作為一名教職工,就不得不需要編寫教案,編寫教案有利于我們科學(xué)、合理地支配課堂時(shí)間。怎樣寫教案才更能起到其作用呢?教案應(yīng)該怎么制定呢?下面是小編整理的優(yōu)秀教案范文,歡迎閱讀分享,希望對(duì)大家有所幫助。
高中數(shù)學(xué)經(jīng)典教案篇1
教學(xué)目標(biāo):
1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).
2.能識(shí)別和理解簡(jiǎn)單的框圖的功能.
3、 能運(yùn)用三種基本邏輯結(jié)構(gòu)設(shè)計(jì)流程圖以解決簡(jiǎn)單的問(wèn)題.
教學(xué)方法:
1、 通過(guò)模仿、操作、探索,經(jīng)歷設(shè)計(jì)流程圖表達(dá)求解問(wèn)題的過(guò)程,加深對(duì)流程圖的感知.
2、 在具體問(wèn)題的解決過(guò)程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu).
教學(xué)過(guò)程:
一、問(wèn)題情境
1.情境:
某鐵路客運(yùn)部門規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為
其中(單位:)為行李的重量.
試給出計(jì)算費(fèi)用(單位:元)的一個(gè)算法,并畫出流程圖.
二、學(xué)生活動(dòng)
學(xué)生討論,教師引導(dǎo)學(xué)生進(jìn)行表達(dá).
解 算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運(yùn)費(fèi).
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁(yè)圖1-2-6.
在上述計(jì)費(fèi)過(guò)程中,第二步進(jìn)行了判斷.
三、建構(gòu)數(shù)學(xué)
1.選擇結(jié)構(gòu)的概念:
(1)先根據(jù)條件作出判斷,再?zèng)Q定執(zhí)行哪一種
(2)操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu).
如圖:虛線框內(nèi)是一個(gè)選擇結(jié)構(gòu),它包含一個(gè)判斷框,當(dāng)條件成立(或稱條件為“真”)時(shí)執(zhí)行,否則執(zhí)行.
2.說(shuō)明:
(1)有些問(wèn)題需要按給定的條件進(jìn)行分析、比較和判斷,并按判斷的不同情況進(jìn)行不同的操作,這類問(wèn)題的實(shí)現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計(jì);
(2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進(jìn)行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;
(3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)行,但或兩個(gè)框中可以有一個(gè)是空的,即不執(zhí)行任何操作;
(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個(gè)進(jìn)入點(diǎn)和兩個(gè)退出點(diǎn).
3.思考:教材第7頁(yè)圖所示的算法中,哪一步進(jìn)行了判斷?
高中數(shù)學(xué)經(jīng)典教案篇2
教學(xué)目標(biāo):
1.結(jié)合實(shí)際問(wèn)題情景,理解分層抽樣的必要性和重要性;
2.學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;
3.并對(duì)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系.
教學(xué)重點(diǎn):
通過(guò)實(shí)例理解分層抽樣的方法.
教學(xué)難點(diǎn):
分層抽樣的步驟.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.復(fù)習(xí)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.
2.實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?
二、學(xué)生活動(dòng)
能否用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?
指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性.
由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,
所以在各年級(jí)抽取的個(gè)體數(shù)依次是x,x,x,即40,32,28.
三、建構(gòu)數(shù)學(xué)
1.分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.
說(shuō)明:①分層抽樣時(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;
②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用.
2.三種抽樣方法對(duì)照表:
類別
共同點(diǎn)
各自特點(diǎn)
相互聯(lián)系
適用范圍
簡(jiǎn)單隨機(jī)抽樣
抽樣過(guò)程中每個(gè)個(gè)體被抽取的概率是相同的
從總體中逐個(gè)抽取
總體中的個(gè)體數(shù)較少
系統(tǒng)抽樣
將總體均分成幾個(gè)部分,按事先確定的規(guī)則在各部分抽取
在第一部分抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣
總體中的個(gè)體數(shù)較多
分層抽樣
將總體分成幾層,分層進(jìn)行抽取
各層抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)
總體由差異明顯的幾部分組成
3.分層抽樣的步驟:
(1)分層:將總體按某種特征分成若干部分.
(2)確定比例:計(jì)算各層的個(gè)體數(shù)與總體的個(gè)體數(shù)的比.
(3)確定各層應(yīng)抽取的樣本容量.
