gè)數(shù)248163264128256。

(3)細(xì)胞個(gè)數(shù)與分裂次數(shù)之間的關(guān)系式為,用科學(xué)計(jì)算器算得,。

所以細(xì)胞分裂15次、20次得到的細(xì)胞個(gè)數(shù)分別為32768和1048576.

小結(jié):從本題中可以看出我們得到的細(xì)胞分裂個(gè)數(shù)都是底數(shù)為2的指數(shù),而且指數(shù)是變量,取值為正整數(shù).細(xì)胞個(gè)數(shù)與分裂次數(shù)之間的關(guān)系式為.細(xì)胞個(gè)數(shù)隨著分裂次數(shù)的增多而逐漸增多.

[互動(dòng)過(guò)程2]:?jiǎn)栴}2.電冰箱使用的氟化物的釋放破壞了大氣上層的臭氧層,臭氧含量q近似滿足關(guān)系式q=q00.9975t,其中q0是臭氧的初始量,t是時(shí)間(年),這里設(shè)q0=1.

(1)計(jì)算經(jīng)過(guò)20,40,60,80,100年,臭氧含量q;。

(2)用圖像表示每隔20年臭氧含量q的變化;。

(3)試分析隨著時(shí)間的增加,臭氧含量q是增加還是減少.

(2)用圖像表示每隔20年臭氧含量q的變化如圖所。

示,它的圖像是由一些孤立的點(diǎn)組成.

(3)通過(guò)計(jì)算和觀察圖形可以知道,隨著時(shí)間的增加,。

臭氧含量q在逐漸減少.

探究:從本題中得到的函數(shù)來(lái)看,自變量和函數(shù)值分別。

又是什么?此函數(shù)是什么類型的函數(shù)?,臭氧含量q隨著。

時(shí)間的增加發(fā)生怎樣變化?你從哪里看出?

小結(jié):從本題中可以看出我們得到的臭氧含量q都是底數(shù)為0.9975的指數(shù),而且指數(shù)是變量,取值為正整數(shù).臭氧含量q近似滿足關(guān)系式q=0.9975t,隨著時(shí)間的增加,臭氧含量q在逐漸減少.

正整數(shù)指數(shù)函數(shù)的定義:一般地,函數(shù)叫作正整數(shù)指數(shù)函數(shù),其中是自變量,定義域是正整數(shù)集.

說(shuō)明:1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點(diǎn),這是因?yàn)楹瘮?shù)的定義域是正整數(shù)集.2.在研究增長(zhǎng)問(wèn)題、復(fù)利問(wèn)題、質(zhì)量濃度問(wèn)題中常見這類函數(shù).

(二)、例題:某地現(xiàn)有森林面積為1000,每年增長(zhǎng)5%,經(jīng)過(guò)年,森林面積為.寫出,間的函數(shù)關(guān)系式,并求出經(jīng)過(guò)5年,森林的面積.

分析:要得到,間的函數(shù)關(guān)系式,可以先一年一年的增長(zhǎng)變化,找出規(guī)律,再寫出,間的函數(shù)關(guān)系式.

解:根據(jù)題意,經(jīng)過(guò)一年,森林面積為1000(1+5%);經(jīng)過(guò)兩年,森林面積為1000(1+5%)2;經(jīng)過(guò)三年,森林面積為1000(1+5%)3;所以與之間的函數(shù)關(guān)系式為,經(jīng)過(guò)5年,森林的面積為1000(1+5%)5=1276.28(hm2).

練習(xí):課本練習(xí)1,2。

解:一個(gè)月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%),二個(gè)月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%)2;,三個(gè)月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%)3,,n個(gè)月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%)n;所以n與y之間的關(guān)系為y=20xx(1+2.38%)n(nn+),一年后他全部取回,他能取回的錢數(shù)為y=20xx(1+2.38%)12.

(三)、小結(jié):1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點(diǎn),這是因?yàn)楹瘮?shù)的定義域是正整數(shù)集.2.在研究增長(zhǎng)問(wèn)題、復(fù)利問(wèn)題、質(zhì)量濃度問(wèn)題中常見這類函數(shù).

(四)、作業(yè):課本習(xí)題3-11,2,3。

高一數(shù)學(xué)函數(shù)教案篇二

1.知識(shí)技能:

2.過(guò)程與方法。

3.情感、態(tài)度與價(jià)值觀。

利用函數(shù)的性質(zhì)找出零點(diǎn)找到方程的根.二分法求方程的近似解。

學(xué)生自主學(xué)習(xí)、合作探究.。

復(fù)習(xí):

1.函數(shù)的零點(diǎn)的判定.

2.二分法求方程的近似解。

例1.偶函數(shù)在區(qū)間[0,a](a0)上是單調(diào)函數(shù),且f(0)=f(a)0,則方程在區(qū)間[-a,a]內(nèi)根的個(gè)數(shù)是()。

a.1b.2c.3d.0。

練習(xí):1:已知函數(shù),若實(shí)數(shù)是方程的解,且,則的值為()。

a.恒為正值b.等于c.恒為負(fù)值d.不大于。

2.已知函數(shù),則函數(shù)的零點(diǎn)是__________。

例2.用“二分法”求方程在區(qū)間內(nèi)的實(shí)根,取區(qū)間中點(diǎn)為,那么下一個(gè)有根的區(qū)間是。

練習(xí)2:

3.利用函數(shù)圖象判斷下列方程有沒(méi)有實(shí)數(shù)根,有幾個(gè)實(shí)數(shù)根:

4借助計(jì)算器,用二分法求出在區(qū)間內(nèi)的近似解(精確到)。

5.設(shè),用二分法求方程內(nèi)近似解的過(guò)程中得則方程的根落在區(qū)間()。

a.b.。

c.d.不能確定。

6直線與函數(shù)的圖象的交點(diǎn)個(gè)數(shù)為()。

a.個(gè)b.個(gè)c.個(gè)d.個(gè)。

7若方程有兩個(gè)實(shí)數(shù)解,則的取值范圍是()。

a.b.。

c.d.。

課后作業(yè):復(fù)習(xí)參考題四a組1?4題。

高一數(shù)學(xué)函數(shù)教案篇三

一部分為對(duì)數(shù)函數(shù)的定義,圖像及性質(zhì);第二部分為對(duì)數(shù)函數(shù)的應(yīng)用。對(duì)數(shù)函數(shù)是在學(xué)習(xí)對(duì)數(shù)概念的基礎(chǔ)上學(xué)習(xí)對(duì)數(shù)函數(shù)的概念和性質(zhì),通過(guò)學(xué)習(xí)對(duì)數(shù)函數(shù)的定義,圖像及性質(zhì),可以進(jìn)一步深化學(xué)生對(duì)函數(shù)概念的理解與認(rèn)識(shí),使學(xué)生得到較系統(tǒng)的函數(shù)知識(shí)和研究函數(shù)的方法,并且為學(xué)習(xí)對(duì)數(shù)函數(shù)以及對(duì)數(shù)函數(shù)的應(yīng)用作好準(zhǔn)備。

