在學(xué)習(xí)中總結(jié)經(jīng)驗和教訓(xùn),可以提高學(xué)習(xí)效果,增加知識的積累。培養(yǎng)良好的閱讀習(xí)慣,拓展自己的知識面和視野。總結(jié)范文中的思路和結(jié)構(gòu)可以作為我們寫作的參考和借鑒。
高中數(shù)學(xué)奇偶性說課稿篇一
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出要讓學(xué)生感受生活中處處有數(shù)學(xué),用數(shù)學(xué)知識解決生活中的實際問題。
基于這一理念,我在教學(xué)過程中力求聯(lián)系學(xué)生生活實際和已有的知識經(jīng)驗,從學(xué)生感興趣的素材,設(shè)計新穎的導(dǎo)入與例題教學(xué),給數(shù)學(xué)課富予新的生命力。課堂中力求構(gòu)建一種自主探究、和諧合作的教學(xué)氛圍,讓學(xué)生經(jīng)歷知識的探究過程,培養(yǎng)學(xué)生感受生活中的數(shù)學(xué)和用數(shù)學(xué)知識解決生活問題的能力,體驗數(shù)學(xué)的應(yīng)用價值。
(一)教材的地位和作用。
有關(guān)統(tǒng)計圖的認(rèn)識,小學(xué)階段主要認(rèn)識條形統(tǒng)計圖、折線統(tǒng)計圖和扇形統(tǒng)計圖??紤]到扇形統(tǒng)計圖在日常生活中的廣泛應(yīng)用,《標(biāo)準(zhǔn)》把它作為必學(xué)內(nèi)容安排在本單元。本單元是在前面學(xué)習(xí)了條形統(tǒng)計圖和折線統(tǒng)計圖的特點(diǎn)和作用的基礎(chǔ)上進(jìn)行教學(xué)的。主要通過熟悉的事例使學(xué)生體會到扇形統(tǒng)計圖的實用價值。
(二)教學(xué)目標(biāo)。
1、聯(lián)系生活情境了解扇形統(tǒng)計圖的特點(diǎn)和作用。
2、能讀懂扇形統(tǒng)計圖,從中獲取有效的信息。
3、讓學(xué)生在觀察、比較、討論和交流中體會扇形統(tǒng)計圖反映的是整體和部分的關(guān)系。
(三)教學(xué)重點(diǎn):
1、能讀懂扇形統(tǒng)計圖,理解扇形統(tǒng)計圖的特點(diǎn)和作用,并能從中獲取有效信息。
2、認(rèn)識折線統(tǒng)計圖,了解折線統(tǒng)計圖的特點(diǎn)。
(四)教學(xué)難點(diǎn):
1、能從扇形統(tǒng)計圖中獲得有用信息,并做出合理推斷。
2、能根據(jù)統(tǒng)計圖和數(shù)據(jù)進(jìn)行數(shù)據(jù)變化趨勢的分析。
本單元的教學(xué)是在學(xué)生已有統(tǒng)計經(jīng)驗的基礎(chǔ)上,學(xué)習(xí)新知的。六年級的學(xué)生已經(jīng)學(xué)習(xí)了條形統(tǒng)計圖和折線統(tǒng)計圖,知道他們的特點(diǎn),并具有一定的概括、分析能力,在此基礎(chǔ)上,通過新舊知識對比,自然生成新知識點(diǎn)。
1、本堂課力爭做到由“關(guān)注知識”轉(zhuǎn)向“關(guān)注學(xué)生”,由“傳授知識”轉(zhuǎn)向“引導(dǎo)探索”,“教師是組織者、領(lǐng)導(dǎo)者?!睂⒄n堂設(shè)置問題給學(xué)生,讓學(xué)生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構(gòu)建。
2、運(yùn)用探究法。探究學(xué)習(xí)的內(nèi)容以問題的形式出現(xiàn)在教師的引導(dǎo)下,學(xué)生自主探究,讓學(xué)生在課堂上多活動、多思考,自主構(gòu)建知識體系。引導(dǎo)學(xué)生獲取信息并合作交流。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出有效的數(shù)學(xué)學(xué)習(xí)不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。教學(xué)時,我通過學(xué)生感興趣的話題引入,引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),使學(xué)生體會到觀察、概括、想象、遷移等數(shù)學(xué)學(xué)習(xí)方法,在師生互動中讓每個學(xué)生都動口,動手,動腦。培養(yǎng)學(xué)生學(xué)習(xí)的主動性和積極性。
本課分成創(chuàng)設(shè)情境,感知特點(diǎn)——分析數(shù)據(jù),理解特征——嘗試制圖,看圖分析——實踐應(yīng)用,全課總結(jié)四環(huán)節(jié)。
(一)復(fù)習(xí)引新。
1、復(fù)習(xí)舊知。
提問:我們學(xué)習(xí)過哪些統(tǒng)計方法?其中條形統(tǒng)計圖和折線統(tǒng)計圖各有什么特點(diǎn)?
2、引入新課。
(二)自主探索,學(xué)習(xí)新知。
新知識教學(xué)分二步教學(xué):第一步整體感知,看懂統(tǒng)計圖,理解特征,這是本節(jié)課的重點(diǎn)。在教學(xué)中,以知識遷移的方式建立新舊知識之間的聯(lián)系,放手讓學(xué)生獨(dú)立思考,互相合作,進(jìn)一步了解統(tǒng)計圖的特征。
三、課堂總結(jié)。
四、布置作業(yè)。
五、板書設(shè)計:
高中數(shù)學(xué)奇偶性說課稿篇二
二面角及其平面角的概念是立體幾何最重要的概念之一。二面角的概念發(fā)展、完善了空間角的概念;而二面角的平面角不但定量描述了兩相交平面的相對位置,同時它也是空間中線線、線面、面面垂直關(guān)系的一個匯集點(diǎn)。搞好本節(jié)課的學(xué)習(xí),對學(xué)生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。教學(xué)大綱明確要求要讓學(xué)生掌握二面角及其平面角的概念和運(yùn)用。
2、教學(xué)目標(biāo)。
根據(jù)上面對教材的分析,并結(jié)合學(xué)生的認(rèn)知水平和思維特點(diǎn),確定本節(jié)課的教學(xué)目標(biāo):
認(rèn)知目標(biāo):
(1)使學(xué)生正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實際問題。
(2)進(jìn)一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。
能力目標(biāo):以培養(yǎng)學(xué)生的創(chuàng)新能力和動手能力為重點(diǎn)。
(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。
(2)通過對圖形的觀察、分析、比較和操作來強(qiáng)化學(xué)生的動手操作能力。
教育目標(biāo):
(1)使學(xué)生認(rèn)識到數(shù)學(xué)知識來自實踐,并服務(wù)于實踐,從而增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識。
(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。
3、本節(jié)課教學(xué)的重、難點(diǎn)是兩個過程的教學(xué):
(1)二面角的平面角概念的形成過程。
(2)尋找二面角的平面角的方法的發(fā)現(xiàn)過程。
其理由如下:
(1)現(xiàn)行教材省略了概念的形成過程和方法的發(fā)現(xiàn)過程,沒有反映出科學(xué)認(rèn)識產(chǎn)生的辯證過程,與學(xué)生的認(rèn)知規(guī)律相悖,給學(xué)生的學(xué)習(xí)造成了很大的困難,非常不利于學(xué)生創(chuàng)新能力、獨(dú)立思考能力以及動手能力的培養(yǎng)。
(2)現(xiàn)代認(rèn)知學(xué)認(rèn)為,揭示知識的形成過程,對學(xué)生學(xué)習(xí)新知識是十分必要的。同時通過展現(xiàn)知識的發(fā)生、發(fā)展過程,給學(xué)生思考、探索、發(fā)現(xiàn)和創(chuàng)新提供了最大的空間,可以使學(xué)生在整個教學(xué)過程中始終處于積極的`思維狀態(tài),進(jìn)而培養(yǎng)他們獨(dú)立思考和大膽求索的精神,這樣才能全面落實本節(jié)課的教學(xué)目標(biāo)。
在設(shè)計本教學(xué)時,主要貫徹了以下兩個思想:
1、樹立以學(xué)生發(fā)展為本的思想。通過構(gòu)建以學(xué)習(xí)者為中心、有利于學(xué)生主體精神、創(chuàng)新能力健康發(fā)展的寬松的教學(xué)環(huán)境,提供學(xué)生自主探索和動手操作的機(jī)會,鼓勵他們創(chuàng)新思考,親身參與概念和方法的形成過程。2、堅持協(xié)同創(chuàng)新原則。把教材創(chuàng)新、教法創(chuàng)新以及學(xué)法創(chuàng)新有機(jī)地統(tǒng)一起來,因為只有教師創(chuàng)新地教,學(xué)生創(chuàng)新地學(xué),才能營建一個有利于創(chuàng)新能力培養(yǎng)的良好環(huán)境。
首先是教材創(chuàng)新。
(1)在二面角的平面角概念引入上,我變課本上的“直接給出定義”為“類比——猜想——操作——定義”,也就是變封閉的、邏輯演繹體系為開放的、探索性的發(fā)現(xiàn)過程。
(2)在引入定義之后,例題講解之前,引導(dǎo)學(xué)生發(fā)現(xiàn)尋找二面角的平面角的方法,為例題做好鋪墊。
(3)重新編排例題。
其次是教法創(chuàng)新。采用多種創(chuàng)新的教學(xué)方法,包括問題解決法、類比發(fā)現(xiàn)法、研究發(fā)現(xiàn)法等教學(xué)方法。
這組教學(xué)方法的特點(diǎn)是教師通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生逐步發(fā)現(xiàn)知識的形成過程,使教學(xué)活動真正建立在學(xué)生自主活動和探索的基礎(chǔ)上,著力培養(yǎng)學(xué)生的創(chuàng)新能力。
這組教學(xué)方法使得學(xué)生在解決問題的過程中學(xué)數(shù)學(xué),用數(shù)學(xué),不僅強(qiáng)調(diào)動腦思考,而且強(qiáng)調(diào)動手操作,親身體驗,注重多感官參與、多種心理能力的投入,通過學(xué)生全面、多樣的主體實踐活動,促進(jìn)他們獨(dú)立思考能力、動手能力等多方面素質(zhì)的整體發(fā)展。
教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用《幾何畫板》制作課件來輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),教師可預(yù)先做好一些模型。
最后是學(xué)法創(chuàng)新。意在指導(dǎo)學(xué)生會創(chuàng)新地學(xué)。
1、樂學(xué):在整個學(xué)習(xí)過程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識,全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。
2、學(xué)會:在掌握基礎(chǔ)知識的同時,學(xué)生要注意領(lǐng)會化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會建立完善的認(rèn)知結(jié)構(gòu)。
3、會學(xué):通過自已親身參與,學(xué)生要領(lǐng)會復(fù)習(xí)類比和深入研究這兩種知識創(chuàng)新的方法,從而既學(xué)到知識,又學(xué)會創(chuàng)新。
(一)、二面角。
1、揭示概念產(chǎn)生背景。
心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時,就會對概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。
問題情境1、我們是如何定量研究兩平行平面的相對位置的?
問題情境3、我們應(yīng)如何定量研究兩個相交平面之間的相對位置呢?
