2023年高中數(shù)學(xué)的教案 高一數(shù)學(xué)課教案(5篇)

格式:DOC 上傳日期:2023-01-27 06:10:38
2023年高中數(shù)學(xué)的教案 高一數(shù)學(xué)課教案(5篇)
時間:2023-01-27 06:10:38     小編:zdfb

作為一名默默奉獻(xiàn)的教育工作者,通常需要用到教案來輔助教學(xué),借助教案可以讓教學(xué)工作更科學(xué)化。既然教案這么重要,那到底該怎么寫一篇優(yōu)質(zhì)的教案呢?以下是小編收集整理的教案范文,僅供參考,希望能夠幫助到大家。

高中數(shù)學(xué)的教案 高一數(shù)學(xué)課教案篇一

1、知識與技能:理解命題的概念和命題的構(gòu)成,能判斷給定陳述句是否為命題,能判斷命題的真假;能把命題改寫成“若p,則q”的形式;

2、過程與方法:多讓學(xué)生舉命題的例子,培養(yǎng)他們的辨析能力;以及培養(yǎng)他們的分析問題和解決問題的能力;

3、情感、態(tài)度與價值觀:通過學(xué)生的參與,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

重點(diǎn):命題的概念、命題的構(gòu)成

難點(diǎn):分清命題的條件、結(jié)論和判斷命題的真假

引入:初中已學(xué)過命題的知識,請同學(xué)們回顧:什么叫做命題?

下列語句的表述形式有什么特點(diǎn)?你能判斷他們的真假嗎?

(1)若直線a∥b,則直線a與直線b沒有公共點(diǎn).

(2)2+4=7.

(3)垂直于同一條直線的兩個平面平行.

(4)若x2=1,則x=1.

(5)兩個全等三角形的面積相等.

(6)3能被2整除.

討論、判斷:學(xué)生通過討論,總結(jié):所有句子的表述都是陳述句的形式,每句話都判斷什么事情。其中(1)(3)(5)的判斷為真,(2)(4)(6)的判斷為假。

教師的引導(dǎo)分析:所謂判斷,就是肯定一個事物是什么或不是什么,不能含混不清。

1、命題定義:一般地,我們把用語言、符號或式子表達(dá)的,可以判斷真假的陳述句叫做命題.

命題的定義的要點(diǎn):能判斷真假的陳述句.

在數(shù)學(xué)課中,只研究數(shù)學(xué)命題,請學(xué)生舉幾個數(shù)學(xué)命題的例子.教師再與學(xué)生共同從命題的定義,判斷學(xué)生所舉例子是否是命題,從“判斷”的角度來加深對命題這一概念的理解.

例1:判斷下列語句是否為命題?

(1)空集是任何集合的子集.

(2)若整數(shù)a是素數(shù),則是a奇數(shù).

(3)指數(shù)函數(shù)是增函數(shù)嗎?

(4)若平面上兩條直線不相交,則這兩條直線平行.

(5)=-2.

(6)x>15.

讓學(xué)生思考、辨析、討論解決,且通過練習(xí),引導(dǎo)學(xué)生總結(jié):判斷一個語句是不是命題,關(guān)鍵看兩點(diǎn):第一是“陳述句”,第二是“可以判斷真假”,這兩個條件缺一不可.疑問句、祈使句、感嘆句均不是命題.

解略。

引申:以前,同學(xué)們學(xué)習(xí)了很多定理、推論,這些定理、推論是否是命題?同學(xué)們可否舉出一些定理、推論的例子來看看?

通過對此問的思考,學(xué)生將清晰地認(rèn)識到定理、推論都是命題.

過渡:同學(xué)們都知道,一個定理或推論都是由條件和結(jié)論兩部分構(gòu)成(結(jié)合學(xué)生所舉定理和推論的例子,讓學(xué)生分辨定理和推論條件和結(jié)論,明確所有的定理、推論都是由條件和結(jié)論兩部分構(gòu)成)。緊接著提出問題:命題是否也是由條件和結(jié)論兩部分構(gòu)成呢?