在教學(xué)過(guò)程中,我類比指數(shù)函數(shù)圖象和性質(zhì)的研究,研究了對(duì)數(shù)函數(shù)圖象和性質(zhì)。同學(xué)們課堂上能積極主動(dòng)參與獲得性質(zhì)的過(guò)程。我用了三節(jié)課就對(duì)數(shù)函數(shù)的圖象和性質(zhì),圖象和性質(zhì)的應(yīng)用進(jìn)行講解。但是從作業(yè)和課堂效果看來(lái)。同學(xué)們沒(méi)有指數(shù)函數(shù)的性質(zhì)和圖象掌握的好。特反思如下:

1、學(xué)生對(duì)對(duì)數(shù)函數(shù)概念的理解及對(duì)數(shù)的運(yùn)算不過(guò)關(guān)。學(xué)生在做這些運(yùn)算時(shí)有時(shí)不能靈活運(yùn)用公式例如換底公式,有時(shí)學(xué)生會(huì)想當(dāng)然地自己“發(fā)明”公式。導(dǎo)致部分題目出現(xiàn)運(yùn)算錯(cuò)誤或不會(huì)。

2、在利用對(duì)數(shù)函數(shù)的單調(diào)性比較兩個(gè)對(duì)數(shù)式的大小書寫格式不規(guī)范,因此在解題的過(guò)程中就把真數(shù)和底數(shù)混亂了,這說(shuō)明同學(xué)們用函數(shù)的觀點(diǎn)解決問(wèn)題的思想方法還沒(méi)形成。

3、在解有關(guān)求定義域的問(wèn)題時(shí),學(xué)生不能很好的掌握底數(shù)a的取值范圍以及真數(shù)必修大于0.

4、同學(xué)們對(duì)對(duì)數(shù)與指數(shù)的互化不是很熟練。導(dǎo)致有關(guān)指數(shù)與對(duì)數(shù)互化題目出現(xiàn)錯(cuò)誤。尤其是解決有關(guān)對(duì)數(shù)和指數(shù)混合式子的有關(guān)計(jì)算時(shí)困難很大,問(wèn)題最多。還有在解決有關(guān)對(duì)數(shù)型函數(shù)定義域問(wèn)題時(shí),更不會(huì)用對(duì)數(shù)函數(shù)的單調(diào)性去解決。

高一數(shù)學(xué)函數(shù)教案篇四

知識(shí)與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會(huì)運(yùn)用定義判斷函數(shù)的奇偶性。

過(guò)程與方法:通過(guò)設(shè)置問(wèn)題情境培養(yǎng)學(xué)生判斷、推斷的能力。

情感態(tài)度與價(jià)值觀:通過(guò)繪制和展示優(yōu)美的函數(shù)圖象來(lái)陶冶學(xué)生的情操,通過(guò)組織學(xué)生分組討論,培養(yǎng)學(xué)生主動(dòng)交流的合作精神,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。

難點(diǎn):函數(shù)奇偶性的判斷。

學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行合作交流,在思考、探索和交流的過(guò)程中獲得對(duì)函數(shù)奇偶性的全面的體驗(yàn)和理解。對(duì)于奇偶性的應(yīng)用采取講練結(jié)合的方式進(jìn)行處理,使學(xué)生邊學(xué)邊練,及時(shí)鞏固。

1、復(fù)習(xí)在初中學(xué)習(xí)的軸對(duì)稱圖形和中心對(duì)稱圖形的定義:

2、分別畫出函數(shù)f(x)=x3與g(x)=x2的圖象,并說(shuō)出圖象的對(duì)稱性。

(1)對(duì)于函數(shù),其定義域關(guān)于原點(diǎn)對(duì)稱:

如果______________________________________,那么函數(shù)為偶函數(shù)。

(2)奇函數(shù)的圖象關(guān)于__________對(duì)稱,偶函數(shù)的圖象關(guān)于_________對(duì)稱。

(3)奇函數(shù)在對(duì)稱區(qū)間的增減性;偶函數(shù)在對(duì)稱區(qū)間的增減性。

(1)f(x)=x4;(2)f(x)=x5;。

(3)f(x)=x+(4)f(x)=。

a2、二次函數(shù)()是偶函數(shù),則b=___________。

b3、已知,其中為常數(shù),若,則。

_______。

b4、若函數(shù)是定義在r上的奇函數(shù),則函數(shù)的圖象關(guān)于()。

(a)軸對(duì)稱(b)軸對(duì)稱(c)原點(diǎn)對(duì)稱(d)以上均不對(duì)。

b5、如果定義在區(qū)間上的函數(shù)為奇函數(shù),則=_____。

c6、若函數(shù)是定義在r上的奇函數(shù),且當(dāng)時(shí),,那么當(dāng)。

時(shí),=_______。

d7、設(shè)是上的奇函數(shù),,當(dāng)時(shí),,則等于()。

(a)0.5(b)(c)1.5(d)。

d8、定義在上的奇函數(shù),則常數(shù)____,_____。

本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì)。

高一數(shù)學(xué)函數(shù)教案篇五

講授新課前,做一份完美的教案,能夠更大程度的調(diào)動(dòng)學(xué)生在上課時(shí)的積極性,以下是白話文為大家整理的人教版高一數(shù)學(xué)《指數(shù)函數(shù)》教案,希望可以幫助到有需要的朋友。

1。使學(xué)生掌握的概念,圖象和性質(zhì)。

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對(duì)底數(shù)的限制條件的合理性,明確的定義域。

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識(shí)的性質(zhì)。

(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用的圖象畫出形如的圖象。

2。通過(guò)對(duì)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。

3。通過(guò)對(duì)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問(wèn)題,解決問(wèn)題。

(1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究。

(2)本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點(diǎn)是對(duì)底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分。

(3)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的.函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問(wèn)題,所以從的研究過(guò)程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究。

(1)關(guān)于的定義按照課本上說(shuō)法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是。