通過這三個問題,打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識的創(chuàng)新做好了準(zhǔn)備;同時也讓學(xué)生領(lǐng)會到,二面角這一概念的產(chǎn)生是因為研究兩相交平面的相對位置的需要,從而明確新課題研究的必要性,觸發(fā)學(xué)生積極思維活動的展開。
2、展現(xiàn)概念形成過程。
高中數(shù)學(xué)奇偶性說課稿篇三
各位老師:
大家好!我叫周婷婷,來自湖南科技大學(xué)。我說課的題目是《算法的概念》,內(nèi)容選自于新課程人教a版必修3第一章第一節(jié),課時安排為兩個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法分析、學(xué)情分析、教學(xué)過程分析等五大方面來闡述我對這節(jié)課的分析和設(shè)計:
1.教材所處的地位和作用
現(xiàn)代社會是一個信息技術(shù)發(fā)展很快的社會,算法進(jìn)入高中數(shù)學(xué)正是反映了時代的需要,它是當(dāng)今社會必備的基礎(chǔ)知識,算法的學(xué)習(xí)是使用計算機(jī)處理問題前的一個必要的步驟,它可以讓學(xué)生們知道如何利用現(xiàn)代技術(shù)解決問題。又由于算法的具體實現(xiàn)上可以和信息技術(shù)相結(jié)合。因此,算法的學(xué)習(xí)十分有利于提高學(xué)生的邏輯思維能力,培養(yǎng)學(xué)生的理性精神和實踐能力。
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):初步理解算法的定義,體會算法思想,能夠用自然語言描述算法難點(diǎn):把自然語言轉(zhuǎn)化為算法語言。
1.知識目標(biāo):了解算法的含義,體會算法的思想;能夠用自然語言描述解決具體問題的算法;理解正確的算法應(yīng)滿足的要求。
2.能力目標(biāo):讓學(xué)生感悟人們認(rèn)識事物的一般規(guī)律:由具體到抽象,再有抽象到具體,培養(yǎng)學(xué)生的觀察能力,表達(dá)能力和邏輯思維能力。
3.情感目標(biāo):對計算機(jī)的算法語言有一個基本的了解,明確算法的要求,認(rèn)識到計算機(jī)是人類征服自然的一有力工具,進(jìn)一步提高探索、認(rèn)識世界的能力。
采用"問題探究式"教學(xué)法,以多媒體為輔助手段,讓學(xué)生主動發(fā)現(xiàn)問題、分析問題、解決問題,培養(yǎng)學(xué)生的探究論證、邏輯思維能力。
算法這部分的使用性很強(qiáng),與日常生活聯(lián)系緊密,雖然是新引入的章節(jié),但很容易激發(fā)學(xué)生的學(xué)習(xí)興趣。在教師的引導(dǎo)下,通過多媒體輔助教學(xué),學(xué)生比較容易掌握本節(jié)課的內(nèi)容。
1.創(chuàng)設(shè)情景:我首先向?qū)W生們展示章頭圖,介紹圖中的后景是取自宋朝數(shù)學(xué)家朱世杰的數(shù)學(xué)作品《四元玉鑒》,告訴學(xué)生們章頭圖正是體現(xiàn)了中國古代數(shù)學(xué)與現(xiàn)代計算機(jī)科學(xué)的聯(lián)系,它們的基礎(chǔ)都是"算法".
「設(shè)計意圖」是為了充分挖掘章頭圖的教學(xué)價值,體現(xiàn)
1)算法概念的由來;
2)我們將要學(xué)習(xí)的算法與計算機(jī)有關(guān);
3)展示中國古代數(shù)學(xué)的成就;
4)激發(fā)學(xué)生學(xué)習(xí)算法的興趣。從而順其自然的過渡到本節(jié)課要討論的話題。(約4分鐘)
2.引入新課:在這一環(huán)節(jié)我首先和學(xué)生們一起回顧如何解二元一次方程組,并引導(dǎo)他們歸納二元一次方程組的求解步驟,從而讓學(xué)生經(jīng)歷算法分析的基本過程,培養(yǎng)思維的條理性,引導(dǎo)學(xué)生關(guān)注更具一般性解法,形成解法向算法過渡的準(zhǔn)備,為建立算法概念打下基礎(chǔ)。緊接著在此基礎(chǔ)上進(jìn)一步復(fù)習(xí)回顧解一般的二元一次方程組的步驟,引導(dǎo)學(xué)生分析解題過程的結(jié)構(gòu),寫出求一般的二元一次方程組的解的算法,并把它編成程序,讓學(xué)生輸入數(shù)據(jù),體驗計算機(jī)直接給出方程組的解。目的是讓學(xué)生明白算法是用來解決某一類問題的,從而提高學(xué)生對算法的普遍適用性的認(rèn)識,為建立算法的概念做好鋪墊。
之后,我就向?qū)W生們提出問題:到底什么是算法?如何用語言來表達(dá)算法的涵義?這里讓學(xué)生們根據(jù)剛剛的探索交流、思考并回答,然后老師進(jìn)行歸納,得出算法的基本概念,并幫助學(xué)生認(rèn)識算法的概念,指出有窮性,確定性,可行性。這樣可以讓學(xué)生們真正參與到算法概念的形成過程中來,體會算法思想。(約8分鐘)
3.例題講解:在這一環(huán)節(jié)我安排了兩道例題,以幫助學(xué)生們能更好地理解算法的基本概念,并應(yīng)用到實際解決問題中去,而不只是單純的對數(shù)學(xué)思想的領(lǐng)悟。
這兩道例題均選自課本的例1和例2.
例1是讓我們設(shè)定一個程序以判斷一個數(shù)是否為質(zhì)數(shù)。質(zhì)數(shù)是我們之前已經(jīng)學(xué)習(xí)的內(nèi)容,為了能更順利地完成解題過程,這里有必要引導(dǎo)學(xué)生們回顧一下質(zhì)數(shù)應(yīng)滿足的條件,然后再根據(jù)這個來探索解題步驟。通過例1讓學(xué)生認(rèn)識到求解結(jié)構(gòu)中存在"重復(fù)".為導(dǎo)出一般問題的算法創(chuàng)造條件,也為學(xué)習(xí)算法的自然語言表示提供前提。告訴學(xué)生們本算法就是用自然語言的形式描述的。并且設(shè)計算法一定要做到以下要求:
(1)寫出的算法必須能解決一類問題,并且能夠重復(fù)使用。
(2)要使算法盡量簡單、步驟盡量少。
(3)要保證算法正確,且計算機(jī)能夠執(zhí)行。
在例1的基礎(chǔ)上我們繼續(xù)研究例2,例2是要求我們設(shè)計一個利用二分法來求解方程的近似根的程序。我們首先要對算法作分析,回顧用二分法求解方程近似根的過程,然后設(shè)計出解題步驟。二分法是算法中的經(jīng)典問題,具有明顯的順序和可操作的特點(diǎn)。因此通過例2可以讓學(xué)生進(jìn)一步了解算法的邏輯結(jié)構(gòu),領(lǐng)會算法的思想,體會算法的的特征。同時也可以鞏固用自然語言描述算法,提高用自然語言描述算法的表達(dá)水平。另外,借助例題加強(qiáng)學(xué)生對算法概念的理解,體會算法具有程序性、有限性、構(gòu)造性、精確性、指向性的特點(diǎn),算法以問題為載體,泛泛而談沒有意義。(約20分鐘)
4.課堂小結(jié):
(1)算法的概念和算法的基本特征
(2)算法的描述方法,算法可以用自然語言描述。
(3)能利用算法的思想和方法解決實際問題,并能寫出一此簡單問題的算法課堂小結(jié)是一堂課內(nèi)容的概括和總結(jié),有利于學(xué)生把握本節(jié)課的重點(diǎn),對所學(xué)知識有一個系統(tǒng)整體的認(rèn)識。(約6分鐘)
5.布置作業(yè):課本練習(xí)1、2題
課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。對作業(yè)實施分層設(shè)置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。
高中數(shù)學(xué)奇偶性說課稿篇四
教材是連接教師和學(xué)生的紐帶,在整個教學(xué)過程中起著至關(guān)重要的作用,所以,先談?wù)勎覍滩牡睦斫狻?/p>
正弦函數(shù)的性質(zhì)是選自北師大版高中數(shù)學(xué)必修四第一章三角函數(shù)第五節(jié)正弦函數(shù)的性質(zhì)與圖象5.3正弦函數(shù)的性質(zhì)的資料,主要資料便是正弦函數(shù)的性質(zhì),教材經(jīng)過作圖、觀察、誘導(dǎo)公式等方法得出正弦函數(shù)y=sinx的性質(zhì)。并且教材突出了正弦函數(shù)圖象的重要性,能夠幫忙學(xué)生更深刻的認(rèn)識、理解、記憶正弦函數(shù)的性質(zhì)。
合理把握學(xué)情是上好一堂課的基礎(chǔ),本次課所應(yīng)對的學(xué)生群體具有以下特點(diǎn)。
高中的學(xué)生掌握了必須的基礎(chǔ)知識,思維較敏捷,動手本事較強(qiáng),但理解本事、自主學(xué)習(xí)本事較缺乏。基于此,本節(jié)課注重引導(dǎo)學(xué)生動腦思考,更富有啟發(fā)性。并且學(xué)生的自尊心較強(qiáng),所以對學(xué)生的評價注重先揚(yáng)后抑,鼓勵學(xué)生多多發(fā)言,還能夠?qū)W(xué)生進(jìn)行正確引導(dǎo)。
根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維目標(biāo):
(一)知識與技能。
會用正弦函數(shù)圖象研究和理解正弦函數(shù)的性質(zhì),能熟練運(yùn)用正弦函數(shù)的性質(zhì)解決問題。
(二)過程與方法。
經(jīng)過正弦函數(shù)的圖象,探索正弦函數(shù)的性質(zhì),提升邏輯思考、歸納總結(jié)的本事。
(三)情感態(tài)度價值觀。
經(jīng)過本節(jié)的學(xué)習(xí)體驗數(shù)學(xué)的嚴(yán)謹(jǐn)性,養(yǎng)成細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)認(rèn)真的良好思維習(xí)慣和不斷探求新知識的精神。
本著新課程標(biāo)準(zhǔn),吃透教材,了解學(xué)生特點(diǎn)的基礎(chǔ)上我確定了以下重難點(diǎn)。
由正弦函數(shù)的圖象得到正弦函數(shù)的性質(zhì)。
正弦函數(shù)的周期性和單調(diào)性。
此刻的文盲不是不懂字的人,而是沒有掌握學(xué)習(xí)方法的人。因而在本節(jié)課我將采用講授法、探究法、練習(xí)法等教學(xué)方法,我在教學(xué)過程中異常重視對學(xué)生的引導(dǎo),讓學(xué)生從機(jī)械的學(xué)答中向?qū)W問轉(zhuǎn)變,從學(xué)會到會學(xué),成為真正學(xué)習(xí)的主人。
在這節(jié)課的教學(xué)過程中,我注重突出重點(diǎn),條理清晰,緊湊合理。各項活動的安排也注重互動、交流,最大限度的調(diào)動學(xué)生參與課堂的積極性、主動性。
(一)新課導(dǎo)入。
首先是導(dǎo)入環(huán)節(jié),在這一環(huán)節(jié)中我將采用復(fù)習(xí)的導(dǎo)入方法。
我會讓學(xué)生回憶正弦函數(shù)的概念,以及上節(jié)課所學(xué)的正弦函數(shù)圖象,讓學(xué)生根據(jù)圖象思考正弦函數(shù)有哪些性質(zhì)從而引出課題——《正弦函數(shù)的性質(zhì)》。
這樣設(shè)計能夠讓學(xué)生對前面的知識進(jìn)行充分的回顧,為本節(jié)課的順利開展奠定基礎(chǔ)。
(二)新知探索。
接下來是新課講授環(huán)節(jié),在這一環(huán)節(jié)我將采用講解法、小組合作探究的方式進(jìn)行。
讓學(xué)生自我經(jīng)過五點(diǎn)作圖法畫出正弦函數(shù)的圖象,并在大屏幕上展示正弦函數(shù)的標(biāo)準(zhǔn)圖象。
學(xué)生一邊看投影,一邊思考如下問題:
(1)正弦函數(shù)的定義域是什么。
(2)正弦函數(shù)的值域是什么。
(3)正弦函數(shù)的最值情景如何。
(4)正弦函數(shù)的周期。
(5)正弦函數(shù)的奇偶性。
(6)正弦函數(shù)的遞增區(qū)間。
給學(xué)生十分鐘的時間小組討論,之后小組代表發(fā)言,師生共同總結(jié)。
1.定義域:y=sinx定義域為r。
2.值域:引導(dǎo)學(xué)生回憶單位圓中的正弦函數(shù)線,發(fā)現(xiàn)值域為[-1,1]。
3.最值:根據(jù)值域的確定得到在何處取得最值以及函數(shù)的正負(fù)性。
4.周期性:經(jīng)過觀察圖象引導(dǎo)學(xué)生發(fā)現(xiàn)正弦函數(shù)的圖象是有規(guī)律不斷重復(fù)出現(xiàn)的,讓學(xué)生思考后發(fā)現(xiàn)是每隔2π重復(fù)出現(xiàn)一次,得出y=sinx的最小正周期是2π。之后經(jīng)過誘導(dǎo)公式證明。
5.奇偶性:在剛才經(jīng)過誘導(dǎo)公式證明后順勢提出公式,總結(jié)得到正弦函數(shù)是奇函數(shù)。
6.單調(diào)性:最終讓學(xué)生根據(jù)剛才所得到的結(jié)論自我嘗試總結(jié)正弦函數(shù)的單調(diào)性。
在探究完正弦函數(shù)性質(zhì)后,利用單位圓和正弦函數(shù)圖象理解和記憶正弦函數(shù)的性質(zhì),這樣的安排能夠讓學(xué)生及時鞏固正弦函數(shù)的性質(zhì),并且還能夠結(jié)合之前所學(xué)的單位圓,三角函數(shù)線等知識,讓學(xué)生感受到知識間的聯(lián)系。
(三)課堂練習(xí)。
第三環(huán)節(jié)是鞏固環(huán)節(jié),多媒體出示書上例題2:用五點(diǎn)法畫出函數(shù)的簡圖,并根據(jù)圖象討論它的性質(zhì)。
經(jīng)過這樣的練習(xí),既鞏固了學(xué)生學(xué)過的知識,又進(jìn)一步培養(yǎng)了學(xué)生理解、分析、推理的本事,趣味的知識在學(xué)生們的積極主動的探索中顯得更有味道。
