2023年北師大版初中數(shù)學(xué)教案(9篇)

格式:DOC 上傳日期:2023-01-21 14:40:27
2023年北師大版初中數(shù)學(xué)教案(9篇)
時(shí)間:2023-01-21 14:40:27     小編:zdfb

作為一位不辭辛勞的人民教師,常常要根據(jù)教學(xué)需要編寫教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展。怎樣寫教案才更能起到其作用呢?教案應(yīng)該怎么制定呢?以下是小編收集整理的教案范文,僅供參考,希望能夠幫助到大家。

北師大版初中數(shù)學(xué)教案篇一

1、理解反比例函數(shù)的圖象是雙曲線,利用描點(diǎn)法畫出反比例函數(shù)的圖象,說出它的性質(zhì);

2、利用反比例函數(shù)的圖象解決有關(guān)問題。

1、經(jīng)歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質(zhì);

2、探索反比例函數(shù)的圖象的性質(zhì),體會用數(shù)形結(jié)合思想解數(shù)學(xué)問題。

一、創(chuàng)設(shè)情境

上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。

二、探究歸納

1、畫出函數(shù)的圖象。

分析畫出函數(shù)圖象一般分為列表、描點(diǎn)、連線三個(gè)步驟,在反比例函數(shù)中自變量x≠0。

解:

1、列表:這個(gè)函數(shù)中自變量x的取值范圍是不等于零的一切實(shí)數(shù),列出x與y的對應(yīng)值:

2、描點(diǎn):用表里各組對應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出在京各點(diǎn)點(diǎn)(—6,—1)、(—3,—2)、(—2,—3)等。

3、連線:用平滑的曲線將第一象限各點(diǎn)依次連起來,得到圖象的第一個(gè)分支;用平滑的曲線將第三象限各點(diǎn)依次連起來,得到圖象的另一個(gè)分支。這兩個(gè)分支合起來,就是反比例函數(shù)的圖象。

上述圖象,通常稱為雙曲線(hyperbola)。

提問這兩條曲線會與x軸、y軸相交嗎?為什么?

學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動手畫反比函數(shù)圖象,進(jìn)一步掌握畫函數(shù)圖象的步驟)。

學(xué)生討論、交流以下問題,并將討論、交流的結(jié)果回答問題。

1、這個(gè)函數(shù)的圖象在哪兩個(gè)象限?和函數(shù)的圖象有什么不同?

2、反比例函數(shù)(k≠0)的圖象在哪兩個(gè)象限內(nèi)?由什么確定?

3、聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?

反比例函數(shù)有下列性質(zhì):

(1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;

(2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。

注:

1、雙曲線的兩個(gè)分支與x軸和y軸沒有交點(diǎn);

2、雙曲線的兩個(gè)分支關(guān)于原點(diǎn)成中心對稱。

以上兩點(diǎn)性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實(shí)際意義?

在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時(shí)間少。

在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。

三、實(shí)踐應(yīng)用

例1若反比例函數(shù)的圖象在第二、四象限,求m的值。

分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個(gè)條件可解出m的值。

解由題意,得解得。

例2已知反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過的象限。

分析由于反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點(diǎn)在x軸的上方。

解因?yàn)榉幢壤瘮?shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經(jīng)過一、二、四象限。

例3已知反比例函數(shù)的圖象過點(diǎn)(1,—2)。

(1)求這個(gè)函數(shù)的解析式,并畫出圖象;

(2)若點(diǎn)a(—5,m)在圖象上,則點(diǎn)a關(guān)于兩坐標(biāo)軸和原點(diǎn)的對稱點(diǎn)是否還在圖象上?

分析(1)反比例函數(shù)的圖象過點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點(diǎn)、連線可畫出反比例函數(shù)的圖象;

(2)由點(diǎn)a在反比例函數(shù)的圖象上,易求出m的值,再驗(yàn)證點(diǎn)a關(guān)于兩坐標(biāo)軸和原點(diǎn)的對稱點(diǎn)是否在圖象上。

解(1)設(shè):反比例函數(shù)的解析式為:(k≠0)。

而反比例函數(shù)的圖象過點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。

所以,k=—2。

即反比例函數(shù)的解析式為:。

(2)點(diǎn)a(—5,m)在反比例函數(shù)圖象上,所以,

點(diǎn)a的坐標(biāo)為。

點(diǎn)a關(guān)于x軸的對稱點(diǎn)不在這個(gè)圖象上;

點(diǎn)a關(guān)于y軸的對稱點(diǎn)不在這個(gè)圖象上;

點(diǎn)a關(guān)于原點(diǎn)的對稱點(diǎn)在這個(gè)圖象上;

例4已知函數(shù)為反比例函數(shù)。

(1)求m的值;

(2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?

(3)當(dāng)—3≤x≤時(shí),求此函數(shù)的最大值和最小值。

解(1)由反比例函數(shù)的定義可知:解得,m=—2。

(2)因?yàn)椤?<0,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。

(3)因?yàn)樵诘趥€(gè)象限內(nèi),y隨x的增大而增大,

所以當(dāng)x=時(shí),y最大值=;

當(dāng)x=—3時(shí),y最小值=。

所以當(dāng)—3≤x≤時(shí),此函數(shù)的最大值為8,最小值為。

例5一個(gè)長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。

(1)寫出用高表示長的函數(shù)關(guān)系式;

(2)寫出自變量x的取值范圍;

(3)畫出函數(shù)的圖象。

解(1)因?yàn)?00=5xy,所以。

(2)x>0。

(3)圖象如下:

說明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個(gè)分支。

四、交流反思

本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。

1、反比例函數(shù)的圖象是雙曲線(hyperbola)。

2、反比例函數(shù)有如下性質(zhì):

(1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;

(2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。

五、檢測反饋

1、在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:

(1);(2)。

2、已知y是x的反比例函數(shù),且當(dāng)x=3時(shí),y=8,求:

(1)y和x的函數(shù)關(guān)系式;

(2)當(dāng)時(shí),y的值;

(3)當(dāng)x取何值時(shí)?