2、命題的構(gòu)成――條件和結(jié)論

定義:從構(gòu)成來看,所有的命題都具由條件和結(jié)論兩部分構(gòu)成.在數(shù)學(xué)中,命題常寫成“若p,則q”或者“如果p,那么q”這種形式,通常,我們把這種形式的命題中的p叫做命題的條件,q叫做命題結(jié)論.

例2:指出下列命題中的條件p和結(jié)論q,并判斷各命題的真假.

(1)若整數(shù)a能被2整除,則a是偶數(shù).

(2)若四邊行是菱形,則它的對角線互相垂直平分.

(3)若a>0,b>0,則a+b>0.

(4)若a>0,b>0,則a+b<0.

(5)垂直于同一條直線的兩個平面平行.

此題中的(1)(2)(3)(4),較容易,估計學(xué)生較容易找出命題中的條件p和結(jié)論q,并能判斷命題的真假。其中設(shè)置命題(3)與(4)的目的在于:通過這兩個例子的比較,學(xué)更深刻地理解命題的定義——能判斷真假的陳述句,不管判斷的結(jié)果是對的還是錯的。

此例中的命題(5),不是“若p,則q”的形式,估計學(xué)生會有困難,此時,教師引導(dǎo)學(xué)生一起分析:已知的事項為“條件”,由已知推出的事項為“結(jié)論”.

解略。

過渡:從例2中,我們可以看到命題的兩種情況,即有些命題的結(jié)論是正確的,而有些命題的結(jié)論是錯誤的,那么我們就有了對命題的一種分類:真命題和假命題.

3、命題的分類

真命題:如果由命題的條件p通過推理一定可以得出命題的結(jié)論q,那么這樣的命題叫做真命題.

假命題:如果由命題的條件p通過推理不一定可以得出命題的結(jié)論q,那么這樣的命題叫做假命題.

強(qiáng)調(diào):

(1)注意命題與假命題的區(qū)別.如:“作直線ab”.這本身不是命題.也更不是假命題.

(2)命題是一個判斷,判斷的結(jié)果就有對錯之分.因此就要引入真命題、假命題的的概念,強(qiáng)調(diào)真假命題的大前提,首先是命題。

判斷一個數(shù)學(xué)命題的真假方法:

(1)數(shù)學(xué)中判定一個命題是真命題,要經(jīng)過證明.

(2)要判斷一個命題是假命題,只需舉一個反例即可.

例3:把下列命題寫成“若p,則q”的形式,并判斷是真命題還是假命題:

(1)面積相等的兩個三角形全等。

(2)負(fù)數(shù)的立方是負(fù)數(shù)。

(3)對頂角相等。

分析:要把一個命題寫成“若p,則q”的形式,關(guān)鍵是要分清命題的條件和結(jié)論,然后寫成“若條件,則結(jié)論”即“若p,則q”的形式.解略。

p4第2,3。

p8:習(xí)題1.1a組~第1題

師生共同回憶本節(jié)的學(xué)習(xí)內(nèi)容.

1、什么叫命題?真命題?假命題?

2、命題是由哪兩部分構(gòu)成的`?

3、怎樣將命題寫成“若p,則q”的形式.

4、如何判斷真假命題.

高中數(shù)學(xué)的教案 高一數(shù)學(xué)課教案篇二

本節(jié)課是在學(xué)生已學(xué)知識的基礎(chǔ)上進(jìn)行展開學(xué)習(xí)的,也是對以前所學(xué)知識的鞏固和發(fā)展,但對學(xué)生的知識準(zhǔn)備情況來看,學(xué)生對相關(guān)基礎(chǔ)知識掌握情況是很好,所以在復(fù)習(xí)時要及時對學(xué)生相關(guān)知識進(jìn)行提問,然后開展對本節(jié)課的鞏固性復(fù)習(xí)。而本節(jié)課學(xué)生會遇到的困難有:數(shù)軸、坐標(biāo)的表示;平面向量的坐標(biāo)表示;平面向量的坐標(biāo)運(yùn)算。