(四)小結(jié)作業(yè)。
最終一個環(huán)節(jié)為小結(jié)作業(yè)環(huán)節(jié),關(guān)于課堂小結(jié),我打算讓學(xué)生自我來總結(jié)。這樣既發(fā)揮了學(xué)生的主體性,又能夠提高學(xué)生的總結(jié)概括本事,讓我在第一時間得到學(xué)習(xí)反饋,及時加以疏導(dǎo)。
在作業(yè)布置上,我讓學(xué)生思考余弦函數(shù)的圖象與性質(zhì)是什么樣的。
經(jīng)過比較靈活的題目呈現(xiàn),能夠讓學(xué)生結(jié)合本節(jié)課的知識進(jìn)而思考后續(xù)的知識。
高中數(shù)學(xué)奇偶性說課稿篇五
1、地位、作用和特點(diǎn):
《》是高中數(shù)學(xué)課本第冊(修)的第章“”的第節(jié)內(nèi)容,高中數(shù)學(xué)課本說課稿。
特點(diǎn)之二是:。
根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力,確定以下教學(xué)目標(biāo):
(1)知識目標(biāo):a、b、c。
(2)能力目標(biāo):a、b、c。
(3)德育目標(biāo):a、b。
教學(xué)的重點(diǎn)和難點(diǎn):
(1)教學(xué)重點(diǎn):
(2)教學(xué)難點(diǎn):
基于上面的教材分析,我根據(jù)自己對研究性學(xué)習(xí)“啟發(fā)式”教學(xué)模式和新課程改革的理論認(rèn)識,結(jié)合本校學(xué)生實際,主要突出了幾個方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動學(xué)生求知欲,并以此來激發(fā)學(xué)生的探究心理。二是運(yùn)用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來統(tǒng)一組織運(yùn)用于教學(xué)過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內(nèi)外的綜合。并且在整個教學(xué)設(shè)計盡量做到注意學(xué)生的心理特點(diǎn)和認(rèn)知規(guī)律,觸發(fā)學(xué)生的思維,使教學(xué)過程真正成為學(xué)生的學(xué)習(xí)過程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數(shù)學(xué)思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習(xí)知識的過程中,領(lǐng)會常見數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學(xué)生充分的時間,以利于開放學(xué)生的思維。當(dāng)然這就應(yīng)在處理教學(xué)內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計如下教學(xué)程序:
導(dǎo)入新課新課教學(xué)。
反饋發(fā)展。
學(xué)生學(xué)習(xí)的過程實際上就是學(xué)生主動獲取、整理、貯存、運(yùn)用知識和獲得學(xué)習(xí)能力的過程,因此,我覺得在教學(xué)中,指導(dǎo)學(xué)生學(xué)習(xí)時,應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學(xué)習(xí)方法。有效的能被學(xué)生接受的學(xué)法指導(dǎo)應(yīng)是滲透在教學(xué)過程中進(jìn)行的,是通過優(yōu)化教學(xué)程序來增強(qiáng)學(xué)法指導(dǎo)的目的性和實效性。在本節(jié)課的'教學(xué)中主要滲透以下幾個方面的學(xué)法指導(dǎo)。
1、培養(yǎng)學(xué)生學(xué)會通過自學(xué)、觀察、實驗等方法獲取相關(guān)知識,使學(xué)生在探索研究過程中分析、歸納、推理能力得到提高。
本節(jié)教師通過列舉具體事例來進(jìn)行分析,歸納出,并依。
據(jù)此知識與具體事例結(jié)合、推導(dǎo)出,這正是一個分析和推理的全過程。
演示,創(chuàng)設(shè)探索規(guī)律的情境,引導(dǎo)學(xué)生以可靠的事實為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學(xué)生領(lǐng)悟到把可靠的事實和深刻的理論思維結(jié)合起來的特點(diǎn)。
3、讓學(xué)生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng)造動力。在實踐中要盡可能讓學(xué)生多動腦、多動手、多觀察、多交流、多分析;老師要給學(xué)生多點(diǎn)撥、多啟發(fā)、多激勵,不斷地尋找學(xué)生思維和操作上的閃光點(diǎn),及時總結(jié)和推廣。
4、在指導(dǎo)學(xué)生解決問題時,引導(dǎo)學(xué)生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進(jìn)知識的正向遷移。如教師引導(dǎo)學(xué)生對比中,蘊(yùn)含的本質(zhì)差異,從而擺脫知識遷移的負(fù)面影響。這樣,既有利于學(xué)生養(yǎng)成認(rèn)真分析過程、善于比較的好習(xí)慣,又有利于培養(yǎng)學(xué)生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。
(一)、課題引入:
教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:a、教師演示實驗。b、使用多媒體模擬一些比較有趣、與生活實踐比較有關(guān)的事例,教案《高中數(shù)學(xué)課本說課稿》。c、講述數(shù)學(xué)科學(xué)史上的有關(guān)情況。)激發(fā)學(xué)生的探究欲望,引導(dǎo)學(xué)生提出接下去要研究的問題。
(二)、新課教學(xué):
1、針對上面提出的問題,設(shè)計學(xué)生動手實踐,讓學(xué)生通過動手探索有關(guān)的知識,并引導(dǎo)學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問題。
2、組織學(xué)生進(jìn)行新問題的實驗方法設(shè)計—這時在設(shè)計上最好是有對比性、數(shù)學(xué)方法性的設(shè)計實驗,指導(dǎo)學(xué)生實驗、通過多媒體的輔助,顯示學(xué)生的實驗數(shù)據(jù),模擬強(qiáng)化出實驗情況,由學(xué)生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。
(三)、實施反饋:
1、課堂反饋,遷移知識(最好遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問題,實現(xiàn)知識的升華、實現(xiàn)學(xué)生的再次創(chuàng)新。
2、課后反饋,延續(xù)創(chuàng)新。通過課后練習(xí),學(xué)生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。
在教學(xué)中我把黑板分為三部分,把知識要點(diǎn)寫在左側(cè),中間知識推導(dǎo)過程,右邊實例應(yīng)用。
的認(rèn)識,使學(xué)生的認(rèn)知活動逐步深化,既掌握了知識,又學(xué)會了方法。
總之,對課堂的設(shè)計,我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實踐能力、思維能力、應(yīng)用知識解決實際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實際出發(fā),充分利用各種教學(xué)手段來激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對學(xué)生創(chuàng)新意識的培養(yǎng)。
高中數(shù)學(xué)奇偶性說課稿篇六
導(dǎo)數(shù)是微積分的核心概念之一,它為研究函數(shù)提供了有效的方法. 在前面幾節(jié)課里學(xué)生對導(dǎo)數(shù)的概念已經(jīng)有了充分的認(rèn)識,本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導(dǎo)數(shù)的幾何意義,更有利于學(xué)生理解導(dǎo)數(shù)概念的本質(zhì)內(nèi)涵. 這節(jié)課可以利用幾何畫板進(jìn)行動畫演示,讓學(xué)生通過觀察、思考、發(fā)現(xiàn)、思維、運(yùn)用形成完整概念. 通過本節(jié)的學(xué)習(xí),可以幫助學(xué)生更好的體會導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、變化快慢等性質(zhì)最有效的工具,是本章的關(guān)鍵內(nèi)容。
2、教學(xué)的重點(diǎn)、難點(diǎn)、關(guān)鍵
教學(xué)重點(diǎn):導(dǎo)數(shù)的幾何意義、切線方程的求法以及“數(shù)形結(jié)合,逼近”的思想方法。
教學(xué)難點(diǎn):理解導(dǎo)數(shù)的幾何意義的本質(zhì)內(nèi)涵
1) 從割線到切線的過程中采用的逼近方法;
2) 理解導(dǎo)數(shù)的概念,將多方面的意義聯(lián)系起來,例如,導(dǎo)數(shù)反映了函數(shù)f(x)在點(diǎn)x附近的變化快慢,導(dǎo)數(shù)是曲線上某點(diǎn)切線的斜率,等等.
根據(jù)新課程標(biāo)準(zhǔn)的要求、學(xué)生的認(rèn)知水平,確定教學(xué)目標(biāo)如下:
1、知識與技能 :
通過實驗探求理解導(dǎo)數(shù)的幾何意義,理解曲線在一點(diǎn)的切線的概念,會求簡單函數(shù)在某點(diǎn)的切線方程。
過程與方法:
通過逼近、數(shù)形結(jié)合思想的具體運(yùn)用,使學(xué)生達(dá)到思維方式的遷移,了解科學(xué)的思維方法。
3、情感態(tài)度與價值觀:
對于直線來說它的導(dǎo)數(shù)就是它的斜率,學(xué)生會很自然的思考導(dǎo)數(shù)在函數(shù)圖像上是不是有很特殊的幾何意義。而且剛剛學(xué)過了圓錐曲線,學(xué)生對曲線的切線的概念也有了一些認(rèn)識,基于以上學(xué)情分析,我確定下列教法:
學(xué)法:為了發(fā)揮學(xué)生的主觀能動性,提高學(xué)生的綜合能力,本節(jié)課采取了
自主 、合作、探究的學(xué)習(xí)方法。
教具: 幾何畫板、幻燈片
1.創(chuàng)設(shè)情境
學(xué)生活動——問題系列
問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?
問題2 如圖直線l是曲線c的切線嗎?
(1)與 (2)與 還有直線與雙曲線的位置關(guān)系
問題3 那么對于一般的曲線,切線該如何定義呢?
【設(shè)計意圖】:通過類比構(gòu)建認(rèn)知沖突。
學(xué)生活動——復(fù)習(xí)回顧
導(dǎo)數(shù)的定義
【設(shè)計意圖】:從理論和知識基礎(chǔ)兩方面為本節(jié)課作鋪墊。
2.探索求知
學(xué)生活動——試驗探究
問一;求導(dǎo)數(shù)的步驟是怎樣的?
第一步:求平均變化率;第二步:當(dāng)趨近于0時,平均變化率無限趨近于的常數(shù)就是。
【設(shè)計意圖】:這是從“數(shù)”的角度描述導(dǎo)數(shù),為探究導(dǎo)數(shù)的幾何意義做準(zhǔn)備。
問二;你能借助圖像說說平均變化率表示什么嗎?請在函數(shù)圖像中畫出來。
【設(shè)計意圖】:通過學(xué)生動手實踐得到平均變化率表示割線pq的斜率。
問三;在的過程中,你能描述一下割線pq的變化情況嗎?請在圖像中畫出來。
【設(shè)計意圖】:分別從“數(shù)”和“形”的角度描述的過程情況。從數(shù)的角度看,,q();從形的角度看, 的過程中,q點(diǎn)向p點(diǎn)無限趨近,割線pq趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。
探究一:學(xué)生通過幾何畫板的演示觀察割線的變化趨勢,教師引導(dǎo)給出一般曲線的切線定義。
【設(shè)計意圖】: 借助多媒體教學(xué)手段引導(dǎo)學(xué)生發(fā)現(xiàn)導(dǎo)數(shù)的幾何意義,使問題變得直觀,易于突破難點(diǎn);學(xué)生在過程中,可以體會逼近的思想方法。能夠同時從數(shù)與形兩個角度強(qiáng)化學(xué)生對導(dǎo)數(shù)概念的理解。
問四;你能從上述過程中概括出函數(shù)在處的導(dǎo)數(shù)的幾何意義嗎?
【設(shè)計意圖】:引導(dǎo)學(xué)生發(fā)現(xiàn)并說出:,割線pq切線pt,所以割線
pq的斜率切線pt的斜率。因此,=切線pt的斜率。
1、通過學(xué)生參加活動是否積極主動,能否與他人合作探索,對學(xué)生的學(xué)習(xí)過程評價;
2、通過學(xué)生對方法的選擇,對學(xué)生的學(xué)習(xí)能力評價;
3、通過練習(xí)、課后作業(yè),對學(xué)生的學(xué)習(xí)效果評價.
5、本節(jié)課設(shè)計目標(biāo)力求使學(xué)生體會微積分的基本思想,感受近似與精確的統(tǒng)一,運(yùn)動和靜止的統(tǒng)一,感受量變到質(zhì)變的轉(zhuǎn)化。希望利用這節(jié)課滲透辨證法的思想精髓.