3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。

4、已知反比例函數(shù)經(jīng)過點(diǎn)a(2,—m)和b(n,2n),求:

(1)m和n的值;

(2)若圖象上有兩點(diǎn)p1(x1,y1)和p2(x2,y2),且x1<0<x2,試比較y1和y2的大小。

北師大版初中數(shù)學(xué)教案篇二

把方程兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,就相當(dāng)于把方程中的某些項(xiàng)改變符號后,從方程的一邊移到另一邊,這樣的變形叫做移項(xiàng)。

一、教材內(nèi)容分析

本節(jié)課是數(shù)學(xué)人教版七年級上冊第三章第二節(jié)第二小節(jié)的內(nèi)容。這是一節(jié)“概念加例題型”課,此種課型中的學(xué)習(xí)內(nèi)容一部分是概念,一部分是運(yùn)用前面的概念解決實(shí)際問題的例題。本節(jié)課主要內(nèi)容是利用移項(xiàng)解一元一次方程。是學(xué)生學(xué)習(xí)解一元一次方程的基礎(chǔ),這一部分內(nèi)容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基礎(chǔ)。這類課一般采用“導(dǎo)學(xué)導(dǎo)教,當(dāng)堂訓(xùn)練”的方式進(jìn)行,教師指導(dǎo)學(xué)生學(xué)習(xí)的重點(diǎn)一般不放在概念上,要特別留意學(xué)生運(yùn)用概念解題或做與例題類似的習(xí)題時(shí),對概念的理解是否到位。

二、教學(xué)目標(biāo):

1、知識與技能:

(1)找相等關(guān)系列一元一次方程;

(2)用移項(xiàng)解一元一次方程。

(3)掌握移項(xiàng)變號的基本原則

2、過程與方法:經(jīng)歷運(yùn)用方程解決實(shí)際問題的過程,發(fā)展抽象、概括、分析問題和解決問題的能力,認(rèn)識用方程解決實(shí)際問題的關(guān)鍵是建立相等關(guān)系。

3、情感、態(tài)度:通過具體情境引入新問題,在移項(xiàng)法則探究的過程中,培養(yǎng)學(xué)生合作意識,滲透化歸的思想。

三、學(xué)情分析

針對七年級學(xué)生學(xué)習(xí)熱情高,但觀察、分析、概括能力較弱的特點(diǎn),本節(jié)從實(shí)際問題入手,讓學(xué)生通過自己思考、動手,激發(fā)學(xué)生的求知欲,提高學(xué)生學(xué)習(xí)的興趣與積極性。在課堂教學(xué)中,學(xué)生主要采取自學(xué)、討論、思考、合作交流的學(xué)習(xí)方式,使學(xué)生真正成為課堂的主人,逐步培養(yǎng)學(xué)生觀察、概括、歸納的能力。

四、教學(xué)重點(diǎn):

利用移項(xiàng)解一元一次方程。

五、教學(xué)難點(diǎn):

移項(xiàng)法則的探究過程。

六、教學(xué)過程:

(一)情景引入

引例:請同學(xué)們思考這樣一個(gè)有趣的問題,我國民間流傳著許多趣味算題,多以順口溜的形式表達(dá),請看這樣一個(gè)數(shù)學(xué)問題:一群老頭去趕集,半路買了一堆梨,一人一個(gè)多一個(gè),一人兩個(gè)少兩個(gè),老頭和梨分別是( )

a.3個(gè)老頭,4個(gè)梨 b.4個(gè)老頭,3個(gè)梨 c.5個(gè)老頭,6個(gè)梨 d.7個(gè)老頭,8個(gè)梨

設(shè)計(jì)意圖:大部分同學(xué)會用算術(shù)法(答案代入法)來解答的,而這類問題我們?nèi)绾斡梅匠虂斫獯鹉兀考て饘W(xué)生求知的欲望,巧妙過渡,揭示課題。板書課題:解一元一次方程——移項(xiàng)

(二)出示學(xué)習(xí)目標(biāo)

1、理解移項(xiàng)法,明確移項(xiàng)法的依據(jù),會解形如ax+b=cx+d類型 的一元一次方程。

2、會建立方程解決簡單的實(shí)際問題。

設(shè)計(jì)意圖:這兩個(gè)目標(biāo)的達(dá)成,也驗(yàn)證了本節(jié)課學(xué)生自學(xué)的效果,這也是本節(jié)課的教學(xué)重難點(diǎn)。

(三)導(dǎo)教導(dǎo)學(xué)

1、出示自學(xué)指導(dǎo)

自學(xué)教材問題2到例3的內(nèi)容,思考以下問題:

(1)問題2中這批書的總數(shù)有哪幾種表示法?它們之間有什么關(guān)系?本題可作為列方程的依據(jù)的等量關(guān)系是什么?

(2)什么是移項(xiàng)?移項(xiàng)的依據(jù)是什么?移項(xiàng)時(shí)應(yīng)該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項(xiàng)起了什么作用?自學(xué)例3后請歸納解這類一元一次方程的步驟(8分鐘后,比誰能仿照問題2和例3的格式正確解答問題)

2、學(xué)生自學(xué)

學(xué)生根據(jù)自學(xué)提綱進(jìn)行獨(dú)立學(xué)習(xí),教師巡視,對自學(xué)速度慢的、自學(xué)能力差的、注意力不夠集中的學(xué)生給以暗示和幫扶,有利于自學(xué)后的成果展示。

3、交流展示(小組合作展示)

(合作交流一)教材問題2中這批書的總數(shù)有哪幾種表示法?它們之間有什么關(guān)系?本題哪個(gè)相等關(guān)系可作為列方程的依據(jù)呢?