1、會用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運(yùn)算。

2、理解用坐標(biāo)表示的平面向量共線的條件。

3、掌握數(shù)量積的坐標(biāo)表達(dá)式,會進(jìn)行平面向量數(shù)量積的運(yùn)算。

4、能用坐標(biāo)表示兩個向量的夾角,理解用坐標(biāo)表示的平面向量垂直的條件。

(一)知識梳理:

1、向量坐標(biāo)的求法

(1)若向量的起點(diǎn)是坐標(biāo)原點(diǎn),則終點(diǎn)坐標(biāo)即為向量的坐標(biāo)。

(2)設(shè)a(x1,y1),b(x2,y2),則

=xxxxxxxxxxxxxxxx_

||=xxxxxxxxxxxxxx_

(二)平面向量坐標(biāo)運(yùn)算

1、向量加法、減法、數(shù)乘向量

設(shè)=(x1,y1),=(x2,y2),則

+=-=λ=。

2、向量平行的坐標(biāo)表示

設(shè)=(x1,y1),=(x2,y2),則∥?xxxxxxxxxxxxxxxx.

(三)核心考點(diǎn)·習(xí)題演練

考點(diǎn)1.平面向量的坐標(biāo)運(yùn)算

例1.已知a(-2,4),b(3,-1),c(-3,-4)。設(shè)(1)求3+-3;

(2)求滿足=m+n的實(shí)數(shù)m,n;

練:(20xx江蘇,6)已知向量=(2,1),=(1,-2),若m+n=(9,-8)

(m,n∈r),則m-n的值為

考點(diǎn)2平面向量共線的坐標(biāo)表示

例2:平面內(nèi)給定三個向量=(3,2),=(-1,2),=(4,1)

若(+k)∥(2-),求實(shí)數(shù)k的值;

練:(20xx,四川,4)已知向量=(1,2),=(1,0),=(3,4)。若λ為實(shí)數(shù),(+λ)∥,則λ=()

思考:向量共線有哪幾種表示形式?兩向量共線的充要條件有哪些作用?

方法總結(jié):

1、向量共線的兩種表示形式

設(shè)a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪種形式,應(yīng)視題目的具體條件而定,一般情況涉及坐標(biāo)的應(yīng)用②。

2、兩向量共線的充要條件的作用

判斷兩向量是否共線(平行的問題;另外,利用兩向量共線的充要條件可以列出方程(組),求出未知數(shù)的值。

考點(diǎn)3平面向量數(shù)量積的坐標(biāo)運(yùn)算

例3“已知正方形abcd的邊長為1,點(diǎn)e是ab邊上的動點(diǎn),

則的值為;的值為。

【提示】,可建立直角坐標(biāo)系利用向量的數(shù)量積的坐標(biāo)表示來運(yùn)算,這樣可以使數(shù)量積的運(yùn)算變得簡捷。

練:(20xx,安徽,13)設(shè)=(1,2),=(1,1),=+k.若⊥,則實(shí)數(shù)k的值等于()

【思考】兩非零向量⊥的充要條件:·=0?。

解題心得:

(1)當(dāng)已知向量的坐標(biāo)時,可利用坐標(biāo)法求解,即若a=(x1,y1),b=(x2,y2),則a·b=x1x2+y1y2.

(2)解決涉及幾何圖形的向量數(shù)量積運(yùn)算問題時,可建立直角坐標(biāo)系利用向量的數(shù)量積的坐標(biāo)表示來運(yùn)算,這樣可以使數(shù)量積的運(yùn)算變得簡捷。

(3)兩非零向量a⊥b的充要條件:a·b=0?x1x2+y1y2=0.

考點(diǎn)4:平面向量模的坐標(biāo)表示

例4:(20xx湖南,理8)已知點(diǎn)a,b,c在圓x2+y2=1上運(yùn)動,且ab⊥bc,若點(diǎn)p的坐標(biāo)為(2,0),則的值為()

a.6b.7c.8d.9

練:(20xx,上海,12)

在平面直角坐標(biāo)系中,已知a(1,0),b(0,-1),p是曲線上一個動點(diǎn),則的取值范圍是?

解題心得:

求向量的模的方法:

(1)公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的運(yùn)算轉(zhuǎn)化為數(shù)量積運(yùn)算;

(2)幾何法,利用向量加減法的平行四邊形法則或三角形法則作出向量,再利用余弦定理等方法求解。.