(4)在每一層進(jìn)行抽樣(各層分別按簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣的方法抽?。?,綜合每層抽樣,組成樣本.
四、數(shù)學(xué)運(yùn)用
1.例題.
例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________.
(2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調(diào)2人參加座談;
②某班期中考試有15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);
③某班元旦聚會(huì),要產(chǎn)生兩名“幸運(yùn)者”.
對(duì)這三件事,合適的抽樣方法為( )
A.分層抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣
B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡(jiǎn)單隨機(jī)抽樣
C.分層抽樣,簡(jiǎn)單隨機(jī)抽樣,簡(jiǎn)單隨機(jī)抽樣
D.系統(tǒng)抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣
例2某電視臺(tái)在因特網(wǎng)上就觀眾對(duì)某一節(jié)目的喜愛(ài)程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:
很喜愛(ài)
喜愛(ài)
一般
不喜愛(ài)
2435
4567
3926
1072
電視臺(tái)為進(jìn)一步了解觀眾的具體想法和意見(jiàn),打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)怎樣進(jìn)行抽樣?
解:抽取人數(shù)與總的比是60∶12000=1∶200,
則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,
取近似值得各層人數(shù)分別是12,23,20,5.
然后在各層用簡(jiǎn)單隨機(jī)抽樣方法抽?。?/p>
答用分層抽樣的方法抽取,抽取“很喜愛(ài)”、“喜愛(ài)”、“一般”、“不喜愛(ài)”的人
數(shù)分別為12,23,20,5.
說(shuō)明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對(duì)于不能取整數(shù)的情況,取其近似值.
(3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對(duì)學(xué)校在校務(wù)公開(kāi)方面的某意見(jiàn),擬抽取一個(gè)容量為20的樣本.
分析:(1)總體容量較小,用抽簽法或隨機(jī)數(shù)表法都很方便.
(2)總體容量較大,用抽簽法或隨機(jī)數(shù)表法都比較麻煩,由于人員沒(méi)有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.
(3)由于學(xué)校各類人員對(duì)這一問(wèn)題的看法可能差異較大,所以應(yīng)采用分層抽樣方法.
五、要點(diǎn)歸納與方法小結(jié)
本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.分層抽樣的概念與特征;
2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.
高中數(shù)學(xué)經(jīng)典教案篇3
一、教學(xué)目標(biāo)
1、知識(shí)與技能
(1)掌握畫三視圖的基本技能
(2)豐富學(xué)生的空間想象力
2、過(guò)程與方法
主要通過(guò)學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。
3、情感態(tài)度與價(jià)值觀
(1)提高學(xué)生空間想象力
(2)體會(huì)三視圖的作用
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):畫出簡(jiǎn)單組合體的三視圖
難點(diǎn):識(shí)別三視圖所表示的空間幾何體
三、學(xué)法與教學(xué)用具
1、學(xué)法:觀察、動(dòng)手實(shí)踐、討論、類比
2、教學(xué)用具:實(shí)物模型、三角板
四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭開(kāi)課題
“橫看成嶺側(cè)看成峰”,這說(shuō)明從不同的角度看同一物體視覺(jué)的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。
在初中,我們已經(jīng)學(xué)習(xí)了正方體、長(zhǎng)方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?
(二)實(shí)踐動(dòng)手作圖
1、講臺(tái)上放球、長(zhǎng)方體實(shí)物,要求學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并討論;
2、教師引導(dǎo)學(xué)生用類比方法畫出簡(jiǎn)單組合體的三視圖
(1)畫出球放在長(zhǎng)方體上的三視圖
(2)畫出礦泉水瓶(實(shí)物放在桌面上)的三視圖
學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。
作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識(shí)了它的基本結(jié)構(gòu)特征后,再動(dòng)手作圖。
3、三視圖與幾何體之間的相互轉(zhuǎn)化。
(1)投影出示圖片(課本P10,圖1.2-3)
請(qǐng)同學(xué)們思考圖中的三視圖表示的幾何體是什么?
(2)你能畫出圓臺(tái)的三視圖嗎?
(3)三視圖對(duì)于認(rèn)識(shí)空間幾何體有何作用?你有何體會(huì)?