高中數(shù)學(xué)奇偶性說課稿篇七
拋物線焦點(diǎn)性質(zhì)的探索(說課)
一、
1 教材的地位與作用 “拋物線焦點(diǎn)的性質(zhì)”是拋物線的重要性質(zhì)之一,它是在學(xué)生學(xué)習(xí)拋物線的一般性質(zhì)的基礎(chǔ)上,學(xué)習(xí)和研究的拋物線有關(guān)問題的基本工具之一;本節(jié)教材對于培養(yǎng)學(xué)生觀察、猜想、概括能力和邏輯推理能力具有重要的意義。
2 教學(xué)目的 全日制普通高級中學(xué)《數(shù)學(xué)教學(xué)大綱》第22頁“重視現(xiàn)代教育技術(shù)的運(yùn)用”中明確提出:在數(shù)學(xué)教學(xué)過程中,應(yīng)有意識地利用計算機(jī)網(wǎng)絡(luò)等現(xiàn)代信息技術(shù),認(rèn)識計算機(jī)的智能圖形、快速計算、機(jī)器證明、自動求解及人機(jī)交互等功能在數(shù)學(xué)教學(xué)中的巨大潛力,努力探索在現(xiàn)代信息技術(shù)支持下的教學(xué)方法、教學(xué)模式。設(shè)計和組織能吸引學(xué)生積極參與的數(shù)學(xué)活動,支持和鼓勵學(xué)生運(yùn)用信息技術(shù)學(xué)習(xí)數(shù)學(xué)、開展課題研究,改進(jìn)學(xué)習(xí)方式,提高學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新意識。因此本人在現(xiàn)行高中新教材(試驗修訂本·必修)數(shù)學(xué)第二冊(上)拋物線這一節(jié)內(nèi)容為背景材料,以多媒體網(wǎng)絡(luò)教室為場地,以《幾何畫板》為教學(xué)工具與學(xué)習(xí)工具,設(shè)計了一堂《拋物線焦點(diǎn)性質(zhì)的探索》,具體目標(biāo)如下:
(2) 能力目標(biāo):使學(xué)生學(xué)會研究數(shù)學(xué)問題的基本過程,能夠根據(jù)條件建立恰當(dāng)?shù)臄?shù)學(xué)模型;培養(yǎng)辯證唯物主義思想和辯證思維能力(主要包括量變與質(zhì)變,常量與變量,運(yùn)動與靜止)培養(yǎng)學(xué)生通過計算機(jī)來自主學(xué)習(xí)的能力與創(chuàng)新的能力。
(3) 情感目標(biāo):培養(yǎng)學(xué)生不畏困難,勇于鉆研、探索、大膽創(chuàng)新的精神,在挫折中成長鍛煉,培養(yǎng)學(xué)生良好的心理素質(zhì)和抗挫折能力,通過拋物線焦點(diǎn)性質(zhì)的探索及證明,使學(xué)生得到數(shù)學(xué)美和創(chuàng)造美的享受。
3 教學(xué)內(nèi)容、重點(diǎn)、難點(diǎn)及關(guān)鍵 本節(jié)安排兩節(jié)課,
第一節(jié)課:主要內(nèi)容是利用《幾何畫板》探索拋物線的有關(guān)性質(zhì);
第二節(jié)課:證明第一節(jié)所得到的有關(guān)性質(zhì)。
重點(diǎn):
(1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點(diǎn)的性質(zhì);
(2)如何證明這些性質(zhì)。
難點(diǎn);
(1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點(diǎn)的性質(zhì);
(2)如何證明這些性質(zhì)。
學(xué)生在網(wǎng)絡(luò)教室(每人一機(jī)),其中裝有《幾何畫板》軟件及上課系統(tǒng),每個學(xué)生的窗口,其他學(xué)生及教師都可以通過教師機(jī)切換,從而和其他學(xué)生交流,也可以通過網(wǎng)上論壇交流研究結(jié)果。
學(xué)生在網(wǎng)絡(luò)教室(每人一機(jī))中有幾何畫板軟件,學(xué)生通過教師提供的網(wǎng)絡(luò),自已閱讀,下載有關(guān),利用《幾何畫板》的操作、試驗、猜想,通過自已的研究獲得結(jié)論,并互相討論觀察到的現(xiàn)象、交流研究結(jié)果。
4.1 使學(xué)生學(xué)會研究數(shù)學(xué)問題的基本過程,能夠根據(jù)條件建立恰當(dāng)?shù)臄?shù)學(xué)模型 問題1 回顧一下拋物線的定義,并根據(jù)拋物線的定義思考用《幾何畫板》如何作出焦點(diǎn)在x軸上的拋物線圖象。 由于創(chuàng)設(shè)了一個創(chuàng)作的《幾何畫板》的窗口及網(wǎng)絡(luò)窗口,學(xué)生通過網(wǎng)絡(luò)學(xué)習(xí),得到以上問題的多種作法,以下就其中的一種作法作為探索、研究拋物線焦點(diǎn)性質(zhì)的基本圖形。
高中數(shù)學(xué)奇偶性說課稿篇八
1.教材所處的地位和作用:
本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《》是中數(shù)學(xué)教材第冊第章第節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了基礎(chǔ),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在中,占據(jù)的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。
2.教育教學(xué)目標(biāo):
根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):
(1)知識目標(biāo):
(2)能力目標(biāo):通過教學(xué)初步培養(yǎng)學(xué)生分析問題,解決實際問題,讀圖分析,收集處理信息,團(tuán)結(jié)協(xié)作,語言表達(dá)能力以及通過師生雙邊活動,初步培養(yǎng)學(xué)生運(yùn)用知識的能力,培養(yǎng)學(xué)生加強(qiáng)理論聯(lián)系實際的能力,(3)情感目標(biāo):通過的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。
3.重點(diǎn),難點(diǎn)以及確定依據(jù):
下面,為了講清重難上點(diǎn),使學(xué)生能達(dá)到本節(jié)課設(shè)定的目標(biāo),再從教法和學(xué)法上談?wù)劊?/p>
1.教學(xué)手段:
如何突出重點(diǎn),突破難點(diǎn),從而實現(xiàn)教學(xué)目標(biāo)。在教學(xué)過程中擬計劃進(jìn)行如下操作:教學(xué)方法?;诒竟?jié)課的特點(diǎn):應(yīng)著重采用的教學(xué)方法。
2.教學(xué)方法及其理論依據(jù):堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運(yùn)用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識回到社會實踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識,學(xué)習(xí)基礎(chǔ)性的知識和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力。
3.學(xué)情分析:(說學(xué)法)。
(2)知識障礙上:知識掌握上,學(xué)生原有的知識,許多學(xué)生出現(xiàn)知識遺忘,所以應(yīng)全面系統(tǒng)的去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識障礙,知識學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡單明白,深入淺出的分析。
最后我來具體談?wù)勥@一堂課的教學(xué)過程:
4.教學(xué)程序及設(shè)想:
(1)由引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識與經(jīng)驗,同化和索引出當(dāng)肖學(xué)習(xí)的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。
(2)由實例得出本課新的知識點(diǎn)。
(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進(jìn)行概括,有利于學(xué)生的思維能力。
(4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺運(yùn)用所學(xué)知識與解題思想方法。
(5)總結(jié)結(jié)論,強(qiáng)化認(rèn)識。知識性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個性品質(zhì)目標(biāo)。
(6)變式延伸,進(jìn)行重構(gòu),重視課本例題,適當(dāng)對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達(dá)到舉一反三的效果。
(7)板書。
(8)布置作業(yè)。
(一)課堂結(jié)構(gòu):復(fù)習(xí)提問,導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分。
集合這章內(nèi)容,教學(xué)參考書上安排的課時為五課時,我們的導(dǎo)學(xué)案也是安排五課時,實際教學(xué)時,由于對學(xué)生的實際情況估計不足,第一課時的導(dǎo)學(xué)案用了兩課時才完成。集合這一章的特點(diǎn)是概念不多,但這章所涉及到的內(nèi)容很廣,學(xué)生學(xué)習(xí)本章內(nèi)容時,不僅要理解本章的概念,還要理解與本章內(nèi)容相關(guān)聯(lián)的其他內(nèi)容,這些內(nèi)容有初中學(xué)習(xí)過的內(nèi)容、有生活中的方方面面的相關(guān)知識,再加上高中學(xué)習(xí)方法與初中不同,邏輯思維能力要求較高,因此學(xué)生感覺學(xué)起來比較困難。針對這種情況,我在實際教學(xué)時,首先要求學(xué)生準(zhǔn)確理解概念,如:集合的元素具有三個性質(zhì):確定性、互異性、無序性。集合的關(guān)系、運(yùn)算等都是從元素的角度定義的,所以解集合問題時,教會學(xué)生對元素的性質(zhì)進(jìn)行分析,反復(fù)訓(xùn)練,讓學(xué)生通過實例體會這三個性質(zhì)。
第二,掌握相關(guān)的符號語言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時,集合中的元素是什么,這是一個教學(xué)難點(diǎn)。第二個難點(diǎn)是集合的運(yùn)算—交集和并集。突破難點(diǎn)充分運(yùn)用數(shù)形結(jié)合思想,集合間的關(guān)系和運(yùn)算,以數(shù)形結(jié)合思想為指導(dǎo),借助圖形思考,可以使各集合間的關(guān)系直觀明了,使抽象的集合運(yùn)算建立在直觀的基礎(chǔ)上,使解題思路清晰明朗,直觀簡捷,有利于問題的解決。
第三,指導(dǎo)學(xué)生理解并掌握自然語言、符號語言、圖形語言這三種語言,靈活準(zhǔn)確地進(jìn)行語言轉(zhuǎn)換,可以幫助學(xué)生提高分析問題,解決問題的能力。
第四,集合問題涉及到的其他內(nèi)容,遇到了講透,不拓展。
高中數(shù)學(xué)奇偶性說課稿篇九
1、進(jìn)一步熟練掌握求動點(diǎn)軌跡方程的基本方法。
2、體會數(shù)學(xué)實驗的直觀性、有效性,提高幾何畫板的操作能力。
1、培養(yǎng)學(xué)生觀察能力、抽象概括能力及創(chuàng)新能力。
2、體會感性到理性、形象到抽象的思維過程。
3、強(qiáng)化類比、聯(lián)想的'方法,領(lǐng)會方程、數(shù)形結(jié)合等思想。
1、感受動點(diǎn)軌跡的動態(tài)美、和諧美、對稱美。
教學(xué)重點(diǎn):運(yùn)用類比、聯(lián)想的方法探究不同條件下的軌跡。
教學(xué)難點(diǎn):圖形、文字、符號三種語言之間的過渡。
【教學(xué)方法】觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極思考并對學(xué)生的思維進(jìn)行調(diào)控,幫助學(xué)生優(yōu)化思維過程,在此基礎(chǔ)上,提供給學(xué)生交流的機(jī)會,幫助學(xué)生對自己的思維進(jìn)行組織和澄清,并能清楚地、準(zhǔn)確地表達(dá)自己的數(shù)學(xué)思維。
【教學(xué)手段】利用網(wǎng)絡(luò)教室,四人一機(jī),多媒體教學(xué)手段。通過上述教學(xué)手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學(xué)生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習(xí)的興趣。
【教學(xué)模式】重點(diǎn)中學(xué)實施素質(zhì)教育的課堂模式“創(chuàng)設(shè)情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展”。
高中數(shù)學(xué)奇偶性說課稿篇十
今天我說課的題目是《二次函數(shù)的圖像》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計五方面逐一加以分析和說明。
教材的地位和作用。
本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第4.1節(jié)。二次函數(shù)的圖像在教材中起著承上啟下的作用。
學(xué)情分析。
本節(jié)課的學(xué)生是高一學(xué)生,他們在初中的時候已經(jīng)學(xué)習(xí)過有關(guān)內(nèi)容,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ),另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉(zhuǎn)變?yōu)閰?shù),使學(xué)生對二次函數(shù)的圖像由感性認(rèn)識上升到理性認(rèn)識,能培養(yǎng)學(xué)生利用數(shù)形結(jié)合思想解決問題的能力。
基于以上對教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個部分:
1.知識與技能。
理解二次函數(shù)中參數(shù)a,b,c,h,k對其圖像的影響;
2.過程與方法。
通過體驗對二次函數(shù)圖像平移的研究方法,能遷移到其他函數(shù)圖像的研究。
3.情感態(tài)度與價值觀。
通過本節(jié)的學(xué)習(xí),進(jìn)一步體會數(shù)形結(jié)合思想的作用,感受到數(shù)學(xué)中數(shù)與形的辯證統(tǒng)一。