(2)對(duì)底數(shù)的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說(shuō)明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來(lái)。

關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡(jiǎn)單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象。

1。理解的定義,初步掌握的圖象,性質(zhì)及其簡(jiǎn)單應(yīng)用。

2。通過(guò)的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。

3。通過(guò)對(duì)的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。

重點(diǎn)是理解的定義,把握?qǐng)D象和性質(zhì)。

難點(diǎn)是認(rèn)識(shí)底數(shù)對(duì)函數(shù)值影響的認(rèn)識(shí)。

投影儀。

啟發(fā)討論研究式。

一。引入新課。

我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來(lái)研究一類新的常見函數(shù)———————。

1。6。(板書)。

這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問(wèn)題:

由學(xué)生回答:與之間的關(guān)系式,可以表示為。

問(wèn)題2:有一根1米長(zhǎng)的繩子,第一次剪去繩長(zhǎng)一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長(zhǎng)度為米,試寫出與之間的函數(shù)關(guān)系。

由學(xué)生回答:。

在以上兩個(gè)實(shí)例中我們可以看到這兩個(gè)函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。

一。的概念(板書)。

1。定義:形如的函數(shù)稱為。(板書)。

教師在給出定義之后再對(duì)定義作幾點(diǎn)說(shuō)明。

2。幾點(diǎn)說(shuō)明(板書)。

(1)關(guān)于對(duì)的規(guī)定:

教師首先提出問(wèn)題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問(wèn)題分解為若會(huì)有什么問(wèn)題?如,此時(shí),等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。

若對(duì)于都無(wú)意義,若則無(wú)論取何值,它總是1,對(duì)它沒(méi)有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定且。

(2)關(guān)于的定義域(板書)。

教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時(shí)教師可指出,其實(shí)當(dāng)指數(shù)為無(wú)理數(shù)時(shí),也是一個(gè)確定的實(shí)數(shù),對(duì)于無(wú)理指數(shù)冪,學(xué)過(guò)的有理指數(shù)冪的性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)?。擴(kuò)充的另一個(gè)原因是因?yàn)槭顾叽砀袘?yīng)用價(jià)值。

(3)關(guān)于是否是的判斷(板書)。

剛才分別認(rèn)識(shí)了中底數(shù),指數(shù)的要求,下面我們從整體的角度來(lái)認(rèn)識(shí)一下,根據(jù)定義我們知道什么樣的函數(shù)是,請(qǐng)看下面函數(shù)是否是。

(1),?(2),?(3)。

(4),?(5)。

學(xué)生回答并說(shuō)明理由,教師根據(jù)情況作點(diǎn)評(píng),指出只有(1)和(3)是,其中(3)可以寫成,也是指數(shù)圖象。

最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問(wèn)題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時(shí)研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。

3。歸納性質(zhì)。

作圖的用什么方法。用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。

函數(shù)。

1。定義域:

2。值域:

3。奇偶性:既不是奇函數(shù)也不是偶函數(shù)。

4。截距:在軸上沒(méi)有,在軸上為1。

對(duì)于性質(zhì)1和2可以兩條合在一起說(shuō),并追問(wèn)起什么作用。(確定圖象存在的大致位置)對(duì)第3條還應(yīng)會(huì)證明。對(duì)于單調(diào)性,我建議找一些特殊點(diǎn)。,先看一看,再下定論。對(duì)最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù)。(圖象位于軸上方,且與軸不相交。)。

在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了。取點(diǎn)時(shí)還要提醒學(xué)生由于不具備對(duì)稱性,故的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個(gè)數(shù)不能太少。

此處教師可利用計(jì)算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù)。連點(diǎn)成線時(shí),一定提醒學(xué)生圖象的變化趨勢(shì)(當(dāng)越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線。

二。圖象與性質(zhì)(板書)。

1。圖象的畫法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法。

2。草圖:

當(dāng)畫完第一個(gè)圖象之后,可問(wèn)學(xué)生是否需要再畫第二個(gè)?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學(xué)生明白需再畫第二個(gè),不妨取為例。

此時(shí)畫它的圖象的方法應(yīng)讓學(xué)生來(lái)選擇,應(yīng)讓學(xué)生意識(shí)到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡(jiǎn)單。即=與圖象之間關(guān)于軸對(duì)稱,而此時(shí)的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對(duì)稱,教師借助計(jì)算機(jī)畫圖,在同一坐標(biāo)系下得到的圖象。

最后問(wèn)學(xué)生是否需要再畫。(可能有兩種可能性,若學(xué)生認(rèn)為無(wú)需再畫,則追問(wèn)其原因并要求其說(shuō)出性質(zhì),若認(rèn)為還需畫,則教師可利用計(jì)算機(jī)再畫出如的圖象一起比較,再找共性)。

由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個(gè)表,如下:

以上內(nèi)容學(xué)生說(shuō)不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。

填好后,讓學(xué)生仿照此例再列一個(gè)的表,將相應(yīng)的內(nèi)容填好。為進(jìn)一步整理性質(zhì),教師可提出從另一個(gè)角度來(lái)分類,整理函數(shù)的性質(zhì)。

3。性質(zhì)。

(1)無(wú)論為何值,都有定義域?yàn)?,值域?yàn)椋歼^(guò)點(diǎn)。

(2)時(shí),在定義域內(nèi)為增函數(shù),時(shí),為減函數(shù)。

(3)時(shí),,???時(shí),。

總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。

三。簡(jiǎn)單應(yīng)用??(板書)。

1。利用單調(diào)性比大小。?(板書)。

一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡(jiǎn)單的問(wèn)題。首先我們來(lái)看下面的問(wèn)題。

例1。比較下列各組數(shù)的大小。

(1)與;?(2)與;。

(3)與1。(板書)。

首先讓學(xué)生觀察兩個(gè)數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問(wèn)根據(jù)這個(gè)特點(diǎn),用什么方法來(lái)比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個(gè)數(shù)看作某個(gè)函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過(guò)程。

解:在上是增函數(shù),且。

(板書)。

教師最后再?gòu)?qiáng)調(diào)過(guò)程必須寫清三句話:

(1)構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。

(2)自變量的大小比較。

(3)函數(shù)值的大小比較。

后兩個(gè)題的過(guò)程略。要求學(xué)生仿照第(1)題敘述過(guò)程。

例2。比較下列各組數(shù)的大小。

(1)與;?(2)與?;。

(3)與。(板書)。

先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(duì)(1)來(lái)說(shuō)可以寫成,這樣就可以轉(zhuǎn)化成同底的問(wèn)題,再用例1的方法解決,對(duì)(2)來(lái)說(shuō)可以寫成,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來(lái)起橋梁作用)。