問題2:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本。這個(gè)班有多少學(xué)生?

1)設(shè)未知數(shù):設(shè)這個(gè)班有x名學(xué)生,根據(jù)兩種不同分法這批書的總數(shù)就有兩種表示方法,即這批書共有(3 x+20)本或(4x-25)本。

2)找相等關(guān)系:這批書的總數(shù)是一個(gè)定值,表示同一個(gè)量的兩個(gè)不同的式子相等。(板書)

3)根據(jù)等量關(guān)系列方程: 3x+20 = 4x-25(板書)

【總結(jié)提升】解決“分配問題”應(yīng)用題的列方程的基本要點(diǎn):

a.找出能貫穿應(yīng)用題始終的一個(gè)不變的量。

b.用兩個(gè)不同的式子去表示這個(gè)量。

c.由表示這個(gè)不變的量的兩個(gè)式子相等列出方程。

設(shè)計(jì)意圖:因?yàn)樵谧詫W(xué)提綱的引領(lǐng)下,每個(gè)小組自主學(xué)習(xí)的效果不同,反饋的意見不同,所以在展示中首先要展示學(xué)生對課本例題的理解思路。采取主動自愿的方式,一個(gè)小組主講,其它小組補(bǔ)充。

(變式訓(xùn)練1)某學(xué)校組織學(xué)生共同種一批樹,如果每人種5棵,則剩下3棵;如果每人種6棵,則缺3棵樹苗,求參與種樹的人數(shù)

(只設(shè)列即可)

(變式訓(xùn)練2)我國民間流傳著許多趣味算題,多以順口溜的形式表達(dá),請看這樣一個(gè)數(shù)學(xué)問題:一群老頭去趕集,半路買了一堆梨,一人一個(gè)多一個(gè),一人兩個(gè)少兩個(gè),老頭和梨各多少?

設(shè)計(jì)意圖:檢查提問學(xué)生對“分配問題”應(yīng)用題掌握的情況,學(xué)生回答后教師板書所列方程為后面教學(xué)做好鋪墊。學(xué)生會帶著“如何解這類方程?”的好奇心過渡到下一個(gè)環(huán)節(jié)的學(xué)習(xí)。

(合作交流二)什么是移項(xiàng)?移項(xiàng)的依據(jù)是什么?移項(xiàng)時(shí)應(yīng)該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項(xiàng)起了什么作用?自學(xué)例3后請歸納解這類一元一次方程的步驟。

(板書 )把等式一邊的某項(xiàng)改變符號后,從等式的一邊移到另一邊,這種變形叫做移項(xiàng)。

《解一元一次方程——移項(xiàng)》教學(xué)設(shè)計(jì)(魏玉英)

師:為什么等式(方程)可以這樣變形?依據(jù)什么?

(出示)依據(jù)等式的基本性質(zhì)

即:等式兩邊都加上或減去同一個(gè)數(shù)或同一個(gè)整式,所得結(jié)果仍是等式。

師:解一元一次方程中“移項(xiàng)”起了什么作用?

(出示) 通過移項(xiàng),使等號左邊僅含未知數(shù)的項(xiàng),等號右邊僅含常數(shù)的項(xiàng),使方程更接近x=a的形式。(與課題對照滲透轉(zhuǎn)化思想)

(基礎(chǔ)訓(xùn)練)搶答:判斷下列移項(xiàng)是否正確,如有錯誤,請修改

《解一元一次方程——移項(xiàng)》教學(xué)設(shè)計(jì)(魏玉英)

設(shè)計(jì)理念:讓各個(gè)小組憑著勢力去搶答。這五個(gè)習(xí)題重點(diǎn)考察學(xué)生對移項(xiàng)的掌握是本節(jié)課的重難點(diǎn),習(xí)題分層設(shè)計(jì)且成梯度分布。

【歸納板書】 解“ax+b=cx+d”型的一元一次方程的步驟:

(1) 移項(xiàng),

(2) 合并同類項(xiàng),

(3) 系數(shù)化為1

(綜合訓(xùn)練) 解下列方程(任選兩題)

設(shè)計(jì)理念:第(2)、(3)兩題未知數(shù)系數(shù)是相同類型的,所以讓學(xué)生任選一題即可。通過綜合訓(xùn)練能讓學(xué)生更進(jìn)一步鞏固用移項(xiàng)和合并同類項(xiàng)去解方程了。

(中考試練)若x=2是關(guān)于x的方程2x+3m-1=0的解,則m的值為

設(shè)計(jì)理念:通過本題的訓(xùn)練讓學(xué)生明確中考在本節(jié)的考點(diǎn),同時(shí)激勵學(xué)生在數(shù)學(xué)知識的學(xué)習(xí)中要抓住知識的核心和重點(diǎn)。

(四)我總結(jié)、我提高:

通過本節(jié)課的學(xué)習(xí)我收獲了。

設(shè)計(jì)意圖:通過小組之間互相談收獲的方式進(jìn)行課堂小結(jié),讓學(xué)生相互檢查本節(jié)課的學(xué)習(xí)效果??梢砸龑?dǎo)學(xué)生從本節(jié)課獲得的知識、解題的思想方法、學(xué)習(xí)的技巧等方面交流意見。

(五)當(dāng)堂檢測(50分)

1、下列方程變形正確的是( )

a.由-2x=6, 得x=3

b.由-3=x+2, 得x=-3-2

c.由-7x+3=x-3, 得(-7+1)x=-3-3

d.由5x=2x+3, 得x=-1

2、一批游客乘汽車去觀看“上海世博會”。如果每輛汽車乘48人,那么還多4人;如果每輛汽車乘50人,那么還有6個(gè)空位,求汽車和游客各有多少?(只設(shè)出未知數(shù)和列出方程即可)