通過以上對教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點(diǎn)確定如下。
重點(diǎn):
二次函數(shù)圖像的平移變換規(guī)律及應(yīng)用。
難點(diǎn):
探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律求函數(shù)解析式,并能把平移變換規(guī)律遷移到其他函數(shù)。
1、教法分析。
基于以上對教材、學(xué)情的分析以及新課改的要求,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。
2、學(xué)法分析。
新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過合作交流、自主探索的方法進(jìn)行學(xué)習(xí)。
為了更好的實現(xiàn)本課的三維目標(biāo),并突破重難點(diǎn),我將設(shè)計以下五個環(huán)節(jié)來進(jìn)行我的教學(xué)。
(1)知識導(dǎo)入。
溫故而知新,我將先從之前學(xué)習(xí)的知識引入,給出一些函數(shù),比如y=x2、y=2x2,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生比較這些函數(shù)圖像的相同點(diǎn)和不同點(diǎn),由此引入我的新課。一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面的學(xué)習(xí)做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗。
(2)講授新課。
例1:畫出函數(shù)y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像。
讓學(xué)生畫出他們的圖像并觀察函數(shù)圖像的`特點(diǎn),再讓學(xué)生與多媒體課件展示的圖像進(jìn)行對比,得出結(jié)論:若二次函數(shù)的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。
(3)鞏固練習(xí)。
我將組織學(xué)生進(jìn)行練習(xí),完成課本44頁1-3題。通過這種練習(xí)的方式,幫助學(xué)生鞏固和加深二次函數(shù)中參數(shù)對圖像的影響。
(4)歸納總結(jié)。
我先讓學(xué)生進(jìn)行小結(jié),然后教師進(jìn)行補(bǔ)充,在這樣一個過程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習(xí)情況有一定的了解,可以進(jìn)行適當(dāng)反思,為下一節(jié)課的教學(xué)過程做好準(zhǔn)備。
(5)布置作業(yè)。
略
高中數(shù)學(xué)奇偶性說課稿篇十一
(1)本課內(nèi)容是高中數(shù)學(xué)第二冊第七章第三節(jié)《兩條直線的位置關(guān)系》的最后一個內(nèi)容。
(2)包含知識點(diǎn):點(diǎn)到直線的距離公式和兩平行線的距離公式。
1-2教材所處地位、作用和前后聯(lián)系。
本節(jié)課是兩條直線位置關(guān)系的最后一個內(nèi)容,在此之前,有對兩線位置關(guān)系的定性刻畫:平行、垂直,以及對相交兩線的定量刻畫:夾角、交點(diǎn)。在此之后,有圓錐曲線方程,因而本節(jié)既是對前面兩線垂直、兩線交點(diǎn)的復(fù)習(xí),又是為后面計算點(diǎn)線距離(在直線和圓錐曲線構(gòu)成的組合圖形中)提供一套工具。
可見,本課有承前啟后的作用。
1-3教學(xué)大綱要求。
掌握點(diǎn)到直線的距離公式。
1-4高考大綱要求及在高考中的顯示形式。
掌握點(diǎn)到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構(gòu)成的組合圖形為背景,判斷直線和圓錐曲線的位置或構(gòu)成三角形求高,涉及絕對值,直線垂直,最小值等。
1-5教學(xué)目標(biāo)及確定依據(jù)。
教學(xué)目標(biāo)。
(1)掌握點(diǎn)到直線的距離的概念、公式及公式的推導(dǎo)過程,能用公式來求點(diǎn)線距離和線線距離。
(2)培養(yǎng)學(xué)生探究性思維方法和由特殊到一般的研究能力。
(3)認(rèn)識事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化知識的能力。
(4)滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。
確定依據(jù):
中華人民共和國教育部制定的《全日制普通高級中學(xué)數(shù)學(xué)教學(xué)大綱》(20xx年4月第一版),《基礎(chǔ)教育課程改革綱要(試行)》,《高考考試說明》(20xx年)。
1-6教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵。
(1)重點(diǎn):點(diǎn)到直線的距離公式。
確定依據(jù):由本節(jié)在教材中的地位確定。
(2)難點(diǎn):點(diǎn)到直線的距離公式的推導(dǎo)。
確定依據(jù):根據(jù)定義進(jìn)行推導(dǎo),思路自然,但運(yùn)算繁瑣;用等積法推導(dǎo),運(yùn)算較簡單,但思路不自然,學(xué)生易被動,主體性得不到體現(xiàn)。
分析“嘗試性題組”解題思路可突破難點(diǎn)。
(3)關(guān)鍵:實現(xiàn)兩個轉(zhuǎn)化。一是將點(diǎn)線距離轉(zhuǎn)化為定點(diǎn)到垂足的距離;二是利用等積法將其轉(zhuǎn)化為直角三角形中三頂點(diǎn)的距離。
2-1發(fā)現(xiàn)法:本節(jié)課為了培養(yǎng)學(xué)生探究性思維目標(biāo),在教學(xué)過程中,使老師的主導(dǎo)性和學(xué)生的主體性有機(jī)結(jié)合,使學(xué)生能夠愉快地自覺學(xué)習(xí),通過學(xué)生自己練習(xí)“嘗試性題組”,引導(dǎo)、啟發(fā)學(xué)生分析、發(fā)現(xiàn)、比較、論證等,從而形成完整的數(shù)學(xué)模型。
確定依據(jù):
(1)美國教育學(xué)家波利亞的教與學(xué)三原則:主動學(xué)習(xí)原則,最佳動機(jī)原則,階段漸進(jìn)性原則。
(2)事物之間相互聯(lián)系,相互轉(zhuǎn)化的辯證法思想。
2-2教具:多媒體和黑板等傳統(tǒng)教具。
3-1發(fā)現(xiàn)法:豐富學(xué)生的數(shù)學(xué)活動,學(xué)生經(jīng)過練習(xí)、觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運(yùn)用所得理論和方法去解決問題。
一句話:還課堂以生命力,還學(xué)生以活力。
3-2學(xué)情:
(1)知識能力狀況,本節(jié)為兩線位置關(guān)系的最后一個內(nèi)容,在這之前學(xué)生已經(jīng)系統(tǒng)的學(xué)習(xí)了直線方程的各種形式,有對兩線位置關(guān)系的定性認(rèn)識和對兩線相交的定量認(rèn)識,為本節(jié)推證公式涉及到直線方程、兩線垂直、兩線交點(diǎn)作好了知識儲備。同時學(xué)生對解析幾何的實質(zhì)中,用坐標(biāo)系溝通直線與方程的研究辦法,有了初步認(rèn)識,數(shù)形結(jié)合的思想正逐漸趨于成熟。
(2)心理特點(diǎn):又見“點(diǎn)到直線的距離”(初中已學(xué)習(xí)定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢動機(jī)由此而生。
(3)生活經(jīng)驗:數(shù)學(xué)源于生活,生活中的點(diǎn)線距隨處可見,怎樣將實際問題數(shù)學(xué)化,是每個追求成長、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數(shù)學(xué)活動能夠讓他們真正參與,體驗過程,錘煉意志,培養(yǎng)能力。
3-3學(xué)具:直尺、三角板。
學(xué)生完成反思性學(xué)習(xí)報告,書寫要求:
(1)整理知識結(jié)構(gòu)。
(2)總結(jié)所學(xué)到的基本知識,技能和數(shù)學(xué)思想方法。
(3)總結(jié)在學(xué)習(xí)過程中的經(jīng)驗,發(fā)明發(fā)現(xiàn),學(xué)習(xí)障礙等,說明產(chǎn)生障礙的原因。
(4)談?wù)勀銓蠋熃谭ǖ慕ㄗh和要求。
作用:
(1)通過反思使學(xué)生對所學(xué)知識系統(tǒng)化。反思的過程實際上是學(xué)生思維內(nèi)化,知識深化和認(rèn)知牢固化的`一個心理活動過程。
(2)報告的寫作本身就是一種創(chuàng)造性活動。
(3)及時了解學(xué)生學(xué)習(xí)過程中的知識缺陷,思維障礙,有利于教師了解學(xué)生對自己的教法的滿意度和效果,以便作出及時調(diào)整,及時進(jìn)行補(bǔ)償性教學(xué)。
5.板書設(shè)計。
(略)。
6.教學(xué)的反思總結(jié)。
心理歷練,得意之處,困惑之處,知識的傳承發(fā)展,如何修正完善等。
高中數(shù)學(xué)奇偶性說課稿篇十二
導(dǎo)過程;能根據(jù)條件確定橢圓的標(biāo)準(zhǔn)方程,掌握用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程。
(2)過程與方法目標(biāo):通過對橢圓概念的引入教學(xué),培養(yǎng)學(xué)生的觀察能力和探。
索能力;通過對橢圓標(biāo)準(zhǔn)方程的推導(dǎo),使學(xué)生進(jìn)一步掌握求曲線方程的一般方法,提高學(xué)生運(yùn)用坐標(biāo)法解決幾何問題的能力,并滲透數(shù)形結(jié)合和等價轉(zhuǎn)化的數(shù)學(xué)思想方法。
(3)情感、態(tài)度與價值觀目標(biāo):通過讓學(xué)生大膽探索橢圓的定義和標(biāo)準(zhǔn)方程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新意識,培養(yǎng)學(xué)生勇于探索的精神和滲透辯證唯物主義的方法論和認(rèn)識論。
(1)教學(xué)重點(diǎn):橢圓的定義及橢圓標(biāo)準(zhǔn)方程,用待定系數(shù)法和定義法求曲線方程。
(2)教學(xué)難點(diǎn):橢圓標(biāo)準(zhǔn)方程的建立和推導(dǎo)。
1、動畫演示,描繪出橢圓軌跡圖形。
2、實驗演示。
思考:橢圓是滿足什么條件的點(diǎn)的軌跡呢?
1、動手實驗:學(xué)生分組動手畫出橢圓。
實驗探究:
保持繩長不變,改變兩個圖釘之間的距離,畫出的橢圓有什么變化?
思考:根據(jù)上面探究實踐回答,橢圓是滿足什么條件的點(diǎn)的軌跡?
2、概括橢圓定義。
引導(dǎo)學(xué)生概括橢圓定義橢圓定義:平面內(nèi)與兩個定點(diǎn)距離的和等于常數(shù)(大于)的點(diǎn)的軌跡叫橢圓。
教師指出:這兩個定點(diǎn)叫橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫橢圓的焦距。
思考:焦點(diǎn)為的橢圓上任一點(diǎn)m,有什么性質(zhì)?
令橢圓上任一點(diǎn)m,則有。
1、知識回顧:利用坐標(biāo)法求曲線方程的一般方法和步驟是什么?
2、研討探究。
問題:如圖已知焦點(diǎn)為的橢圓,且=2c,對橢圓上任一點(diǎn)m,有。
嘗試推導(dǎo)橢圓的方程。
思考:如何建立坐標(biāo)系,使求出的方程更為簡單?
將各組學(xué)生的討論方案歸納起來評議,選定以下兩種方案,由各組學(xué)生自己完成設(shè)點(diǎn)、列式、化簡。
方案一方案二。
按方案一建立坐標(biāo)系,師生研討探究得到橢圓標(biāo)準(zhǔn)方程。
=1(),其中b2=a2-c2(b0);
選定方案二建立坐標(biāo)系,由學(xué)生完成方程化簡過程,可得出=1,同樣也有a2-c2=b2(b0)。
教師指出:我們所得的兩個方程=1和=1()都是橢圓的標(biāo)準(zhǔn)方程。
1、觀察橢圓圖形及其標(biāo)準(zhǔn)方程,師生共同總結(jié)歸納。
(1)橢圓標(biāo)準(zhǔn)方程對應(yīng)的橢圓中心在原點(diǎn),以焦點(diǎn)所在軸為坐標(biāo)軸;
(2)橢圓標(biāo)準(zhǔn)方程形式:左邊是兩個分式的平方和,右邊是1;
(3)橢圓標(biāo)準(zhǔn)方程中三個參數(shù)a,b,c關(guān)系:;
(4)橢圓焦點(diǎn)的位置由標(biāo)準(zhǔn)方程中分母的大小確定;
(5)求橢圓標(biāo)準(zhǔn)方程時,可運(yùn)用待定系數(shù)法求出a,b的值。
2、在歸納總結(jié)的基礎(chǔ)上,填下表。
標(biāo)準(zhǔn)方程。
圖形a,b,c關(guān)系焦點(diǎn)坐標(biāo)焦點(diǎn)位置。
在x軸上。
在y軸上。
例1、求適合下列條件的橢圓的標(biāo)準(zhǔn)方程。
(1)兩個焦點(diǎn)的坐標(biāo)分別是,橢圓上一點(diǎn)p到兩焦點(diǎn)距離和等于10。
(2)兩焦點(diǎn)坐標(biāo)分別是,并且橢圓經(jīng)過點(diǎn)。
例2、(1)若橢圓標(biāo)準(zhǔn)方程為及焦點(diǎn)坐標(biāo)。
(2)若橢圓經(jīng)過兩點(diǎn)求橢圓標(biāo)準(zhǔn)方程。
(3)若橢圓的一個焦點(diǎn)是,則k的值為。
(a)(b)8(c)(d)32。
例3、如圖,已知一個圓的圓心為坐標(biāo)原點(diǎn),半徑為2,從這個圓上任意一點(diǎn)p向x軸作垂線段,求線段中點(diǎn)m的軌跡。
1、寫出適合下列條件的橢圓標(biāo)準(zhǔn)方程。
(1),焦點(diǎn)在x軸上;
(2)焦點(diǎn)在x軸上,焦距等于4,并且經(jīng)過點(diǎn)p;
2、若方程表示焦點(diǎn)在y軸上的橢圓,則k的范圍。
3、已知b,c是兩個定點(diǎn),周長為16,求頂點(diǎn)a的軌跡方程。
4、已知橢圓的焦距相等,求實數(shù)m的值。
5、在橢圓上上求一點(diǎn),使它與兩個焦點(diǎn)連線互相垂直。
6、已知p是橢圓上一點(diǎn),其中為其焦點(diǎn)且,求三解形面積。
師生共同歸納本節(jié)所學(xué)內(nèi)容、知識規(guī)律以及所學(xué)的數(shù)學(xué)思想和方法。
課本第96頁習(xí)題§8。1第3題、第5題、第6題。
課后思考題:
1、知是橢圓的兩個焦點(diǎn),ab是過的弦,則周長是。
(a)2a(b)4a(c)8a(d)2a2b。
2、的兩個頂點(diǎn)a,b的坐標(biāo)分別是邊ac,bc所在直線的斜。
率之積等于,求頂點(diǎn)c的軌跡方程。
2、與圓外切,同時與圓內(nèi)切,求動圓圓心的軌跡方程,并說明它是什么樣的曲線?