最后由學(xué)生說(shuō)出1,1,。

解決后由教師小結(jié)比較大小的方法。

(1)構(gòu)造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。

(2)搭橋比較法:用特殊的數(shù)1或0。

三。鞏固練習(xí)。

練習(xí):比較下列各組數(shù)的大小(板書)。

(1)與???(2)與;。

(3)與;(4)與。解答過(guò)程略。

四。小結(jié)。

1。的概念。

2。的圖象和性質(zhì)。

3。簡(jiǎn)單應(yīng)用。

五。板書設(shè)計(jì)。

高一數(shù)學(xué)函數(shù)教案篇六

知識(shí)梳理:

1、軸對(duì)稱圖形:

2中心對(duì)稱圖形:

1、畫出函數(shù),與的圖像;并觀察兩個(gè)函數(shù)圖像的對(duì)稱性。

2、求出,時(shí)的函數(shù)值,寫出。

結(jié)論:

(1)、強(qiáng)調(diào)定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。

(2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱。

5、奇函數(shù)與偶函數(shù)圖像的對(duì)稱性:

如果一個(gè)函數(shù)是奇函數(shù),則這個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱中心的__________。反之,如果一個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形,則這個(gè)函數(shù)是___________。

如果一個(gè)函數(shù)是偶函數(shù),則這個(gè)函數(shù)的圖像是以軸為對(duì)稱軸的__________。反之,如果一個(gè)函數(shù)的圖像是關(guān)于軸對(duì)稱,則這個(gè)函數(shù)是___________。

(1)(2)(3)。

(4)(5)。

練習(xí):教材第49頁(yè),練習(xí)a第1題。

總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?

題型二:利用奇偶性求函數(shù)解析式。

例2:若f(x)是定義在r上的奇函數(shù),當(dāng)x0時(shí),f(x)=x(1-x),求當(dāng)時(shí)f(x)的解析式。

練習(xí):若f(x)是定義在r上的奇函數(shù),當(dāng)x0時(shí),f(x)=x|x-2|,求當(dāng)x0時(shí)f(x)的解析式。

已知定義在實(shí)數(shù)集上的奇函數(shù)滿足:當(dāng)x0時(shí),,求的表達(dá)式。

題型三:利用奇偶性作函數(shù)圖像。

例3研究函數(shù)的性質(zhì)并作出它的圖像。

練習(xí):教材第49練習(xí)a第3,4,5題,練習(xí)b第1,2題。

當(dāng)堂檢測(cè)。

1已知是定義在r上的奇函數(shù),則(d)。

a.b.c.d.

2如果偶函數(shù)在區(qū)間上是減函數(shù),且最大值為7,那么在區(qū)間上是(b)。

a.增函數(shù)且最小值為-7b.增函數(shù)且最大值為7。

c.減函數(shù)且最小值為-7d.減函數(shù)且最大值為7。

3函數(shù)是定義在區(qū)間上的偶函數(shù),且,則下列各式一定成立的是(c)。

a.b.c.d.

4已知函數(shù)為奇函數(shù),若,則-1。

5若是偶函數(shù),則的單調(diào)增區(qū)間是。

6下列函數(shù)中不是偶函數(shù)的是(d)。

abcd。

7設(shè)f(x)是r上的偶函數(shù),切在上單調(diào)遞減,則f(-2),f(-),f(3)的大小關(guān)系是(a)。

abf(-)f(-2)f(3)cf(-)。

8奇函數(shù)的圖像必經(jīng)過(guò)點(diǎn)(c)。

a(a,f(-a))b(-a,f(a))c(-a,-f(a))d(a,f())。

9已知函數(shù)為偶函數(shù),其圖像與x軸有四個(gè)交點(diǎn),則方程f(x)=0的所有實(shí)根之和是(a)。

a0b1c2d4。

11若f(x)在上是奇函數(shù),且f(3)_f(-1)。

12、解答題。

已知函數(shù)在區(qū)間d上是奇函數(shù),函數(shù)在區(qū)間d上是偶函數(shù),求證:是奇函數(shù)。

已知分段函數(shù)是奇函數(shù),當(dāng)時(shí)的解析式為,求這個(gè)函數(shù)在區(qū)間上的解析表達(dá)式。

高一數(shù)學(xué)函數(shù)教案篇七

【過(guò)程與方法】。

利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來(lái)解決問(wèn)題。

【情感態(tài)度與價(jià)值觀】。

體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

【重點(diǎn)】。

【難點(diǎn)】。

(一)導(dǎo)入新課。

取一張紙,在其上畫出平面直角坐標(biāo)系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問(wèn)題:

答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對(duì)稱;。

(二)新課教學(xué)。

(1)偶函數(shù)(evenfunction)。

(學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義。

(2)奇函數(shù)(oddfunction)。

注意:

1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);。

2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱)。

2.具有奇偶性的函數(shù)的圖象的特征。

偶函數(shù)的圖象關(guān)于y軸對(duì)稱;。

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱。

3.典型例題。

例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說(shuō)明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)。

解:(略)。

總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:

1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;。

2確定f(-x)與f(x)的關(guān)系;。

3作出相應(yīng)結(jié)論:

若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);。

若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)。

(三)鞏固提高。

1.教材p46習(xí)題1.3b組每1題。

解:(略)。

(教材p41思考題)。

規(guī)律:

偶函數(shù)的圖象關(guān)于y軸對(duì)稱;。

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱。

(四)小結(jié)作業(yè)。

課本p46習(xí)題1.3(a組)第9、10題,b組第2題。

三、規(guī)律:

偶函數(shù)的圖象關(guān)于y軸對(duì)稱;。

奇函數(shù)的`圖象關(guān)于原點(diǎn)對(duì)稱。

高一數(shù)學(xué)函數(shù)教案篇八

一、教學(xué)目標(biāo):

知識(shí)與技能:理解指數(shù)函數(shù)的概念,掌握指數(shù)函數(shù)的圖象和性質(zhì),培養(yǎng)學(xué)生實(shí)際應(yīng)用函數(shù)的能力。

過(guò)程與方法:通過(guò)觀察圖象,分析、歸納、總結(jié)、自主建構(gòu)指數(shù)函數(shù)的性質(zhì)。領(lǐng)會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)、分析、解決問(wèn)題的能力。