教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對(duì)上述問(wèn)題的看法。
4、請(qǐng)同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。
(三)鞏固練習(xí)
課本P12練習(xí)1、2P18習(xí)題1.2A組1
(四)歸納整理
請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
(五)課外練習(xí)
1、自己動(dòng)手制作一個(gè)底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。
2、自己制作一個(gè)上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺(tái)模型,并畫出它的三視圖。
高中數(shù)學(xué)經(jīng)典教案篇4
一、教材分析
1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見(jiàn)到的、很普通的一個(gè)空間圖形?!岸娼恰笔侨私贪妗稊?shù)學(xué)》第二冊(cè)(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過(guò)兩條異面直線所成的角、直線和平面所成角、又要重點(diǎn)研究的一種空間的角,它是為了研究?jī)蓚€(gè)平面的垂直而提出的一個(gè)概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過(guò)本節(jié)課的學(xué)習(xí)還對(duì)學(xué)生系統(tǒng)地掌握直線和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。
2、教學(xué)目標(biāo):
知識(shí)目標(biāo):(1)正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問(wèn)題。
(2)進(jìn)一步培養(yǎng)學(xué)生把空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題的化歸思想。
能力目標(biāo):(1)突出對(duì)類比、直覺(jué)、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。(2)通過(guò)對(duì)圖形的觀察、分析、比較和操作來(lái)強(qiáng)化學(xué)生的動(dòng)手操作能力。
德育目標(biāo):(1)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來(lái)自實(shí)踐,并服務(wù)于實(shí)踐,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)(2)通過(guò)揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。
情感目標(biāo):在平等的教學(xué)氛圍中,通過(guò)學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),拉近學(xué)生之間、師生之間的情感距離。
3、重點(diǎn)、難點(diǎn):
重點(diǎn):“二面角”和“二面角的平面角”的概念
難點(diǎn):“二面角的平面角”概念的形成過(guò)程
二、教法分析
1、教學(xué)方法:在引入課題時(shí),我采用多媒體、實(shí)物演示法,在新課探究中采用問(wèn)題啟導(dǎo)、活動(dòng)探究和類比發(fā)現(xiàn)法,在形成技能時(shí)以訓(xùn)練法、探究研討法為主。
2、教學(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運(yùn)用了多媒體和實(shí)物教具,預(yù)計(jì)學(xué)生對(duì)二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實(shí)際情況,估計(jì)二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。
3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來(lái)輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),還要預(yù)先做好一些二面角的模型。
三、學(xué)法指導(dǎo)
1、樂(lè)學(xué):在整個(gè)學(xué)習(xí)過(guò)程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識(shí),全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。
2、學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。
3、會(huì)學(xué):通過(guò)自己親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法,從而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新,既能解決問(wèn)題,更能發(fā)現(xiàn)問(wèn)題。
四、教學(xué)過(guò)程
心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對(duì)概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問(wèn)題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營(yíng)造了創(chuàng)新思維的氛圍。
(一)、二面角
1、揭示概念產(chǎn)生背景。
問(wèn)題情境1、在平面幾何中“角”是怎樣定義的?
問(wèn)題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?
問(wèn)題情境3、運(yùn)用多媒體和身邊的實(shí)例,展示我們遇到的另一種空間的角——二面角(板書課題)。
通過(guò)這三個(gè)問(wèn)題,打開(kāi)了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)樗c我們的生活密不可分,激發(fā)學(xué)生的求知欲。2、展現(xiàn)概念形成過(guò)程。
問(wèn)題情境4、那么,應(yīng)該如何定義二面角呢?
創(chuàng)設(shè)這個(gè)問(wèn)題情境,為學(xué)生創(chuàng)新思維的展開(kāi)提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過(guò)程。教師應(yīng)注意多讓學(xué)生說(shuō),對(duì)于學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新結(jié)果,教師要給與積極的評(píng)價(jià)。
問(wèn)題情境5、同學(xué)們能舉出一些二面角的實(shí)例嗎?通過(guò)實(shí)際運(yùn)用,可以促使學(xué)生更加深刻地理解概念。
(二)、二面角的平面角
1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個(gè)旋轉(zhuǎn)量,同樣一個(gè)二面角也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個(gè)旋轉(zhuǎn)量。說(shuō)明二面角不僅有大小,而且其大小是唯一確定的。平面
與平面的位置關(guān)系,總的說(shuō)來(lái)只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,我們有必要來(lái)研究二面角的度量問(wèn)題。
問(wèn)題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來(lái)處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。
2、展現(xiàn)概念形成過(guò)程
(1)、類比。教師啟發(fā),尋找類比聯(lián)想的對(duì)象。
問(wèn)題情境7、我們以前碰到過(guò)類似的問(wèn)題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過(guò)的兩種空間角的定義,電腦演示以提高效率。
問(wèn)題情境8、兩定義的共同點(diǎn)是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個(gè)角是唯一確定的。
問(wèn)題情境9、這個(gè)平面的角的頂點(diǎn)及兩邊是如何確定的?