橢圓是圓錐曲線中重要的一種,本節(jié)內(nèi)容的學(xué)習(xí)是后繼學(xué)習(xí)其它圓錐曲線的基礎(chǔ),坐標(biāo)法是解析幾何中的重要數(shù)學(xué)方法,橢圓方程的推導(dǎo)是利用坐標(biāo)法求曲線方程的很好應(yīng)用實例。本節(jié)課內(nèi)容的學(xué)習(xí)能很好地在課堂教學(xué)中展現(xiàn)新課程的理念,主要采用學(xué)生自主探究學(xué)習(xí)的方式,使培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力的教學(xué)思想貫穿于本節(jié)課教學(xué)設(shè)計的始終。
橢圓是生活中常見的圖形,通過實驗演示,創(chuàng)設(shè)生動而直觀的情境,使學(xué)生親身體會橢圓與生活聯(lián)系,有助于激發(fā)學(xué)生對橢圓知識的學(xué)習(xí)興趣;在橢圓概念引入的過程中,改變了直接給出橢圓概念和動畫畫出橢圓的方式,而采用學(xué)生動手畫橢圓并合作探究的學(xué)習(xí)方式,讓學(xué)生親身經(jīng)歷橢圓概念形成的數(shù)學(xué)化過程,有利于培養(yǎng)學(xué)生觀察分析、抽象概括的能力。
橢圓方程的化簡是學(xué)生從未經(jīng)歷的問題,方程的推導(dǎo)過程采用學(xué)生分組探究,師生共同研討方程的化簡和方程的特征,可以讓學(xué)生主體參與橢圓方程建立的具體過程,使學(xué)生真正了解橢圓標(biāo)準(zhǔn)方程的來源,并在這種師生嘗試探究、合作討論的活動中,使學(xué)生體會成功的快樂,提高學(xué)生的數(shù)學(xué)探究能力,培養(yǎng)學(xué)生獨(dú)立主動獲取知識的能力。
設(shè)計例題、習(xí)題的研討探究變式訓(xùn)練,是為了讓學(xué)生能靈活地運(yùn)用橢圓的知識解決問題,同時也是為了更好地調(diào)動、活躍學(xué)生的思維,發(fā)展學(xué)生數(shù)學(xué)思維能力,讓學(xué)生在解決問題中發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識和創(chuàng)新能力,同時培養(yǎng)學(xué)生大膽實踐、勇于探索的精神,開闊學(xué)生知識應(yīng)用視野。
將本文的word文檔下載到電腦,方便收藏和打印。
高中數(shù)學(xué)奇偶性說課稿篇十三
首先,我對本節(jié)教材進(jìn)行一些分析:
1. 教材所處的地位和作用:
本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《 》是 中數(shù)學(xué)教材第 冊第 章第 節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了 基礎(chǔ),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在 中,占據(jù) 的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。
2. 教育教學(xué)目標(biāo):
根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):
(1)知識目標(biāo): (2)能力目標(biāo):通過教學(xué)初步培養(yǎng)學(xué)生分析問題,解決實際問題,讀圖分析,收集處理信息,團(tuán)結(jié)協(xié)作,語言表達(dá)能力以及通過師生雙邊活動,初步培養(yǎng)學(xué)生運(yùn)用知識的能力,培養(yǎng)學(xué)生加強(qiáng)理論聯(lián)系實際的能力,(3)情感目標(biāo):通過 的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。
3. 重點(diǎn),難點(diǎn)以及確定依據(jù):
本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn): 通過 突出重點(diǎn)
難點(diǎn): 通過 突破難點(diǎn)
關(guān)鍵:
下面,為了講清重難上點(diǎn),使學(xué)生能達(dá)到本節(jié)課設(shè)定的目標(biāo),再從教法和學(xué)法上談?wù)劊?/p>
1. 教學(xué)手段:
如何突出重點(diǎn),突破難點(diǎn),從而實現(xiàn)教學(xué)目標(biāo)。在教學(xué)過程中擬計劃進(jìn)行如下操作:教學(xué)方法?;诒竟?jié)課的特點(diǎn): 應(yīng)著重采用 的教學(xué)方法。
2. 教學(xué)方法及其理論依據(jù):堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運(yùn)用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識回到社會實踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識,學(xué)習(xí)基礎(chǔ)性的知識和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力。
3. 學(xué)情分析:(說學(xué)法)
我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。
(2) 知識障礙上:知識掌握上,學(xué)生原有的知識 ,許多學(xué)生出現(xiàn)知識遺忘,所以應(yīng)全面系統(tǒng)的去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識障礙, 知識 學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡單明白,深入淺出的分析。
最后我來具體談?wù)勥@一堂課的教學(xué)過程:
4. 教學(xué)程序及設(shè)想:
(1)由 引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識與經(jīng)驗,同化和索引出當(dāng)肖學(xué)習(xí)的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。
(2)由實例得出本課新的知識點(diǎn)
(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進(jìn)行概括,有利于學(xué)生的思維能力。
(4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺運(yùn)用所學(xué)知識與解題思想方法。
(5)總結(jié)結(jié)論,強(qiáng)化認(rèn)識。知識性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個性品質(zhì)目標(biāo)。
(6)變式延伸,進(jìn)行重構(gòu),重視課本例題,適當(dāng)對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達(dá)到舉一反三的效果。
(7)板書
教學(xué)程序:
課堂結(jié)構(gòu):復(fù)習(xí)提問,導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分
高中數(shù)學(xué)奇偶性說課稿篇十四
1.教材所處的地位和作用:
本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《xx》是中數(shù)學(xué)教材第冊第章第節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了基礎(chǔ),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在中,占據(jù)的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。
2.教育教學(xué)目標(biāo):
根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):
(1)知識目標(biāo):
(3)情感目標(biāo):通過的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。
3.重點(diǎn),難點(diǎn)以及確定依據(jù):
下面,為了講清重難上點(diǎn),使學(xué)生能達(dá)到本節(jié)課設(shè)定的目標(biāo),再從教法和學(xué)法上談?wù)劊?/p>
1.教學(xué)手段:
如何突出重點(diǎn),突破難點(diǎn),從而實現(xiàn)教學(xué)目標(biāo)。在教學(xué)過程中擬計劃進(jìn)行如下操作:教學(xué)方法?;诒竟?jié)課的特點(diǎn):應(yīng)著重采用的教學(xué)方法。
2.教學(xué)方法及其理論依據(jù):堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運(yùn)用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識回到社會實踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識,學(xué)習(xí)基礎(chǔ)性的知識和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力。
3.學(xué)情分析:(說學(xué)法)。
(2)知識障礙上:知識掌握上,學(xué)生原有的知識,許多學(xué)生出現(xiàn)知識遺忘,所以應(yīng)全面系統(tǒng)的去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識障礙,知識學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡單明白,深入淺出的分析。
最后我來具體談?wù)勥@一堂課的教學(xué)過程:
4.教學(xué)程序及設(shè)想:
(1)由引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識與經(jīng)驗,同化和索引出當(dāng)肖學(xué)習(xí)的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。
(2)由實例得出本課新的知識點(diǎn)。
(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進(jìn)行概括,有利于學(xué)生的思維能力。
(4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺運(yùn)用所學(xué)知識與解題思想方法。
(5)總結(jié)結(jié)論,強(qiáng)化認(rèn)識。知識性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個性品質(zhì)目標(biāo)。
(6)變式延伸,進(jìn)行重構(gòu),重視課本例題,適當(dāng)對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達(dá)到舉一反三的效果。
(7)板書。
(8)布置作業(yè)。
針對學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高。
(一)課堂結(jié)構(gòu):復(fù)習(xí)提問,導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分。
集合這章內(nèi)容,教學(xué)參考書上安排的課時為五課時,我們的導(dǎo)學(xué)案也是安排五課時,實際教學(xué)時,由于對學(xué)生的實際情況估計不足,第一課時的導(dǎo)學(xué)案用了兩課時才完成。集合這一章的特點(diǎn)是概念不多,但這章所涉及到的內(nèi)容很廣,學(xué)生學(xué)習(xí)本章內(nèi)容時,不僅要理解本章的概念,還要理解與本章內(nèi)容相關(guān)聯(lián)的其他內(nèi)容,這些內(nèi)容有初中學(xué)習(xí)過的內(nèi)容、有生活中的方方面面的相關(guān)知識,再加上高中學(xué)習(xí)方法與初中不同,邏輯思維能力要求較高,因此學(xué)生感覺學(xué)起來比較困難。針對這種情況,我在實際教學(xué)時,首先要求學(xué)生準(zhǔn)確理解概念,如:集合的元素具有三個性質(zhì):確定性、互異性、無序性。集合的關(guān)系、運(yùn)算等都是從元素的角度定義的,所以解集合問題時,教會學(xué)生對元素的性質(zhì)進(jìn)行分析,反復(fù)訓(xùn)練,讓學(xué)生通過實例體會這三個性質(zhì)。
第二,掌握相關(guān)的符號語言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時,集合中的元素是什么,這是一個教學(xué)難點(diǎn)。第二個難點(diǎn)是集合的運(yùn)算—交集和并集。突破難點(diǎn)充分運(yùn)用數(shù)形結(jié)合思想,集合間的關(guān)系和運(yùn)算,以數(shù)形結(jié)合思想為指導(dǎo),借助圖形思考,可以使各集合間的關(guān)系直觀明了,使抽象的集合運(yùn)算建立在直觀的基礎(chǔ)上,使解題思路清晰明朗,直觀簡捷,有利于問題的解決。
第三,指導(dǎo)學(xué)生理解并掌握自然語言、符號語言、圖形語言這三種語言,靈活準(zhǔn)確地進(jìn)行語言轉(zhuǎn)換,可以幫助學(xué)生提高分析問題,解決問題的能力。
第四,集合問題涉及到的其他內(nèi)容,遇到了講透,不拓展。
高中數(shù)學(xué)奇偶性說課稿篇十五
《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要資料,它不僅僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,并且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。
2、從學(xué)生認(rèn)知角度看。
從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)資料與等差數(shù)列前n項和從公式的構(gòu)成、特點(diǎn)等方面進(jìn)行類比,這是進(jìn)取因素,應(yīng)因勢利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不一樣,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情景,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯。
3、學(xué)情分析。
教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有必須的分析問題和解決問題的本事,邏輯思維本事也初步構(gòu)成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,所以片面、不嚴(yán)謹(jǐn)。
4、重點(diǎn)、難點(diǎn)。
教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用。
教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用。
公式推導(dǎo)所使用的“錯位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。
知識與技能目標(biāo):
理解并掌握等比數(shù)列前n項和公式的推導(dǎo)過程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題。
過程與方法目標(biāo):
經(jīng)過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維本事和逆向思維的本事。
情感與態(tài)度價值觀:
經(jīng)過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點(diǎn)。