五、課后作業(yè)(課后習(xí)題1、2題)

高中數(shù)學(xué)的教案 高一數(shù)學(xué)課教案篇三

1、預(yù)習(xí)教材,問題導(dǎo)入

根據(jù)以下提綱,預(yù)習(xí)教材p54~p57,回答下列問題。

(1)在教材p55的“探究”中,怎樣獲得樣本?

提示:將這批小包裝餅干放入一個不透明的袋子中,攪拌均勻,然后不放回地摸取。

(2)最常用的簡單隨機(jī)抽樣方法有哪些?

提示:抽簽法和隨機(jī)數(shù)法。

(3)你認(rèn)為抽簽法有什么優(yōu)點(diǎn)和缺點(diǎn)?

提示:抽簽法的優(yōu)點(diǎn)是簡單易行,當(dāng)總體中個體數(shù)不多時較為方便,缺點(diǎn)是當(dāng)總體中個體數(shù)較多時不宜采用。

(4)用隨機(jī)數(shù)法讀數(shù)時可沿哪個方向讀???

提示:可以沿向左、向右、向上、向下等方向讀數(shù)。

2、歸納總結(jié),核心必記

(1)簡單隨機(jī)抽樣:一般地,設(shè)一個總體含有n個個體,從中逐個不放回地抽取n個個體作為樣本(n≤n),如果每次抽取時總體內(nèi)的各個個體被抽到的機(jī)會都相等,就把這種抽樣方法叫做簡單隨機(jī)抽樣。

(2)最常用的簡單隨機(jī)抽樣方法有兩種——抽簽法和隨機(jī)數(shù)法。

(3)一般地,抽簽法就是把總體中的n個個體分段,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本。

(4)隨機(jī)數(shù)法就是利用隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或計算機(jī)產(chǎn)生的隨機(jī)數(shù)進(jìn)行抽樣。

(5)簡單隨機(jī)抽樣有操作簡便易行的優(yōu)點(diǎn),在總體個數(shù)不多的情況下是行之有效的。

[問題思考]

(1)在簡單隨機(jī)抽樣中,某一個個體被抽到的可能性與第幾次被抽到有關(guān)嗎?

提示:在簡單隨機(jī)抽樣中,總體中的每個個體在每次抽取時被抽到的可能性相同,與第幾次被抽到無關(guān)。

(2)抽簽法與隨機(jī)數(shù)法有什么異同點(diǎn)?

提示:

相同點(diǎn)

①都屬于簡單隨機(jī)抽樣,并且要求被抽取樣本的總體的個體數(shù)有限;

②都是從總體中逐個不放回地進(jìn)行抽取

不同點(diǎn)

①抽簽法比隨機(jī)數(shù)法操作簡單;

②隨機(jī)數(shù)法更適用于總體中個體數(shù)較多的時候,而抽簽法適用于總體中個體數(shù)較少的情況,所以當(dāng)總體中的個體數(shù)較多時,應(yīng)當(dāng)選用隨機(jī)數(shù)法,可以節(jié)約大量的人力和制作號簽的成本

高中數(shù)學(xué)的教案 高一數(shù)學(xué)課教案篇四

1、知識與技能

(1)理解流程圖的順序結(jié)構(gòu)和選擇結(jié)構(gòu)。

(2)能用文字語言表示算法,并能將算法用順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡單的流程圖

2、過程與方法

學(xué)生通過模仿、操作、探索、經(jīng)歷設(shè)計流程圖表達(dá)解決問題的過程,理解流程圖的結(jié)構(gòu)。

3情感、態(tài)度與價值觀

學(xué)生通過動手作圖,。用自然語言表示算法,用圖表示算法。進(jìn)一步體會算法的基本思想程序化思想,在歸納概括中培養(yǎng)學(xué)生的邏輯思維能力。