3、(20分)已知x=1是關(guān)于x的方程3m+8x=m+x的解,求m的值。

(師生活動)學(xué)生獨(dú)立答題,教師巡回檢查,對先答完的學(xué)生進(jìn)行及時(shí)批改,并把得滿分的學(xué)生作為小老師對后解答完的學(xué)生的檢測進(jìn)行評定,最后老師進(jìn)行小結(jié)。

(六)實(shí)踐活動

請每一位同學(xué)用自己的年齡編一 道“ax+b=cx+d”型的方程應(yīng)用題,并解答。先在組內(nèi)交流,選出組內(nèi)最有創(chuàng)意的一個(gè)記在題卡上,自習(xí)在全班進(jìn)行展示 。

設(shè)計(jì)意圖:

讓學(xué)生課后完成,讓學(xué)生深深體會到數(shù)學(xué)來源于生活而又服務(wù)于生活,體現(xiàn)了數(shù)學(xué)知識與實(shí)際相結(jié)合。

北師大版初中數(shù)學(xué)教案篇三

(一)知識教學(xué)點(diǎn)

1、掌握的三要素,能正確畫出。

2、能將已知數(shù)在上表示出來,能說出上已知點(diǎn)所表示的數(shù)。

(二)能力訓(xùn)練點(diǎn)

1、使學(xué)生受到把實(shí)際問題抽象成數(shù)學(xué)問題的訓(xùn)練,逐步形成應(yīng)用數(shù)學(xué)的意識。

2、對學(xué)生滲透數(shù)形結(jié)合的思想方法。

(三)德育滲透點(diǎn)

使學(xué)生初步了解數(shù)學(xué)來源于實(shí)踐,反過來又服務(wù)于實(shí)踐的辯證唯物主義觀點(diǎn)。

(四)美育滲透點(diǎn)

通過畫,給學(xué)生以圖形美的教育,同時(shí)由于數(shù)形的結(jié)合,學(xué)生會得到和諧美的享受。

1、教學(xué)方法:根據(jù)教師為主導(dǎo),學(xué)生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導(dǎo)—反饋矯正”的教學(xué)方法。

2、學(xué)生學(xué)法:動手畫,動腦概括的三要素,動手、動腦做練習(xí)。

1、重點(diǎn):正確掌握畫法和用上的點(diǎn)表示有理數(shù)。

2、難點(diǎn):有理數(shù)和上的點(diǎn)的對應(yīng)關(guān)系。

1課時(shí)

電腦、投影儀、自制膠片。

師生同步畫,學(xué)生概括三要素,師出示投影,生動手動腦練習(xí)

(一)創(chuàng)設(shè)情境,引入新課

師:大家知識溫度計(jì)的用途是什么?

生:溫度計(jì)可以測量溫度

(出示投影1)

三個(gè)溫度計(jì)。其中一個(gè)溫度計(jì)的液面在0上20個(gè)刻度,一個(gè)溫度計(jì)的液面在0下5個(gè)刻度,一個(gè)溫度計(jì)的液面在0刻度。

師:三個(gè)溫度計(jì)所表示的溫度是多少?

生:2℃,-5℃,0℃。

我們能否用類似溫度計(jì)的圖形表示有理數(shù)呢?

這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容—(板書課題)。

【教法說明】從溫度計(jì)用標(biāo)有讀數(shù)的刻度來表示溫度的高低這個(gè)事實(shí)出發(fā),引出本節(jié)課所要學(xué)的內(nèi)容—。再從溫度計(jì)這個(gè)實(shí)物形象抽象出來研究。既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又使學(xué)生受到把實(shí)際問題抽象成數(shù)學(xué)問題的訓(xùn)練,培養(yǎng)了用數(shù)學(xué)的意識。

(二)探索新知,講授新課

1、的畫法

與溫度計(jì)類似,可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點(diǎn)表示正數(shù)、負(fù)數(shù)和零,具體做法如下:

第一步:畫直線定原點(diǎn)原點(diǎn)表示0(相當(dāng)于溫度計(jì)上的0℃)。

第二步:規(guī)定從原點(diǎn)向右的為正方向那么相反的方向(從原點(diǎn)向左)則為負(fù)方向。(相當(dāng)于溫度計(jì)上℃以上為正,0℃以下為負(fù))。

第三步:選擇適當(dāng)?shù)拈L度為單位長度(相當(dāng)于溫度計(jì)上每1℃占1小格的長度)。

【教法說明】教師邊講解邊示范,學(xué)生跟著一起畫圖。培養(yǎng)學(xué)生動手、動腦和實(shí)際操作能力,同時(shí),把類比作為一種重要方法貫穿于概念形成過程的始終,讓學(xué)生在認(rèn)知過程中領(lǐng)悟這種思想方法。

讓學(xué)生觀察畫好的直線,思考以下問題:

(出示投影1)

(1)原點(diǎn)表示什么數(shù)?

(2)原點(diǎn)右方表示什么數(shù)?原點(diǎn)左方表示什么數(shù)?

(3)表示+2的點(diǎn)在什么位置?表示-1的點(diǎn)在什么位置?

(4)原點(diǎn)向右0.5個(gè)單位長度的a點(diǎn)表示什么數(shù)?原點(diǎn)向左個(gè)單位長度的b點(diǎn)表示什么數(shù)?