學(xué)生是認(rèn)知的主體,設(shè)計教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的構(gòu)成與發(fā)展過程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計了如下的教學(xué)過程:
1、創(chuàng)設(shè)情境,提出問題。
設(shè)計意圖:設(shè)計這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的進(jìn)取性。故事資料緊扣本節(jié)課的主題與重點(diǎn)。
此時我問:同學(xué)們,你們明白西薩要的是多少粒小麥嗎引導(dǎo)學(xué)生寫出麥??倲?shù)。帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。
設(shè)計意圖:在實際教學(xué)中,由于受課堂時間限制,教師舍不得花時間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而立刻相減呢在整個教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時間營造知識構(gòu)成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙。同時,構(gòu)成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆。
2、師生互動,探究問題。
探討1:記為(1)式,注意觀察每一項的特征,有何聯(lián)系(學(xué)生會發(fā)現(xiàn),后一項都是前一項的2倍)。
設(shè)計意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,所以教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維本事的良好契機(jī)。
設(shè)計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗,從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。
3、類比聯(lián)想,解決問題。
這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進(jìn)行指導(dǎo)。
設(shè)計意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自我探究公式,從而體驗到學(xué)習(xí)的愉快和成就感。
對不對那里的q能不能等于1等比數(shù)列中的公比能不能為1q=1時是什么數(shù)列此時sn=(那里引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ)。)。
再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來(引導(dǎo)學(xué)生得出公式的另一形式)。
設(shè)計意圖:經(jīng)過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和理解,變?yōu)閷χR的主動認(rèn)識,從而進(jìn)一步提高分析、類比和綜合的本事。這一環(huán)節(jié)十分重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用。
4、討論交流,延伸拓展。
(略)。
高中數(shù)學(xué)奇偶性說課稿篇十六
尊敬的各位教師:
大家好,我是x場的x號考生。今日,我說課的資料是xxx。
對于本節(jié)課,我將從教什么、怎樣教、為什么這么教來闡述本次說課。
教材是連接教師和學(xué)生的紐帶,在整個教學(xué)過程中起著至關(guān)重要的作用,所以,先談?wù)勎覍滩牡睦斫狻?/p>
正弦函數(shù)的性質(zhì)是選自北師大版高中數(shù)學(xué)必修四第一章三角函數(shù)第五節(jié)正弦函數(shù)的性質(zhì)與圖象5.3正弦函數(shù)的性質(zhì)的資料,主要資料便是正弦函數(shù)的性質(zhì),教材經(jīng)過作圖、觀察、誘導(dǎo)公式等方法得出正弦函數(shù)y=sinx的性質(zhì)。并且教材突出了正弦函數(shù)圖象的重要性,能夠幫忙學(xué)生更深刻的認(rèn)識、理解、記憶正弦函數(shù)的性質(zhì)。
合理把握學(xué)情是上好一堂課的基礎(chǔ),本次課所應(yīng)對的學(xué)生群體具有以下特點(diǎn)。
高中的學(xué)生掌握了必須的基礎(chǔ)知識,思維較敏捷,動手本事較強(qiáng),但理解本事、自主學(xué)習(xí)本事較缺乏。基于此,本節(jié)課注重引導(dǎo)學(xué)生動腦思考,更富有啟發(fā)性。并且學(xué)生的自尊心較強(qiáng),所以對學(xué)生的評價注重先揚(yáng)后抑,鼓勵學(xué)生多多發(fā)言,還能夠?qū)W(xué)生進(jìn)行正確引導(dǎo)。
根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維目標(biāo):
(一)知識與技能。
會用正弦函數(shù)圖象研究和理解正弦函數(shù)的性質(zhì),能熟練運(yùn)用正弦函數(shù)的性質(zhì)解決問題。
(二)過程與方法。
經(jīng)過正弦函數(shù)的圖象,探索正弦函數(shù)的性質(zhì),提升邏輯思考、歸納總結(jié)的本事。
(三)情感態(tài)度價值觀。
經(jīng)過本節(jié)的學(xué)習(xí)體驗數(shù)學(xué)的嚴(yán)謹(jǐn)性,養(yǎng)成細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)認(rèn)真的良好思維習(xí)慣和不斷探求新知識的精神。
本著新課程標(biāo)準(zhǔn),吃透教材,了解學(xué)生特點(diǎn)的基礎(chǔ)上我確定了以下重難點(diǎn)。
由正弦函數(shù)的圖象得到正弦函數(shù)的性質(zhì)。
正弦函數(shù)的周期性和單調(diào)性。
此刻的文盲不是不懂字的人,而是沒有掌握學(xué)習(xí)方法的人。因而在本節(jié)課我將采用講授法、探究法、練習(xí)法等教學(xué)方法,我在教學(xué)過程中異常重視對學(xué)生的引導(dǎo),讓學(xué)生從機(jī)械的學(xué)答中向?qū)W問轉(zhuǎn)變,從學(xué)會到會學(xué),成為真正學(xué)習(xí)的主人。
在這節(jié)課的教學(xué)過程中,我注重突出重點(diǎn),條理清晰,緊湊合理。各項活動的安排也注重互動、交流,最大限度的調(diào)動學(xué)生參與課堂的進(jìn)取性、主動性。
(一)新課導(dǎo)入。
首先是導(dǎo)入環(huán)節(jié),在這一環(huán)節(jié)中我將采用復(fù)習(xí)的導(dǎo)入方法。
我會讓學(xué)生回憶正弦函數(shù)的概念,以及上節(jié)課所學(xué)的正弦函數(shù)圖象,讓學(xué)生根據(jù)圖象思考正弦函數(shù)有哪些性質(zhì)從而引出課題——《正弦函數(shù)的性質(zhì)》。
這樣設(shè)計能夠讓學(xué)生對前面的知識進(jìn)行充分的回顧,為本節(jié)課的順利開展奠定基礎(chǔ)。
(二)新知探索。
接下來是新課講授環(huán)節(jié),在這一環(huán)節(jié)我將采用講解法、小組合作探究的方式進(jìn)行。
讓學(xué)生自我經(jīng)過五點(diǎn)作圖法畫出正弦函數(shù)的圖象,并在大屏幕上展示正弦函數(shù)的標(biāo)準(zhǔn)圖象。
學(xué)生一邊看投影,一邊思考如下問題:
(1)正弦函數(shù)的定義域是什么。
(2)正弦函數(shù)的值域是什么。
(3)正弦函數(shù)的最值情景如何。
(4)正弦函數(shù)的周期。
(5)正弦函數(shù)的奇偶性。
(6)正弦函數(shù)的遞增區(qū)間。
給學(xué)生十分鐘的時間小組討論,之后小組代表發(fā)言,師生共同總結(jié)。
1.定義域:y=sinx定義域為r。
2.值域:引導(dǎo)學(xué)生回憶單位圓中的正弦函數(shù)線,發(fā)現(xiàn)值域為[-1,1]。
3.最值:根據(jù)值域的確定得到在何處取得最值以及函數(shù)的正負(fù)性。
4.周期性:經(jīng)過觀察圖象引導(dǎo)學(xué)生發(fā)現(xiàn)正弦函數(shù)的圖象是有規(guī)律不斷重復(fù)出現(xiàn)的,讓學(xué)生思考后發(fā)現(xiàn)是每隔2π重復(fù)出現(xiàn)一次,得出y=sinx的最小正周期是2π。之后經(jīng)過誘導(dǎo)公式證明。
5.奇偶性:在剛才經(jīng)過誘導(dǎo)公式證明后順勢提出公式,總結(jié)得到正弦函數(shù)是奇函數(shù)。
6.單調(diào)性:最終讓學(xué)生根據(jù)剛才所得到的結(jié)論自我嘗試總結(jié)正弦函數(shù)的單調(diào)性。
在探究完正弦函數(shù)性質(zhì)后,利用單位圓和正弦函數(shù)圖象理解和記憶正弦函數(shù)的性質(zhì),這樣的安排能夠讓學(xué)生及時鞏固正弦函數(shù)的性質(zhì),并且還能夠結(jié)合之前所學(xué)的單位圓,三角函數(shù)線等知識,讓學(xué)生感受到知識間的聯(lián)系。
(三)課堂練習(xí)。
第三環(huán)節(jié)是鞏固環(huán)節(jié),多媒體出示書上例題2:用五點(diǎn)法畫出函數(shù)的簡圖,并根據(jù)圖象討論它的性質(zhì)。
經(jīng)過這樣的練習(xí),既鞏固了學(xué)生學(xué)過的知識,又進(jìn)一步培養(yǎng)了學(xué)生理解、分析、推理的本事,趣味的知識在學(xué)生們的積極主動的探索中顯得更有味道。
(四)小結(jié)作業(yè)。
最終一個環(huán)節(jié)為小結(jié)作業(yè)環(huán)節(jié),關(guān)于課堂小結(jié),我打算讓學(xué)生自我來總結(jié)。這樣既發(fā)揮了學(xué)生的主體性,又能夠提高學(xué)生的總結(jié)概括本事,讓我在第一時間得到學(xué)習(xí)反饋,及時加以疏導(dǎo)。
在作業(yè)布置上,我讓學(xué)生思考余弦函數(shù)的圖象與性質(zhì)是什么樣的。
經(jīng)過比較靈活的題目呈現(xiàn),能夠讓學(xué)生結(jié)合本節(jié)課的知識進(jìn)而思考后續(xù)的知識。
我的板書設(shè)計遵循簡介明了突出重點(diǎn)部分,以下是我的板書設(shè)計:
(略)。
高中數(shù)學(xué)奇偶性說課稿篇十七
敬的各位專家、評委:
下午好!
我的抽簽序號是____,今天我說課的課題是《_______》第__課時。
我嘗試?yán)眯抡n標(biāo)的理念來指導(dǎo)教學(xué),對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標(biāo)分析、教法學(xué)法分析、教學(xué)過程分析和評價分析五個方面來談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設(shè)計,敬請各位專家、評委批評指正。
(一)地位與作用
______是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面______;另一方面______。同時,__________________。
(二)學(xué)情分析
(1)學(xué)生已熟練掌握_________________。
(2)學(xué)生的知識經(jīng)驗較為豐富,具備了教強(qiáng)的抽象思維能力和演繹推理能力。
(3)學(xué)生思維活潑,積極性高,已初步形成對數(shù)學(xué)問題的合作探究能力。
(4) 學(xué)生層次參次不齊,個體差異比較明顯。
新課標(biāo)指出“三維目標(biāo)”是一個密切聯(lián)系的有機(jī)整體,應(yīng)該以獲得知識與技能的過程,同時成為學(xué)會學(xué)習(xí)和正確價值觀。這要求我們在教學(xué)中以知識技能的培養(yǎng)為主線,透情感態(tài)度與價值觀,并把這兩者充分體現(xiàn)在教學(xué)過程中,新課標(biāo)指出教學(xué)的主體是學(xué)生,因此目標(biāo)的制定和設(shè)計必須從學(xué)生的角度出發(fā),根據(jù)____在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標(biāo):
(一)教學(xué)目標(biāo)
(1)知識與技能
使學(xué)生理解_______,初步掌握______。
(2)過程與方法
引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,______;能運(yùn)用____解決簡單的問題;使學(xué)生領(lǐng)會______的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
(3)情感態(tài)度與價值觀
在______的學(xué)習(xí)過程中,使學(xué)生體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
(二)重點(diǎn)難點(diǎn)
本節(jié)課的教學(xué)重點(diǎn)是________________________,教學(xué)難點(diǎn)是_____________________。
(一)教法
基于本節(jié)課的內(nèi)容特點(diǎn)和__學(xué)生的年齡特征,按照__市高中數(shù)學(xué)“三五四”課堂教學(xué)策略,采用探究――體驗教學(xué)法為主來完成教學(xué),為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教法上我采取了:
(二)學(xué)法
在學(xué)法上我重視了:
1、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的質(zhì)的飛躍。
2、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。
(一)教學(xué)過程設(shè)計
教學(xué)是一個教師的“導(dǎo)”,學(xué)生的“學(xué)”以及教學(xué)過程中的“悟”構(gòu)成的和諧整體。教師的“導(dǎo)”也就是教師啟發(fā)、誘導(dǎo)、激勵、評價等為學(xué)生的學(xué)習(xí)搭建支架,把學(xué)習(xí)的任務(wù)轉(zhuǎn)移給學(xué)生,學(xué)生就是接受任務(wù),探究問題、完成任務(wù)。如果在教學(xué)過程中把“教與學(xué)”完美的結(jié)合也就是以“問題”為核心,通過對知識的發(fā)生、發(fā)展和運(yùn)用過程的演繹、解釋和探究來組織和推動教學(xué)。
(1)創(chuàng)設(shè)情境,提出問題。
新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計改變了傳統(tǒng)目的明確的設(shè)計方式,給學(xué)生最大的思考空間,充分體現(xiàn)學(xué)生主體地位。
(2)引導(dǎo)探究,建構(gòu)概念。
(3)自我嘗試,初步應(yīng)用。
(4)當(dāng)堂訓(xùn)練,鞏固深化。
通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。
(5)小結(jié)歸納,回顧反思。
(二)作業(yè)設(shè)計
我設(shè)計了以下作業(yè):
(1)必做題
(2)選做題
(三)板書設(shè)計
板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進(jìn)程更加連貫。
學(xué)生學(xué)習(xí)的結(jié)果評價當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用及時點(diǎn)評、延時點(diǎn)評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強(qiáng)的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對____是否有一個完整的集訓(xùn),并進(jìn)行及時的調(diào)整和補(bǔ)充。
以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。
謝謝!