(2)、提出猜想:二面角的大小也可通過(guò)平面的角來(lái)定義。對(duì)學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識(shí)和習(xí)慣,這對(duì)強(qiáng)化他們的創(chuàng)新意識(shí)大有幫助。
問(wèn)題情境10、那么,這個(gè)角的頂點(diǎn)及兩邊應(yīng)如何確定呢?生:頂點(diǎn)放在棱上,兩邊分別放在兩個(gè)面內(nèi)。這也是學(xué)生直覺(jué)思維的結(jié)果。
(3)、探索實(shí)驗(yàn)。通過(guò)實(shí)驗(yàn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動(dòng)手操作能力。
(4)、繼續(xù)探索,得到定義。
問(wèn)題情境11、那么,怎樣使這個(gè)角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點(diǎn)確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過(guò)直線上一點(diǎn)的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。
(5)、自我驗(yàn)證:要求學(xué)生閱讀課本上的定義。并說(shuō)明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。
(三)、二面角及其平面角的畫法
主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。
(四)、范例分析
為鞏固學(xué)生所學(xué)知識(shí),由于時(shí)間的關(guān)系設(shè)置了一道例題。于實(shí)際生活,不但培養(yǎng)了學(xué)生分析問(wèn)題和解決問(wèn)題的能力,也讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)概念來(lái)自生活實(shí)際,并服務(wù)于生活實(shí)際,從而增強(qiáng)他們應(yīng)用數(shù)學(xué)的意識(shí)。
例:一張邊長(zhǎng)為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個(gè)1200二面角,求此時(shí)B、c兩點(diǎn)間的距離。
分析:涉及二面角的計(jì)算問(wèn)題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角??勺寣W(xué)生先做,為調(diào)動(dòng)學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機(jī)會(huì)。教師講評(píng)時(shí)強(qiáng)調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。
變式訓(xùn)練:圖中共有幾個(gè)二面角?能求出它們的大小嗎?根據(jù)課堂實(shí)際情況,本題的變式訓(xùn)練也可作為課后思考題。
題后反思:(1)解題過(guò)程中必須證明∠BDc是二面角B—AD—c的平面角。
(2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)
(五)、練習(xí)、小結(jié)與作業(yè)
練習(xí):習(xí)題9.7的第3題
小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對(duì)空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時(shí)要求學(xué)生對(duì)本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法。
作業(yè):習(xí)題9.7的第4題
思考題:見(jiàn)例題
五、板書設(shè)計(jì)(見(jiàn)課件)
以上是我對(duì)《二面角》授課的初步設(shè)想,不足之處,懇請(qǐng)大家批評(píng)指正,謝謝!
高中數(shù)學(xué)經(jīng)典教案篇5
教學(xué)目標(biāo):
1。理解并掌握瞬時(shí)速度的定義;
2。會(huì)運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度;
3。理解瞬時(shí)速度的實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力。
教學(xué)重點(diǎn):
會(huì)運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度。
教學(xué)難點(diǎn):
理解瞬時(shí)速度和瞬時(shí)加速度的定義。
教學(xué)過(guò)程:
一、問(wèn)題情境
1。問(wèn)題情境。
平均速度:物體的運(yùn)動(dòng)位移與所用時(shí)間的比稱為平均速度。
問(wèn)題一平均速度反映物體在某一段時(shí)間段內(nèi)運(yùn)動(dòng)的快慢程度。那么如何刻畫物體在某一時(shí)刻運(yùn)動(dòng)的快慢程度?