根據(jù)老師畫圖的步驟,學(xué)生思考在一條水平的直線上都畫出什么?然后歸納出的定義。

學(xué)生活動:同學(xué)們思考,并要求同桌相互敘述,互相糾正補(bǔ)充,語句通順后舉手回答。大家思考準(zhǔn)備更正或補(bǔ)充。

北師大版初中數(shù)學(xué)教案篇四

教學(xué)目標(biāo):

1、理解切線的判定定理,并學(xué)會運(yùn)用。

2、知道判定切線常用的方法有兩種,初步掌握方法的選擇。

教學(xué)重點(diǎn):

切線的判定定理和切線判定的方法。

教學(xué)難點(diǎn):

切線判定定理中所闡述的圓的切線的兩大要素:一是經(jīng)過半徑外端;二是直線垂直于這條半徑;學(xué)生開始時(shí)掌握不好并極容易忽視一。

教學(xué)過程:

一、復(fù)習(xí)提問

【教師】

問題1.怎樣過直線l上一點(diǎn)p作已知直線的垂線?

問題2.直線和圓有幾種位置關(guān)系?

問題3.如何判定直線l是⊙o的切線?

啟發(fā):

(1)直線l和⊙o的公共點(diǎn)有幾個(gè)?

(2)圓心o到直線l的距離與半徑的數(shù)量關(guān)系 如何?

學(xué)生答完后,教師強(qiáng)調(diào)(2)是判定直線 l是⊙o的切線的常用方法,即: 定理:圓心o到直線l的距離oa 等于圓的半 (如圖1,投影顯示)

再啟發(fā):若把距離oa理解為 oa⊥l,oa=r;把點(diǎn)a理解為半徑在圓上的端點(diǎn) ,請同學(xué)們試將上面定理用新的理解改寫成新的命題,此命題就 是這節(jié)課要學(xué)的“切線的判定定理”(板書課題)

二、引入新課內(nèi)容

【學(xué)生】命題:經(jīng)過半徑的在圓上的端點(diǎn)且垂直于半 徑的直線是圓的切線。

證明定理:啟發(fā)學(xué)生分清命題的題設(shè)和結(jié)論,寫出已 知、求證,分析證明思路,閱讀課本p60。

定理:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線。

定理的證明:已知:直線l經(jīng)過半徑oa的外端點(diǎn)a,直線l⊥oa,

求證:直線l是⊙o的切線

證明:略

定理的符號語言:∵直線l⊥oa,直線l經(jīng)過半徑oa的外端a

∴直線l為⊙o的切線。

是非題:

(1)垂直于圓的半徑的直線一定是這個(gè)圓的切線。 ( )

(2)過圓的半徑的外端的直線一定是這個(gè)圓的切線。 ( )

三、例題講解

例1、已知:直線ab經(jīng)過⊙o上的點(diǎn)c,并且oa=ob,ca=cb。

求證:直線ab是⊙o的切線。

引導(dǎo)學(xué)生分析:由于ab過⊙o上的點(diǎn)c,所以連結(jié)oc,只要證明ab⊥oc即可。

證明:連結(jié)oc.

∵oa=ob,ca=cb,

∴ab⊥oc

又∵直線ab經(jīng)過半徑oc的外端c

∴直線ab是⊙o的切線。

練習(xí)1、如圖,已知⊙o的半徑為r,直線ab經(jīng)過⊙o上的點(diǎn)a,并且ab=r,∠oba=45°。求證:直線ab是⊙o的切線。

練習(xí)2、如圖,已知ab為⊙o的直徑,c為⊙o上一點(diǎn),ad⊥cd于點(diǎn)d,ac平分∠bad。

求證:cd是⊙o的切線。

例2、如圖,已知ab是⊙o的直徑,點(diǎn)d在ab的延長線上,且bd=ob,過點(diǎn)d作射線de,使∠ade=30°。

求證:de是⊙o的切線。

思考題:在rt△abc中,∠b=90°,∠a的平分線交bc于d,以d為圓心,bd為半徑作圓,問⊙d的切線有幾條?是哪幾條?為什么?

四、小結(jié)

1、切線的判定定理。

2、判定一條直線是圓的切線的方法:

①定義:直線和圓有唯一公共點(diǎn)。

②數(shù)量關(guān)系:直線到圓心的距離等于該圓半徑(即d = r)。[

③切線的判定定理:經(jīng)過半徑外端且與這條半徑垂直的直線是圓的切線。

3、證明一條直線是圓的切線的輔助線和證法規(guī)律。

凡是已知公共點(diǎn)(如:直線經(jīng)過圓上的點(diǎn);直線和圓有一個(gè)公共點(diǎn);)往往是"連結(jié)"圓心和公共點(diǎn),證明"垂直"(直線和半徑);若不知公共點(diǎn),則過圓心作一條線段垂直于直線,證明所作的線段等于半徑。即已知公共點(diǎn),“連半徑,證垂直”;不知公共點(diǎn),則“作垂直,證半徑”。

五、布置作業(yè):略

《切線的判定》教后體會

本課例《切線的判定》作為市考試院調(diào)研課型兼區(qū)級研討課,我以“教師為引導(dǎo),學(xué)生為主體”的二期課改的理念出發(fā),通過學(xué)生自我活動得到數(shù)學(xué)結(jié)論作為教學(xué)重點(diǎn),呈現(xiàn)學(xué)生真實(shí)的思維過程為教學(xué)宗旨,進(jìn)行教學(xué)設(shè)計(jì),目的在于讓學(xué)生對知識有一個(gè)本質(zhì)的、有效的理解。本節(jié)課切實(shí)反映了平時(shí)的教學(xué)情況,為前來調(diào)研和研討的老師提供了真實(shí)的樣本。反思本節(jié)課,有以下幾個(gè)成功與不足之處:

成功之處:

一、 教材的二度設(shè)計(jì)順應(yīng)了學(xué)生的認(rèn)知規(guī)律

這批學(xué)生習(xí)慣于單一知識點(diǎn)的學(xué)習(xí),即得出一個(gè)知識點(diǎn),必須由淺入深反復(fù)進(jìn)行練習(xí),鞏固后方能加以提升與綜合,否則就會混淆概念或定理的條件和結(jié)論,導(dǎo)致錯誤,久之便會失去學(xué)習(xí)數(shù)學(xué)的興趣和信心。本教時(shí)課本上將切線判定定理和性質(zhì)定理的導(dǎo)出作為第一課時(shí),兩個(gè)定理的運(yùn)用和切線的兩種常用的判定方法作為第二課時(shí),學(xué)生往往會因第一時(shí)間得不到及時(shí)的鞏固,對定理本質(zhì)的東西不能很好地理解,在運(yùn)用時(shí)抓不住關(guān)鍵,解題僅僅停留在模仿層次上,接受能力薄弱的學(xué)生更是因知識點(diǎn)多不知所措,在云里霧里。二度設(shè)計(jì)將切線的判定方法作為第一課時(shí),切線的性質(zhì)定理以及兩個(gè)定理的綜合運(yùn)用作為第二課時(shí),這樣的設(shè)計(jì)即是對前面所學(xué)的“直線與圓相切的判定方法”的復(fù)習(xí),又是對后面學(xué)習(xí)綜合運(yùn)用兩個(gè)定理,合理選擇兩種方法判定切線作了鋪墊,教學(xué)呈現(xiàn)了一個(gè)循序漸進(jìn)、溫過知新的過程。從學(xué)生的反饋情況判斷,教學(xué)效果較為理想。

二、重視學(xué)生數(shù)感的培養(yǎng)呼應(yīng)了課改的理念

數(shù)感類似與語感、樂感、美感,擁有了感覺,知識便會融會貫通,學(xué)習(xí)就會輕松。擁有數(shù)感,不僅會對數(shù)學(xué)知識反應(yīng)靈敏,更會在生活中不知不覺運(yùn)用數(shù)學(xué)思維方式解決實(shí)際問題。本節(jié)課中,兩個(gè)例題由教師誘導(dǎo),學(xué)生發(fā)現(xiàn)完成的,而三個(gè)習(xí)題則完全放手讓學(xué)生去思考完成,不乏有不會做和做得復(fù)雜的學(xué)生,但在展示和交流中,撞擊出思維的火花,難以忘懷。讓學(xué)生嘗試總結(jié)規(guī)律,也是對學(xué)生能力的培養(yǎng),在本節(jié)課中,輔助線的規(guī)律是由學(xué)生得出,事實(shí)證明,學(xué)生有這樣的理解、概括和表達(dá)能力。通過思考得出正確的結(jié)論,這個(gè)結(jié)論往往是刻骨銘心的,長此以往,對數(shù)和形的感覺會越來越好。

北師大版初中數(shù)學(xué)教案篇五

1、引導(dǎo)同學(xué)們領(lǐng)略數(shù)學(xué)隱藏在生活中的迷人之處;

2、培養(yǎng)同學(xué)們對數(shù)學(xué)的興趣。

生活中的數(shù)學(xué)。

啟發(fā)探索、小游戲

多媒體、剪紙、小剪刀三把

師:同學(xué)們,從小學(xué)到現(xiàn)在我們都在跟數(shù)學(xué)打交道,能說說大家對數(shù)學(xué)的感受嗎?

學(xué)生討論。

師:同學(xué)們,不管以前你們喜不喜歡數(shù)學(xué),但老師要告訴大家,其實(shí)數(shù)學(xué)很有趣,它不僅出現(xiàn)在我們的課本,更隱藏在生活的每個(gè)角落,只要我們仔細(xì)探究,就會發(fā)現(xiàn)它在我們的周圍閃著迷人的光,希望大家從今天開始,喜歡數(shù)學(xué),與數(shù)學(xué)成為好朋友,好好領(lǐng)略好朋友帶給我們的美的享受。事不宜遲,現(xiàn)在我們馬上開始我們的數(shù)學(xué)探究之旅。首先,我們來玩?zhèn)€小游戲:

請大家拿出筆和紙,根據(jù)下面的步驟來操作,你會有驚人的發(fā)現(xiàn)。(ppt演示)

[1]首先,隨意挑一個(gè)數(shù)字(0、1、2、3、4、5、6、7)

[2]把這個(gè)數(shù)字乘上2

[3]然后加上5

[4]再乘以50

[5]如果你今年的生日已經(jīng)過了,把得到的數(shù)目加上1759;如果還沒過,加1758

[6]最后一個(gè)步驟,用這個(gè)數(shù)目減去你出生的那一年(公元的)

師:發(fā)現(xiàn)了什么?第一個(gè)數(shù)字是不是你一開始選擇的數(shù)字呢?那接下來的兩個(gè)呢?如無意外,就是你的年齡了。是不是很有趣呢?至于為什么會這樣課后大家仔細(xì)想想自然就明白啦,這就是數(shù)學(xué)的魅力所在了。接下來我們來嘗試幫助格尼斯堡的居民解決下面的問題(ppt演示):格尼斯堡建造在普蕾爾河岸上。7座橋連接著兩個(gè)島和河岸:

居民們的一項(xiàng)普遍愛好是嘗試在一次行走中跨過所有的7座橋而不重復(fù)經(jīng)過任何一座橋。同學(xué)們,你們能幫助他們實(shí)現(xiàn)這個(gè)想法嗎?拿出紙和筆設(shè)計(jì)的路線。

學(xué)生思考設(shè)計(jì)。

師:同學(xué)們行嗎?事實(shí)上,著名數(shù)學(xué)家歐拉已經(jīng)證明不能解決這個(gè)問題了,可是這是為什么呢?別急,我們繼續(xù)看下去。

1944年的空襲,毀壞了大多數(shù)的舊橋,格尼斯堡在河上重新建了5座橋:

現(xiàn)在請同學(xué)們再嘗試一下,在一次行走中跨過所有的5座橋而不重復(fù)經(jīng)過任何一座橋。

學(xué)生思考。

師:同學(xué)們,這次行得通了吧?那么為什么呢?有沒有同學(xué)可以說一下他的想法?