高中數(shù)學(xué)奇偶性說課稿篇十八
尊敬的各位考官:
大家好!
我是今天的x號考生,今天我說課的題目是《直線與平面平行的判定》。
高中數(shù)學(xué)課程以學(xué)生發(fā)展為本,提升數(shù)學(xué)學(xué)科核心素養(yǎng)。這節(jié)課我將秉承這一教學(xué)理念,從教材分析、教學(xué)目標(biāo)、教學(xué)過程等幾個方面來展開我的說課。
本節(jié)課選自人教a版高中數(shù)學(xué)必修2第二章第2節(jié)。此前學(xué)生對空間立體幾何已經(jīng)有了一定的感知。通過本節(jié)課的學(xué)習(xí),能使學(xué)生進(jìn)一步了解空間中直線與平面平行關(guān)系的判定方法,培養(yǎng)學(xué)生的邏輯思維和空間想象能力。
學(xué)生已經(jīng)學(xué)習(xí)了空間中點(diǎn)、直線、平面間的位置關(guān)系,知道若直線與平面平行,則沒有公共點(diǎn),但直接利用定義無法進(jìn)行判斷。因而我會注意在教學(xué)時逐步引導(dǎo)學(xué)生,在辯證思考中探索直線與平面平行的條件。
根據(jù)以上對教材的分析和對學(xué)情的把握,我設(shè)置本節(jié)課的教學(xué)目標(biāo)如下:
掌握直線與平面平行的判定定理,會用文字語言、符號語言和圖形語言描述判定定理,并會進(jìn)行簡單應(yīng)用。
通過直觀感知、觀察、操作確認(rèn)的認(rèn)知過程,培養(yǎng)空間想象力和邏輯思維能力,體會“降維”的思想。
通過生活中的實例,體會平行關(guān)系在生活中的廣泛應(yīng)用;在探究線面平行判定定理的過程中,形成學(xué)習(xí)數(shù)學(xué)的積極態(tài)度。
根據(jù)學(xué)生現(xiàn)有的知識儲備和知識本身的難易程度,我設(shè)置本節(jié)課教學(xué)重點(diǎn)為:直線與平面平行的判定定理。教學(xué)難點(diǎn)為:直線與平面平行的判定定理的探究。
為達(dá)成教學(xué)目標(biāo),突破教學(xué)重難點(diǎn),本節(jié)課我將采用講授法、自主探究法、練習(xí)法等教學(xué)方法,以達(dá)到教與學(xué)的和諧完美統(tǒng)一。
下面我將重點(diǎn)談?wù)勎业慕虒W(xué)過程。
導(dǎo)入環(huán)節(jié)我會帶領(lǐng)學(xué)生從文字語言、圖形語言和符號語言這三個角度復(fù)習(xí)直線與平面有哪些位置關(guān)系。接著我會請學(xué)生思考,該如何判定直線與平面平行。根據(jù)定義,只需判定直線與平面沒有公共點(diǎn)即可。但直線無限伸長,平面無限延展,如何保證直線與平面無公共點(diǎn)。由此引發(fā)認(rèn)知沖突,引入本節(jié)課的學(xué)習(xí)。
通過復(fù)習(xí)導(dǎo)入,不僅鞏固了之前所學(xué),建立起新舊知識之間的聯(lián)系,而且能夠有效激發(fā)起學(xué)生的學(xué)習(xí)興趣,從而為下面的學(xué)習(xí)打好基礎(chǔ)。
接下來是新知講解環(huán)節(jié)。
我會請學(xué)生觀察,教室門扇的兩邊是平行的,當(dāng)門扇繞著一邊轉(zhuǎn)動時,觀察門扇轉(zhuǎn)動的一邊和門框所在平面有怎樣的位置關(guān)系。并組織學(xué)生動手操作,將書本平放在桌面上,翻動書的封面,封面邊緣所在直線與桌面所在平面具有什么樣的位置關(guān)系。
學(xué)生不難看出其中的平行關(guān)系。在此基礎(chǔ)上,我會請學(xué)生同桌兩人交流討論,如果直線與平面平行,則這條直線與平面內(nèi)多少條直線平行。如果這條直線平行于平面內(nèi)的無數(shù)條直線,那么這條直線是否一定與這個平面平行。
除了知道知識,學(xué)生還要能對知識進(jìn)行應(yīng)用。我會出示以下練習(xí)題:求證空間四邊形相鄰兩邊中點(diǎn)的連線平行于另外兩邊所在的平面。結(jié)合這一練習(xí)題,我會進(jìn)一步強(qiáng)調(diào),線面平行問題可轉(zhuǎn)化為線線平行問題。這也為之后線面、面面關(guān)系的學(xué)習(xí)奠定基礎(chǔ)。
課堂小結(jié)部分,我會充分發(fā)揮學(xué)生的主體性,請學(xué)生說一說本節(jié)課的收獲。收獲不僅僅只是知識方面,也可以說一說這節(jié)課學(xué)到的思想方法等,進(jìn)一步培養(yǎng)學(xué)生的綜合素質(zhì)。
課后作業(yè)我會請學(xué)生完成書上相應(yīng)練習(xí)題,使學(xué)生在課后也能得到思考,夯實學(xué)生對于新知的掌握。
我的板書設(shè)計遵循簡潔明了、突出重點(diǎn)的原則,以下是我的板書設(shè)計:
略。
高中數(shù)學(xué)奇偶性說課稿篇十九
本節(jié)主要研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實際應(yīng)用,分兩課時,這里是第一課時,它是在學(xué)生已經(jīng)會求某些函數(shù)的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數(shù),那么f(x)在閉區(qū)間[a,b]上有最大值和最小值”,以及會求可導(dǎo)函數(shù)的極值之后進(jìn)行學(xué)習(xí)的,學(xué)好這一節(jié),學(xué)生將會求更多的函數(shù)的最值,運(yùn)用本節(jié)知識可以解決科技、經(jīng)濟(jì)、社會中的一些如何使成本最低、產(chǎn)量最高、效益最大等實際問題。這節(jié)課集中體現(xiàn)了數(shù)形結(jié)合、理論聯(lián)系實際等重要的數(shù)學(xué)思想方法,學(xué)好本節(jié),對于進(jìn)一步完善學(xué)生的知識結(jié)構(gòu),培養(yǎng)學(xué)生用數(shù)學(xué)的意識都具有極為重要的意義。
會求閉區(qū)間上連續(xù)開區(qū)間上可導(dǎo)的函數(shù)的最值。
高三年級學(xué)生雖然已經(jīng)具有一定的知識基礎(chǔ),但由于對求函數(shù)極值還不熟練,特別是對優(yōu)化解題過程依據(jù)的理解會有較大的困難,所以這節(jié)課的難點(diǎn)是理解確定函數(shù)最值的方法。
本節(jié)課突破難點(diǎn)的關(guān)鍵是:理解方程f′(x)=0的解,包含有指定區(qū)間內(nèi)全部可能的極值點(diǎn)。
根據(jù)本節(jié)教材在高中數(shù)學(xué)知識體系中的地位和作用,結(jié)合學(xué)生已有的認(rèn)知水平,制定本節(jié)如下的教學(xué)目標(biāo):
(1)理解函數(shù)的最值與極值的區(qū)別和聯(lián)系。
(2)進(jìn)一步明確閉區(qū)間[a,b]上的連續(xù)函數(shù)f(x),在[a,b]上必有最大、最小值。
(3)掌握用導(dǎo)數(shù)法求上述函數(shù)的最大值與最小值的方法和步驟。
(1)了解開區(qū)間內(nèi)的連續(xù)函數(shù)或閉區(qū)間上的不連續(xù)函數(shù)不一定有最大、最小值。
(2)理解閉區(qū)間上的連續(xù)函數(shù)最值存在的可能位置:極值點(diǎn)處或區(qū)間端點(diǎn)處。
(3)會求閉區(qū)間上連續(xù),開區(qū)間內(nèi)可導(dǎo)的函數(shù)的最大、最小值。
(1)認(rèn)識事物之間的的區(qū)別和聯(lián)系。
(2)培養(yǎng)學(xué)生觀察事物的能力,能夠自己發(fā)現(xiàn)問題,分析問題并最終解決問題。
(3)提高學(xué)生的數(shù)學(xué)能力,培養(yǎng)學(xué)生的創(chuàng)新精神、實踐能力和理性精神。
根據(jù)皮亞杰的建構(gòu)主義認(rèn)識論,知識是個體在與環(huán)境相互作用的過程中逐漸建構(gòu)的結(jié)果,而認(rèn)識則是起源于主客體之間的相互作用。
本節(jié)課在幫助學(xué)生回顧肯定了閉區(qū)間上的連續(xù)函數(shù)一定存在最大值和最小值之后,引導(dǎo)學(xué)生通過觀察閉區(qū)間內(nèi)的連續(xù)函數(shù)的幾個圖象,自己歸納、總結(jié)出函數(shù)最大值、最小值存在的可能位置,進(jìn)而探索出函數(shù)最大值、最小值求解的方法與步驟,并優(yōu)化解題過程,讓學(xué)生主動地獲得知識,老師只是進(jìn)行適當(dāng)?shù)囊龑?dǎo),而不進(jìn)行全部的灌輸。為突出重點(diǎn),突破難點(diǎn),這節(jié)課主要選擇以合作探究式教學(xué)法組織教學(xué)。
對于求函數(shù)的最值,高三學(xué)生已經(jīng)具備了良好的知識基礎(chǔ),剩下的問題就是有沒有一種更一般的方法,能運(yùn)用于更多更復(fù)雜函數(shù)的求最值問題?教學(xué)設(shè)計中注意激發(fā)起學(xué)生強(qiáng)烈的求知欲望,使得他們能積極主動地觀察、分析、歸納,以形成認(rèn)識,參與到課堂活動中,充分發(fā)揮他們作為認(rèn)知主體的作用。
本節(jié)課的教學(xué),大致按照“創(chuàng)設(shè)情境,鋪墊導(dǎo)入——合作學(xué)習(xí),探索新知——指導(dǎo)應(yīng)用,鼓勵創(chuàng)新——?dú)w納小結(jié),反饋回授”四個環(huán)節(jié)進(jìn)行組織。
高中數(shù)學(xué)奇偶性說課稿篇二十
線性規(guī)劃是運(yùn)籌學(xué)的一個重要分支,在實際生活中有著廣泛的應(yīng)用。本節(jié)內(nèi)容是在學(xué)習(xí)了不等式、直線方程的基礎(chǔ)上,利用不等式和直線方程的有關(guān)知識展開的,它是對二元一次不等式的深化和再認(rèn)識、再理解。通過這一部分的學(xué)習(xí),使學(xué)生進(jìn)一步了解數(shù)學(xué)在解決實際問題中的應(yīng)用,體驗數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的.意識和解決實際問題的能力。
重點(diǎn):畫可行域;在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。
難點(diǎn):在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。
在新課標(biāo)讓學(xué)生經(jīng)歷“學(xué)數(shù)學(xué)、做數(shù)學(xué)、用數(shù)學(xué)”的理念指導(dǎo)下,本節(jié)課的教學(xué)目標(biāo)分設(shè)為知識目標(biāo)、能力目標(biāo)和情感目標(biāo)。
1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行。
域和最優(yōu)解等概念;。
2、理解線性規(guī)劃問題的圖解法;。
3、會利用圖解法求線性目標(biāo)函數(shù)的最優(yōu)解.
1、在應(yīng)用圖解法解題的過程中培養(yǎng)學(xué)生的觀察能力、理解能力。
2、在變式訓(xùn)練的過程中,培養(yǎng)學(xué)生的分析能力、探索能力。
3、在對具體事例的感性認(rèn)識上升到對線性規(guī)劃的理性認(rèn)識過程中,培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合思想解題的能力和化歸能力。
1、讓學(xué)生體驗數(shù)學(xué)來源于生活,服務(wù)于生活,體驗數(shù)學(xué)在建設(shè)節(jié)約型社會中的作用,品嘗學(xué)習(xí)數(shù)學(xué)的樂趣。
2、讓學(xué)生體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生勤于思考、勇于探索的精神;。
3、讓學(xué)生學(xué)會用運(yùn)動觀點(diǎn)觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認(rèn)識論的思想。
【本文地址:http://mlvmservice.com/zuowen/11590371.html】