情感態(tài)度與價(jià)值觀:在指數(shù)函數(shù)的學(xué)習(xí)過(guò)程中,體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

二、教學(xué)重點(diǎn)、難點(diǎn):

教學(xué)難點(diǎn):對(duì)底數(shù)的分類,如何由圖象、解析式歸納指數(shù)函數(shù)的性質(zhì)。

三、教學(xué)過(guò)程:

(一)創(chuàng)設(shè)情景。

學(xué)生回答:y與x之間的關(guān)系式,可以表示為y=2x。

問(wèn)題2:一種放射性物質(zhì)不斷衰變?yōu)槠渌镔|(zhì),每經(jīng)過(guò)一年剩留的質(zhì)量約是原來(lái)的84%。求出這種物質(zhì)的剩留量隨時(shí)間(單位:年)變化的函數(shù)關(guān)系。設(shè)最初的質(zhì)量為1,時(shí)間變量用x表示,剩留量用y表示。

學(xué)生回答:y與x之間的關(guān)系式,可以表示為y=0.84x。

引導(dǎo)學(xué)生觀察,兩個(gè)函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。

問(wèn)題:指數(shù)函數(shù)定義中,為什么規(guī)定“a?0且a?1”如果不這樣規(guī)定會(huì)出現(xiàn)什么情況?

(1)若a0會(huì)有什么問(wèn)題?

x1則在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在)2(2)若a=0會(huì)有什么問(wèn)題?(對(duì)于x0,a無(wú)意義)。

(3)若a=1又會(huì)怎么樣?(1x無(wú)論x取何值,它總是1,對(duì)它沒(méi)有研究的必要。)。

師:為了避免上述各種情況的發(fā)生,所以規(guī)定a?0且a?1。

1(1)y4x(2)yx4(3)y4x(4)y4(5(于:,n的大小:

設(shè)計(jì)意圖:這是指數(shù)函數(shù)性質(zhì)的簡(jiǎn)單應(yīng)用,使學(xué)生在解題過(guò)程中加深對(duì)指數(shù)函數(shù)的圖像及性質(zhì)的理解和記憶。

(五)課堂小結(jié)。

(六)布置作業(yè)。

高一數(shù)學(xué)函數(shù)教案篇九

教學(xué)目標(biāo):

知識(shí)與技能。

1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。

2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會(huì)求出另一個(gè)量的值。

3、會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問(wèn)題。

過(guò)程與方法。

1、通過(guò)函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。

2、經(jīng)歷具體實(shí)例的抽象概括過(guò)程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。

情感與價(jià)值觀。

1、經(jīng)歷函數(shù)概念的抽象概括過(guò)程,體會(huì)函數(shù)的模型思想。

2、讓學(xué)生主動(dòng)地從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。

教學(xué)重點(diǎn):

1、掌握函數(shù)概念。

2、判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。

3、能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。

教學(xué)難點(diǎn):

1、理解函數(shù)的概念。

2、能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。

教學(xué)過(guò)程設(shè)計(jì):

一、創(chuàng)設(shè)問(wèn)題情境,導(dǎo)入新課。

『師』:同學(xué)們,你們看下圖上面那個(gè)像車輪狀的物體是什么?

高一數(shù)學(xué)函數(shù)教案篇十

難點(diǎn)是對(duì)函數(shù)抽象符號(hào)的認(rèn)識(shí)與使用.

投影儀

自學(xué)研究與啟發(fā)討論式.

一、復(fù)習(xí)與引入

(要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過(guò)的函數(shù)例子)

提問(wèn)1.是函數(shù)嗎?

(由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是函數(shù),理由是沒(méi)有兩個(gè)變量,也有的認(rèn)為是函數(shù),理由是可以可做.)

二、新課

現(xiàn)在請(qǐng)同學(xué)們打開書翻到第50頁(yè),從這開始閱讀有關(guān)的內(nèi)容,再回答我的問(wèn)題.(約2-3分鐘或開始提問(wèn))

提問(wèn)2.新的函數(shù)的定義是什么?能否用最簡(jiǎn)單的語(yǔ)言來(lái)概括一下.

(板書)2.2函數(shù)

一、函數(shù)的概念

問(wèn)題3:映射與函數(shù)有何關(guān)系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)

引導(dǎo)學(xué)生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.

2.本質(zhì):函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書)

然后讓學(xué)生試回答剛才關(guān)于是不是函數(shù)的問(wèn)題,要求從映射的角度解釋.

此時(shí)學(xué)生可以清楚的看到滿足映射觀點(diǎn)下的函數(shù)定義,故是一個(gè)函數(shù),這樣解釋就很自然.

教師繼續(xù)把問(wèn)題引向深入,提出在映射的觀點(diǎn)下如何解釋是個(gè)函數(shù)?

從映射角度看可以是其中定義域是,值域是.

3.函數(shù)的三要素及其作用(板書)

以下關(guān)系式表示函數(shù)嗎?為什么?

(1);(2).

解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).

(2)由有意義得,解得.定義域?yàn)椋涤驗(yàn)椋?/p>

由以上兩題可以看出三要素的作用

(1)判斷一個(gè)函數(shù)關(guān)系是否存在.(板書)

(1);(2) (3);(4).

解:先認(rèn)清,它是(定義域)到(值域)的映射,其中

再看(1)定義域?yàn)榍?,是不同的?2)定義域?yàn)?,是不同的?/p>

(4),法則是不同的;

而(3)定義域是,值域是,法則是乘2減1,與完全相同.

(2)判斷兩個(gè)函數(shù)是否相同.(板書)

4.對(duì)函數(shù)符號(hào)的理解(板書)

已知函數(shù)試求(板書)

分析:首先讓學(xué)生認(rèn)清的含義,要求學(xué)生能從變量觀點(diǎn)和映射觀點(diǎn)解釋,再進(jìn)行計(jì)算.

含義1:當(dāng)自變量取3時(shí),對(duì)應(yīng)的函數(shù)值即;

含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.

計(jì)算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個(gè)特殊值.

三、小結(jié)

1.函數(shù)的定義

2.對(duì)函數(shù)三要素的認(rèn)識(shí)

3.對(duì)函數(shù)符號(hào)的認(rèn)識(shí)

四、作業(yè):略

五、

2.2函數(shù)例1.例3.

一.函數(shù)的概念

1.定義

2.本質(zhì)例2.小結(jié):

3.函數(shù)三要素的認(rèn)識(shí)及作用

4.對(duì)函數(shù)符號(hào)的理解

答案:

高一數(shù)學(xué)函數(shù)教案篇十一

3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系.