其實(shí),我們的歐拉大師經(jīng)過研究大量類似的網(wǎng)絡(luò),證明了這樣的事實(shí)(ppt演示):要走完一條路線而其中每一段行程只許經(jīng)過一次,只有當(dāng)奇數(shù)結(jié)點(diǎn)的數(shù)目是0或2時(shí)才是有可能的,在其他情況下,如果不走回頭路,就不能歷遍整個(gè)網(wǎng)絡(luò)。

他還發(fā)現(xiàn):如果有兩個(gè)奇結(jié)點(diǎn),那么經(jīng)過整個(gè)路線的形成必須從一個(gè)奇結(jié)點(diǎn)開始,到另一個(gè)奇結(jié)點(diǎn)結(jié)束。

師:我們來看一下是不是這樣的?第一個(gè)圖奇結(jié)點(diǎn)的個(gè)數(shù)為3,第二個(gè)圖奇結(jié)點(diǎn)的個(gè)數(shù)減少到2個(gè)了,看來真的是這樣的。

現(xiàn)在請同學(xué)們自己在練習(xí)本上解決這個(gè)問題:(ppt演示)

下面是一幅農(nóng)場的大門的圖。如果筆不離紙,又不重復(fù)經(jīng)過任一條線,有沒有可能畫成它?

學(xué)生思考討論。

師:我們看到它的奇結(jié)點(diǎn)個(gè)數(shù)為4,由歐拉的證明我們知道不能一筆畫成。

那如果農(nóng)場主將門的形狀做成這樣呢?(ppt演示)

學(xué)生嘗試。

師:是不是可以啦,為什么呢?

生:奇結(jié)點(diǎn)個(gè)數(shù)為2。

師:這種不用走回頭路而歷遍整條線路的情況,不僅僅具有趣味性,在現(xiàn)實(shí)生活中具有很重要的實(shí)用性,比如,我們的郵遞員和煤氣抄表員,不走回頭路意味著可以節(jié)省很多寶貴的時(shí)間。看來,數(shù)學(xué)并不像某些時(shí)候想的那樣沒什么用處了吧?

下面我們繼續(xù)我們的奧秘之類吧。

今天我們班有同學(xué)生日嗎?如果你生日,爸爸媽媽給你買了一個(gè)正方形的蛋糕,你要把它切成不同形狀的平均大小的7塊,怎么切?能行嗎?嘗試一下。

其實(shí)很簡單,你只需要把正方形的周邊(即周長)分成7個(gè)等長,定出蛋糕的中心,從周邊劃分等長的標(biāo)記切向中電,(如圖所示)即可。

為什么呢?這里我們用到三角形等高等底面積相等的性質(zhì)。

吃完了蛋糕,我們來觀賞一下百合花。(ppt演示):

一個(gè)鄉(xiāng)村的池塘里種了美麗的百合花,百合花生長得很快,使它們覆蓋的面積每天增加一倍。30天后,長滿了整個(gè)池塘,那么池塘只被百合花覆蓋一半時(shí)是多少天呢?同學(xué)們,你知道嗎?

學(xué)生討論。

師:答案是29天,多么神奇,是吧?潛意識里我們很難接受答案就是29天,只與30天差一天。但用數(shù)學(xué)我們很容易很清楚地知道是29天,奧秘就在“它們覆蓋的面積每天增加一倍”這句話里面。你看,數(shù)學(xué)是多么聰慧、多么神奇的家伙!

北師大版初中數(shù)學(xué)教案篇六

本節(jié)的重點(diǎn)是的性質(zhì)和判定定理。是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是“有一組鄰邊相等”,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學(xué)習(xí)的正方形的基礎(chǔ)。

本節(jié)的難點(diǎn)是性質(zhì)的靈活應(yīng)用。由于是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時(shí)還具有自己獨(dú)特的性質(zhì)。如果得到一個(gè)平行四邊形是,就可以得到許多關(guān)于邊、角、對角線的條件,在實(shí)際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,常常讓許多學(xué)生手足無措,教師在教學(xué)過程中應(yīng)給予足夠重視。

根據(jù)本節(jié)內(nèi)容的特點(diǎn)和與平行四邊形的關(guān)系,建議教師在教學(xué)過程中注意以下問題:

1、的知識,學(xué)生在小學(xué)時(shí)接觸過一些,可由小學(xué)學(xué)過的知識作為引入。

2、在現(xiàn)實(shí)中的實(shí)例較多,在講解的性質(zhì)和判定時(shí),教師可自行準(zhǔn)備或由學(xué)生準(zhǔn)備一些生活實(shí)例來進(jìn)行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學(xué)生的參與感又鞏固了所學(xué)的知識。

3、如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學(xué)生按照教材148頁圖4-33所示,制作一個(gè)平行四邊形作為教學(xué)過程中的道具,既增強(qiáng)了學(xué)生的動手能力和參與感,有在教學(xué)中有切實(shí)的體例,使學(xué)生對知識的掌握更輕松些。

4、在對性質(zhì)的講解中,教師可將學(xué)生分成若干組,每個(gè)學(xué)生分別對事先準(zhǔn)備后的圖形進(jìn)行邊、角、對角線的測量,然后在組內(nèi)進(jìn)行整理、歸納。

5、由于和的性質(zhì)定理證明比較簡單,教師可引導(dǎo)學(xué)生分析思路,由學(xué)生來進(jìn)行具體的證明。

6、在性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。

1.掌握概念,知道與平行四邊形的關(guān)系。

2.掌握的性質(zhì)。

3.通過運(yùn)用知識解決具體問題,提高分析能力和觀察能力。

4.通過教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)興趣。

5.根據(jù)平行四邊形與矩形、的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想。

6.通過性質(zhì)的學(xué)習(xí),體會的圖形美。

觀察分析討論相結(jié)合的方法

1.教學(xué)重點(diǎn):的性質(zhì)定理。

2.教學(xué)難點(diǎn):把的性質(zhì)和直角三角形的知識綜合應(yīng)用。

3.疑點(diǎn):與矩形的性質(zhì)的區(qū)別。

1課時(shí)

教具(做一個(gè)短邊可以運(yùn)動的平行四邊形)、投影儀和膠片,常用畫圖工具

教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時(shí)點(diǎn)撥

【復(fù)習(xí)提問】

1.什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?