問(wèn)題二跳水運(yùn)動(dòng)員從10m高跳臺(tái)騰空到入水的過(guò)程中,不同時(shí)刻的速度是不同的。假設(shè)t秒后運(yùn)動(dòng)員相對(duì)于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時(shí)運(yùn)動(dòng)員的速度。
2。探究活動(dòng):
(1)計(jì)算運(yùn)動(dòng)員在2s到2.1s(t∈)內(nèi)的平均速度。
(2)計(jì)算運(yùn)動(dòng)員在2s到(2+?t)s(t∈)內(nèi)的平均速度。
(3)如何計(jì)算運(yùn)動(dòng)員在更短時(shí)間內(nèi)的平均速度。
探究結(jié)論:
時(shí)間區(qū)間
t
平均速度
0.1
-13.59
0.01
-13.149
0.001
-13.1049
0.0001
-13.10049
0.00001
-13.100049
0.000001
-13.1000049
當(dāng)?t?0時(shí),?-13.1,
該常數(shù)可作為運(yùn)動(dòng)員在2s時(shí)的瞬時(shí)速度。
即t=2s時(shí),高度對(duì)于時(shí)間的瞬時(shí)變化率。
二、建構(gòu)數(shù)學(xué)
1。平均速度。
設(shè)物體作直線運(yùn)動(dòng)所經(jīng)過(guò)的路程為,以為起始時(shí)刻,物體在?t時(shí)間內(nèi)的平均速度為。
可作為物體在時(shí)刻的速度的近似值,?t越小,近似的程度就越好。所以當(dāng)?t?0時(shí),極限就是物體在時(shí)刻的瞬時(shí)速度。
三、數(shù)學(xué)運(yùn)用
例1物體作自由落體運(yùn)動(dòng),運(yùn)動(dòng)方程為,其中位移單位是m,時(shí)
間單位是s,,求:
(1)物體在時(shí)間區(qū)間s上的平均速度;
(2)物體在時(shí)間區(qū)間上的平均速度;
(3)物體在t=2s時(shí)的瞬時(shí)速度。
分析
解
(1)將?t=0.1代入上式,得:=2.05g=20.5m/s。
(2)將?t=0.01代入上式,得:=2.005g=20.05m/s。
(3)當(dāng)?t?0,2+?t?2,從而平均速度的極限為:
例2設(shè)一輛轎車在公路上作直線運(yùn)動(dòng),假設(shè)時(shí)的速度為,
求當(dāng)時(shí)轎車的瞬時(shí)加速度。
解
∴當(dāng)?t無(wú)限趨于0時(shí),無(wú)限趨于,即=。
練習(xí)
課本P12—1,2。
四、回顧小結(jié)
問(wèn)題1本節(jié)課你學(xué)到了什么?
1理解瞬時(shí)速度和瞬時(shí)加速度的定義;
2實(shí)際應(yīng)用問(wèn)題中瞬時(shí)速度和瞬時(shí)加速度的求解;
問(wèn)題2解決瞬時(shí)速度和瞬時(shí)加速度問(wèn)題需要注意什么?
注意當(dāng)?t?0時(shí),瞬時(shí)速度和瞬時(shí)加速度的極限值。
問(wèn)題3本節(jié)課體現(xiàn)了哪些數(shù)學(xué)思想方法?
2極限的思想方法。
3特殊到一般、從具體到抽象的推理方法。
五、課外作業(yè)
高中數(shù)學(xué)經(jīng)典教案篇6
一、教學(xué)目標(biāo)
知識(shí)與技能:
理解任意角的概念(包括正角、負(fù)角、零角)與區(qū)間角的概念。
過(guò)程與方法:
會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。
情感態(tài)度與價(jià)值觀:
1、提高學(xué)生的推理能力;
2、培養(yǎng)學(xué)生應(yīng)用意識(shí)。
二、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):
任意角概念的理解;區(qū)間角的集合的書寫。
教學(xué)難點(diǎn):
終邊相同角的集合的表示;區(qū)間角的集合的書寫。
三、教學(xué)過(guò)程
(一)導(dǎo)入新課
1、回顧角的定義
①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角。
②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
(二)教學(xué)新課
1、角的有關(guān)概念:
①角的定義:
角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
②角的名稱:
注意:
⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡(jiǎn)化成“α ”;
⑵零角的終邊與始邊重合,如果α是零角α =0°;
⑶角的概念經(jīng)過(guò)推廣后,已包括正角、負(fù)角和零角。
⑤練習(xí):請(qǐng)說(shuō)出角α、β、γ各是多少度?
2、象限角的概念:
①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說(shuō)這個(gè)角是第幾象限角。
例1、如圖⑴⑵中的角分別屬于第幾象限角?
【本文地址:http://mlvmservice.com/zuowen/115540.html】