利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.

(1). ;(2). ;(3). .

喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問(wèn)題.

由sin300= 出發(fā),用三角的定義引導(dǎo)學(xué)生求出 sin(-300),sin1500值,讓學(xué)生聯(lián)想若已知sin = ,能否求出sin( ),sin( )的值.

1.探究任意角 與 的三角函數(shù)又有什么關(guān)系;

2.探究任意角 與 的三角函數(shù)之間又有什么關(guān)系.

遺忘的規(guī)律是先快后慢,過(guò)程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問(wèn)題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過(guò)程,從特殊到一般,數(shù)形結(jié)合,學(xué)生對(duì)知識(shí)的理解與掌握以深入腦中,此時(shí)以類同問(wèn)題的提出,大膽的放手讓學(xué)生分組討論,重現(xiàn)了探索的整個(gè)過(guò)程,加深了知識(shí)的深刻記憶,對(duì)學(xué)生無(wú)形中鼓舞了氣勢(shì),增強(qiáng)了自信,加大了挑戰(zhàn).而新知識(shí)點(diǎn)的自主探討,對(duì)教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進(jìn)步.

誘導(dǎo)公式(三)、(四)

給出本節(jié)課的課題

三角函數(shù)誘導(dǎo)公式

標(biāo)題的后出,讓學(xué)生在經(jīng)歷整個(gè)探索過(guò)程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來(lái)知識(shí)點(diǎn)已經(jīng)輕松掌握,同時(shí)也是對(duì)本節(jié)課內(nèi)容的小結(jié).

的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個(gè)把 看成銳角時(shí)原函數(shù)值的符合.(即:函數(shù)名不變,符號(hào)看象限.)

設(shè)計(jì)意圖

簡(jiǎn)便記憶公式.

求下列三角函數(shù)的值:(1).sin( ); (2). co.

設(shè)計(jì)意圖

本練習(xí)的設(shè)置重點(diǎn)體現(xiàn)一題多解,讓學(xué)生不僅學(xué)會(huì)靈活運(yùn)用應(yīng)用三角函數(shù)的誘導(dǎo)公式,還能養(yǎng)成靈活處理問(wèn)題的良好習(xí)慣.這里還要給學(xué)生指出課本中的“負(fù)角”化為“正角”是針對(duì)具體負(fù)角而言的.

學(xué)生練習(xí)

化簡(jiǎn): .

設(shè)計(jì)意圖

重點(diǎn)加強(qiáng)對(duì)三角函數(shù)的誘導(dǎo)公式的綜合應(yīng)用.

1.小結(jié)使用誘導(dǎo)公式化簡(jiǎn)任意角的三角函數(shù)為銳角的步驟.

2.體會(huì)數(shù)形結(jié)合、對(duì)稱、化歸的思想.

3.“學(xué)會(huì)”學(xué)習(xí)的習(xí)慣.

1.課本p-27,第1,2,3小題;

2.附加課外題 略.

設(shè)計(jì)意圖

加強(qiáng)學(xué)生對(duì)三角函數(shù)的誘導(dǎo)公式的記憶及靈活應(yīng)用,附加題的設(shè)置有利于有能力的同學(xué)“更上一樓”.

八.課后反思

對(duì)本節(jié)內(nèi)容在進(jìn)行教學(xué)設(shè)計(jì)之前,本人反復(fù)閱讀了課程標(biāo)準(zhǔn)和教材,針對(duì)教材的內(nèi)容,編排了一系列問(wèn)題,讓學(xué)生親歷知識(shí)發(fā)生、發(fā)展的過(guò)程,積極投入到思維活動(dòng)中來(lái),通過(guò)與學(xué)生的互動(dòng)交流,關(guān)注學(xué)生的思維發(fā)展,在逐漸展開中,引導(dǎo)學(xué)生用已學(xué)的知識(shí)、方法予以解決,并獲得知識(shí)體系的更新與拓展,收到了一定的預(yù)期效果,尤其是練習(xí)的處理,讓學(xué)生通過(guò)個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),感受“觀察——?dú)w納——概括——應(yīng)用”等環(huán)節(jié),在知識(shí)的形成、發(fā)展過(guò)程中展開思維,逐步培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、探索問(wèn)題、解決問(wèn)題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識(shí),達(dá)到了設(shè)計(jì)中所預(yù)想的目標(biāo)。

然而還有一些缺憾:對(duì)本節(jié)內(nèi)容,難度不高,本人認(rèn)為,教師的干預(yù)(講解)還是太多。

在以后的教學(xué)中,對(duì)于一些較簡(jiǎn)單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來(lái)設(shè)計(jì)課堂教學(xué),關(guān)注學(xué)生個(gè)性和潛能的發(fā)展,使教學(xué)過(guò)程更加切合《課程標(biāo)準(zhǔn)》的要求。用全新的理論來(lái)武裝自己,讓自己的課堂更有效。

高一數(shù)學(xué)函數(shù)教案篇十二

2.能較熟練地運(yùn)用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問(wèn)題;。

指數(shù)函數(shù)的性質(zhì)的應(yīng)用;。

指數(shù)函數(shù)圖象的平移變換.

1.復(fù)習(xí)指數(shù)函數(shù)的概念、圖象和性質(zhì)。

練習(xí):函數(shù)y=ax(a0且a1)的定義域是_____,值域是______,函數(shù)圖象所過(guò)的定點(diǎn)坐標(biāo)為.若a1,則當(dāng)x0時(shí),y1;而當(dāng)x0時(shí),y1.若00時(shí),y1;而當(dāng)x0時(shí),y1.

例1解不等式:

(1);(2);。

(3);(4).

小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個(gè)指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運(yùn)用,關(guān)鍵是底數(shù)所在的范圍.

例2說(shuō)明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關(guān)系,并畫出它們的示意圖:

(1);(2);(3);(4).

小結(jié):指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移y=f(x+k)(當(dāng)k0時(shí),向左平移,反之向右平移),上下平移y=f(x)+h(當(dāng)h0時(shí),向上平移,反之向下平移).

練習(xí):

(1)將函數(shù)f(x)=3x的圖象向右平移3個(gè)單位,再向下平移2個(gè)單位,可以得到函數(shù)的圖象.

(2)將函數(shù)f(x)=3x的圖象向右平移2個(gè)單位,再向上平移3個(gè)單位,可以得到函數(shù)的圖象.