重點(diǎn):算法的順序結(jié)構(gòu)與選擇結(jié)構(gòu)。

難點(diǎn):用含有選擇結(jié)構(gòu)的流程圖表示算法。

學(xué)法:學(xué)生通過動手作圖,。用自然語言表示算法,用圖表示算法,體會到用流程圖表示算法,簡潔、清晰、直觀、便于檢查,經(jīng)歷設(shè)計流程圖表達(dá)解決問題的過程。進(jìn)而學(xué)習(xí)順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡單的流程圖。

教學(xué)用具:尺規(guī)作圖工具,多媒體。

(一)、問題引入 揭示課題

例1 尺規(guī)作圖,確定線段的一個5等分點(diǎn)。

要求:同桌一人作圖,一人寫算法,并請學(xué)生說出答案。

提問:用文字語言寫出算法有何感受?

引導(dǎo)學(xué)生體驗到:顯得冗長,不方便、不簡潔。

教師說明:為了使算法的表述簡潔、清晰、直觀、便于檢查,我們今天學(xué)習(xí)用一些通用圖型符號構(gòu)成一張圖即流程圖表示算法。

本節(jié)要學(xué)習(xí)的是順序結(jié)構(gòu)與選擇結(jié)構(gòu)。

右圖即是同流程圖表示的算法。

(二)、觀察類比 理解課題

1、 投影介紹流程圖的符號、名稱及功能說明。

符號 符號名稱 功能說明終端框 算法開始與結(jié)束處理框 算法的各種處理操作判斷框 算法的各種轉(zhuǎn)移

輸入輸出框 輸入輸出操作指向線 指向另一操作

2、講授順序結(jié)構(gòu)及選擇結(jié)構(gòu)的概念及流程圖

(1)順序結(jié)構(gòu)

依照步驟依次執(zhí)行的一個算法

流程圖:

(2)選擇結(jié)構(gòu)

對條件進(jìn)行判斷來決定后面的步驟的結(jié)構(gòu)

流程圖:

3、用自然語言表示算法與用流程圖表示算法的比較

(1)半徑為r的圓的面積公式 當(dāng)r=10時寫出計算圓的面積的算法,并畫出流程圖。

解:

算法(自然語言)

①把10賦與r

②用公式 求s

③輸出s

流程圖

(2) 已知函數(shù) 對于每輸入一個x值都得到相應(yīng)的函數(shù)值,寫出算法并畫流程圖。

算法:(語言表示)

① 輸入x值

②判斷x的范圍,若 ,用函數(shù)y=x+1求函數(shù)值;否則用y=2-x求函數(shù)值

③輸出y的值

流程圖

小結(jié):含有數(shù)學(xué)中需要分類討論的或與分段函數(shù)有關(guān)的問題,均要用到選擇結(jié)構(gòu)。

學(xué)生觀察、類比、說出流程圖與自然語言對比有何特點(diǎn)?(直觀、清楚、便于檢查和交流)

(三)模仿操作 經(jīng)歷課題

1、用流程圖表示確定線段a.b的一個16等分點(diǎn)

2、分析講解例2;

分析:

思考:有多少個選擇結(jié)構(gòu)?相應(yīng)的流程圖應(yīng)如何表示?

流程圖:

(四)歸納小結(jié) 鞏固課題

1、順序結(jié)構(gòu)和選擇結(jié)構(gòu)的模式是怎樣的?

2、怎樣用流程圖表示算法。

(五)練習(xí)p99 2

(六)作業(yè)p99 1

高中數(shù)學(xué)的教案 高一數(shù)學(xué)課教案篇五

教學(xué)目標(biāo)

1、掌握平面向量的數(shù)量積及其幾何意義;

2、掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;

3、了解用平面向量的數(shù)量積可以處理有關(guān)長度、角度和垂直的問題;

4、掌握向量垂直的條件。

教學(xué)重難點(diǎn)

教學(xué)重點(diǎn):平面向量的數(shù)量積定義

教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用

教學(xué)工具

投影儀

教學(xué)過程

復(fù)習(xí)引入:

向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實(shí)數(shù)λ,使=λ

課堂小結(jié)

(1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?

(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?

課后作業(yè)

p107習(xí)題2.4a組2、7題

課后小結(jié)

(1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?

(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?

【本文地址:http://mlvmservice.com/zuowen/1188028.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