(3)將函數(shù)圖象先向左平移2個(gè)單位,再向下平移1個(gè)單位所得函數(shù)的解析式是.

(4)對(duì)任意的a0且a1,函數(shù)y=a2x1的圖象恒過(guò)的定點(diǎn)的坐標(biāo)是.函數(shù)y=a2x-1的圖象恒過(guò)的定點(diǎn)的坐標(biāo)是.

小結(jié):指數(shù)函數(shù)的定點(diǎn)往往是解決問(wèn)題的突破口!定點(diǎn)與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡(jiǎn)圖,從而許多問(wèn)題就可以找到解決的突破口.

(5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?

(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x-1|的圖象?

小結(jié):函數(shù)圖象的對(duì)稱變換規(guī)律.

例3已知函數(shù)y=f(x)是定義在r上的奇函數(shù),且x0時(shí),f(x)=1-2x,試畫出此函數(shù)的圖象.

例4求函數(shù)的最小值以及取得最小值時(shí)的x值.

小結(jié):復(fù)合函數(shù)常常需要換元來(lái)求解其最值.

練習(xí):

(1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于;。

(2)函數(shù)y=2x的值域?yàn)?。

(4)當(dāng)x0時(shí),函數(shù)f(x)=(a2-1)x的值總大于1,求實(shí)數(shù)a的取值范圍.

1.指數(shù)函數(shù)的性質(zhì)及應(yīng)用;。

2.指數(shù)型函數(shù)的定點(diǎn)問(wèn)題;。

3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.

課本p55-6,7.

(1)函數(shù)f(x)的定義域?yàn)?0,1),則函數(shù)的定義域?yàn)?

(2)對(duì)于任意的x1,x2r,若函數(shù)f(x)=2x,試比較的大小.

高一數(shù)學(xué)函數(shù)教案篇十三

在函數(shù)教學(xué)中,我們不僅要在教會(huì)函數(shù)知識(shí)上下功夫,而且還應(yīng)該追求解決問(wèn)題的“常規(guī)方法”——基本函數(shù)知識(shí)中所蘊(yùn)含的思想方法,要從數(shù)學(xué)思想方法的高度進(jìn)行函數(shù)教學(xué)。在函數(shù)的教學(xué)中,應(yīng)突出“類比”的思想和“數(shù)形結(jié)合”的思想。

2.注重“數(shù)學(xué)結(jié)合”的教學(xué)。

數(shù)形結(jié)合的思想方法是初中數(shù)學(xué)中一種重要的思想方法。數(shù)學(xué)是研究現(xiàn)實(shí)世界數(shù)量關(guān)系和空間形式的科學(xué)。而數(shù)形結(jié)合就是通過(guò)數(shù)與形之間的對(duì)應(yīng)和轉(zhuǎn)化來(lái)解決數(shù)學(xué)問(wèn)題。它包含以形助數(shù)和以數(shù)解形兩個(gè)方面,利用它可使復(fù)雜問(wèn)題簡(jiǎn)單化,抽象問(wèn)題具體化,它兼有數(shù)的嚴(yán)謹(jǐn)與形的直觀之長(zhǎng)。

(1)讓學(xué)生經(jīng)歷繪制函數(shù)圖象的具體過(guò)程。

(2)切莫急于呈現(xiàn)畫函數(shù)圖象的簡(jiǎn)單畫法。

(3)注意讓學(xué)生體會(huì)研究具體函數(shù)圖象規(guī)律的方法。

目標(biāo)。

1、理解直線y=kx+b與y=kx之間的位置關(guān)系;。

2、會(huì)選擇兩個(gè)合適的點(diǎn)畫出一次函數(shù)的圖象;

3、掌握一次函數(shù)的性質(zhì).

過(guò)程與方法目標(biāo)。

2、通過(guò)一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗(yàn)數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。

2、在探究一次函數(shù)的圖象和性質(zhì)的活動(dòng)中,通過(guò)一系列富有探究性的問(wèn)題,滲透與他人交流、合作的意識(shí)和探究精神。

一次函數(shù)的圖象和性質(zhì)。

由一次函數(shù)的圖像歸納得出一次函數(shù)的性質(zhì)及對(duì)性質(zhì)的理解。

高一數(shù)學(xué)函數(shù)教案篇十四

2.通過(guò)對(duì)抽象符號(hào)的認(rèn)識(shí)與使用,使學(xué)生在符號(hào)表示方面的能力得以提高.。

難點(diǎn):重點(diǎn)是在映射的基礎(chǔ)上理解的概念;

難點(diǎn)是對(duì)抽象符號(hào)的認(rèn)識(shí)與使用.。

投影儀。

自學(xué)研究與啟發(fā)討論式.。

(要求學(xué)生盡量用自己的話描述初中的定義,并試舉出各類學(xué)過(guò)的例子)。

提問(wèn)1.是嗎?

(由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是,理由是沒(méi)有兩個(gè)變量,也有的認(rèn)為是,理由是可以可做.)。

現(xiàn)在請(qǐng)同學(xué)們打開書翻到第50頁(yè),從這開始閱讀有關(guān)的內(nèi)容,再回答我的問(wèn)題.(約2-3分鐘或開始提問(wèn))。

提問(wèn)2.新的的定義是什么?能否用最簡(jiǎn)單的語(yǔ)言來(lái)概括一下.。

(板書)2.2。

一、的概念。

問(wèn)題3:映射與有何關(guān)系?(一定是映射嗎?映射一定是嗎?)。

引導(dǎo)學(xué)生發(fā)現(xiàn),是特殊的映射,特殊在集合a,b必是非空的數(shù)集.。

2.本質(zhì):是非空數(shù)集到非空數(shù)集的映射.(板書)。

然后讓學(xué)生試回答剛才關(guān)于是不是的問(wèn)題,要求從映射的角度解釋.。

此時(shí)學(xué)生可以清楚的看到滿足映射觀點(diǎn)下的定義,故是一個(gè),這樣解釋就很自然.。

教師繼續(xù)把問(wèn)題引向深入,提出在映射的觀點(diǎn)下如何解釋是個(gè)?

從映射角度看可以是其中定義域是,值域是.。

3.的三要素及其作用(板書)。

例1以下關(guān)系式表示嗎?為什么?

(1);(2).。

解:(1)由有意義得,解得.由于定義域是空集,故它不能表示.。

(2)由有意義得,解得.定義域?yàn)椋涤驗(yàn)椋?/p>

由以上兩題可以看出三要素的作用。

(1)判斷一個(gè)關(guān)系是否存在.(板書)。

例2下列各中,哪一個(gè)與是同一個(gè).。

(1);(2)(3);(4).。

解:先認(rèn)清,它是(定義域)到(值域)的映射,其中。

再看(1)定義域?yàn)榍遥遣煌模?2)定義域?yàn)?,是不同的?/p>

(4),法則是不同的;

而(3)定義域是,值域是,法則是乘2減1,與完全相同.。

(2)判斷兩個(gè)是否相同.(板書)。

4.對(duì)符號(hào)的理解(板書)。

例3已知試求(板書)。

分析:首先讓學(xué)生認(rèn)清的含義,要求學(xué)生能從變量觀點(diǎn)和映射觀點(diǎn)解釋,再進(jìn)行計(jì)算.。

含義1:當(dāng)自變量取3時(shí),對(duì)應(yīng)的值即;

含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.。

計(jì)算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個(gè)特殊值.。

1.的定義。

2.對(duì)三要素的認(rèn)識(shí)。

3.對(duì)符號(hào)的認(rèn)識(shí)。

五、

2.2例1.例3.。

一.的概念。

1.定義。

2.本質(zhì)例2.小結(jié):

3.三要素的認(rèn)識(shí)及作用。

4.對(duì)符號(hào)的理解。

探究活動(dòng)。

答案:

高一數(shù)學(xué)函數(shù)教案篇十五

(二)能畫出簡(jiǎn)單函數(shù)的圖象,會(huì)列表、描點(diǎn)、連線;。

(三)能從圖象上由自變量的值求出對(duì)應(yīng)的函數(shù)的近似值。

重點(diǎn):認(rèn)識(shí)函數(shù)圖象的意義,會(huì)對(duì)簡(jiǎn)單的函數(shù)列表、描點(diǎn)、連線畫出函數(shù)圖象。

難點(diǎn):對(duì)已恬圖象能讀圖、識(shí)圖,從圖象解釋函數(shù)變化關(guān)系。

1.什么叫函數(shù)?

2.什么叫平面直角坐標(biāo)系?

3.在坐標(biāo)平面內(nèi),什么叫點(diǎn)的橫坐標(biāo)?什么叫點(diǎn)的.縱坐標(biāo)?

4.如果點(diǎn)a的橫坐標(biāo)為3,縱坐標(biāo)為5,請(qǐng)用記號(hào)表示a(3,5).

5.請(qǐng)?jiān)谧鴺?biāo)平面內(nèi)畫出a點(diǎn)。

6.如果已知一個(gè)點(diǎn)的坐標(biāo),可在坐標(biāo)平面內(nèi)畫出幾個(gè)點(diǎn)?反過(guò)來(lái),如果坐標(biāo)平面內(nèi)的一個(gè)點(diǎn)確定,這個(gè)點(diǎn)的坐標(biāo)有幾個(gè)?這樣的點(diǎn)和坐標(biāo)的對(duì)應(yīng)關(guān)系,叫做什么對(duì)應(yīng)?(答:叫做坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)一一對(duì)應(yīng))。

我們?cè)谇皫坠?jié)課已經(jīng)知道,函數(shù)關(guān)系可以用解析式表示,像y=2x+1就表示以x為自變量時(shí),y是x的函數(shù)。

這個(gè)函數(shù)關(guān)系中,y與x的函數(shù)。

這個(gè)函數(shù)關(guān)系中,y與x的對(duì)應(yīng)關(guān)系,我們還可通知在坐標(biāo)平面內(nèi)畫出圖象的方法來(lái)表示。

高一數(shù)學(xué)函數(shù)教案篇十六

(3)能正確使用“區(qū)間”及相關(guān)符號(hào),能正確求解各類的定義域.。

2.通過(guò)概念的學(xué)習(xí),使學(xué)生在符號(hào)表示,運(yùn)算等方面的能力有所提高.。

(1)對(duì)記號(hào)有正確的理解,準(zhǔn)確把握其含義,了解(為常數(shù))與的區(qū)別與聯(lián)系;

(2)在求定義域中注意運(yùn)算的合理性與簡(jiǎn)潔性.。

3.通過(guò)定義由變量觀點(diǎn)向映射觀點(diǎn)的過(guò)渡,是學(xué)生能從發(fā)展的角度看待數(shù)學(xué)的學(xué)習(xí).。

1.教材分析。

(1)知識(shí)結(jié)構(gòu)。

(2)重點(diǎn)難點(diǎn)分析。

是的定義和符號(hào)的認(rèn)識(shí)與使用.。

2.教法建議。

高一數(shù)學(xué)函數(shù)教案篇十七

1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。

2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會(huì)求出另一個(gè)量的值。

3、會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問(wèn)題。

過(guò)程與方法。

1、通過(guò)函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。

2、經(jīng)歷具體實(shí)例的抽象概括過(guò)程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。

情感與價(jià)值觀。

1、經(jīng)歷函數(shù)概念的抽象概括過(guò)程,體會(huì)函數(shù)的模型思想。

2、讓學(xué)生主動(dòng)地從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。

1、掌握函數(shù)概念。

2、判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。

3、能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。

1、理解函數(shù)的概念。

2、能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。

一、創(chuàng)設(shè)問(wèn)題情境,導(dǎo)入新課。

『師』:同學(xué)們,你們看下圖上面那個(gè)像車輪狀的物體是什么?

高一數(shù)學(xué)函數(shù)教案篇十八

1.掌握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用。

(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對(duì)數(shù)函數(shù)的定義,了解對(duì)底數(shù)的要求,及對(duì)定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對(duì)數(shù)函數(shù)的圖象。

(2)能把握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識(shí)對(duì)數(shù)函數(shù)的性質(zhì),初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)解決簡(jiǎn)單的問(wèn)題。

2.通過(guò)對(duì)數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過(guò)對(duì)數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力。

3.通過(guò)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)在圖象與性質(zhì)上的對(duì)比,對(duì)學(xué)生進(jìn)行對(duì)稱美,簡(jiǎn)潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。

(1)對(duì)數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過(guò)對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解。對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問(wèn)題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ)。

(2)本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì)。難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì)。由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn)。

(3)本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問(wèn)題都應(yīng)圍繞著這條主線展開。而通過(guò)互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn)。

(1)對(duì)數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問(wèn)題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。

(2)在本節(jié)課中結(jié)合對(duì)數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向。這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問(wèn)題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣。

【本文地址:http://mlvmservice.com/zuowen/12134305.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