2.矩形中對角線與大邊的夾角為,求小邊所對的兩條對角線的夾角。

3.矩形的一個(gè)角的平分線把較長的邊分成、,求矩形的周長。

【引入新課】

我們已經(jīng)學(xué)習(xí)了一種特殊的平行四邊形——矩形,其實(shí)還有另外的特殊平行四邊形,這時(shí)可將事先按課本中圖4-38做成的一個(gè)短邊也可以活動的教具進(jìn)行演示,如圖,改變平行四邊形的邊,使之一組鄰進(jìn)相等,引出概念。

【講解新課】

1.定義:有一組鄰邊相等的平行四邊形叫做。

講解這個(gè)定義時(shí),要抓住概念的本質(zhì),應(yīng)突出兩條:

(1)強(qiáng)調(diào)是平行四邊形。

(2)一組鄰邊相等。

2.的性質(zhì):

教師強(qiáng)調(diào),既然是特殊的平行四邊形,因此它就具有平行四邊形的一切性質(zhì),此外由于它比平行四邊形多了“一組鄰邊相等”的條件,和矩形類似,也比平行四邊形增加了一些特殊性質(zhì)。

下面研究的性質(zhì):

師:同學(xué)們根據(jù)的定義結(jié)合圖形猜一下有什么性質(zhì)(讓學(xué)生們討論,并引導(dǎo)學(xué)生分別從邊、角、對角線三個(gè)方面分析)。

生:因?yàn)槭怯幸唤M鄰邊相等的平行四邊形,所以根據(jù)平行四邊形對邊相等的性質(zhì)可以得到。

性質(zhì)定理1:的四條邊都相等。

由的四條邊都相等,根據(jù)平行四邊形對角線互相平分,可以得到

性質(zhì)定理2:的對角線互相垂直并且每一條對角線平分一組對角。

引導(dǎo)學(xué)生完成定理的規(guī)范證明。

師:觀察右圖,被對角線分成的四個(gè)直角三角形有什么關(guān)系?

生:全等。

師:它們的底和高和兩條對角線有什么關(guān)系?

生:分別是兩條對角線的一半。

師:如果設(shè)的兩條對角線分別為、,則的面積是什么?

生:

教師指出當(dāng)不易求出對角線長時(shí),就用平行四邊形面積的一般計(jì)算方法計(jì)算面積。

例2已知:如右圖,是△的角平分線,交于,交于。

求證:四邊形是。

(引導(dǎo)學(xué)生用定義來判定。)

例3已知的邊長為,,對角線,相交于點(diǎn),如右圖,求這個(gè)的對角線長和面積。

(1)按教材的方法求面積。

(2)還可以引導(dǎo)學(xué)生求出△一邊上的高,即的高,然后用平行四邊形的面積公式計(jì)算的面積。

【總結(jié)、擴(kuò)展】

1.小結(jié):(打出投影)(圖4)

(1)、平行四邊形、四邊形的從屬關(guān)系:

(2)性質(zhì):圖5

①具有平行四邊形的所有性質(zhì)。

②特有性質(zhì):四條邊相等;對角線互相垂直,且平分每一組對角。

教材p158中6、7、8,p196中10

標(biāo)題

定義……

性質(zhì)例2…… 小結(jié):

性質(zhì)定理1:……例3…… ……

性質(zhì)定理2:……

教材p151中1、2、3

1.的兩條對角線長分別是3和4,則周長和面積分別是___________、___________。

2.周長為80,一對角線為20,則相鄰兩角的度數(shù)為___________、____________。

北師大版初中數(shù)學(xué)教案篇七

教學(xué)目標(biāo):

(1)能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

(2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣

重點(diǎn)難點(diǎn):

能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

教學(xué)過程:

一、試一試

1、設(shè)矩形花圃的垂直于墻的一邊ab的長為xm,先取x的一些值,算出矩形的另一邊bc的長,進(jìn)而得出矩形的面積ym2.試將計(jì)算結(jié)果填寫在下表的空格中,

2.x的值是否可以任意???有限定范圍嗎?

3、我們發(fā)現(xiàn),當(dāng)ab的長(x)確定后,矩形的面積(y)也隨之確定, y是x的函數(shù),試寫出這個(gè)函數(shù)的關(guān)系式,

對于1.,可讓學(xué)生根據(jù)表中給出的ab的長,填出相應(yīng)的bc的長和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對前面提出的問題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見,達(dá)成共識:當(dāng)ab的長為5cm,bc的長為10m時(shí),圍成的矩形面積最大;最大面積為50m2。 對于2,可讓學(xué)生分組討論、交流,然后各組派代表發(fā)表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0<x p="" <10)就是所求的函數(shù)關(guān)系式。<="" <x="" 對于3,教師可提出問題,(1)當(dāng)ab="xm時(shí),bc長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0"

二、提出問題

某商店將每件進(jìn)價(jià)為8元的某種商品按每件10元出售,一天可銷出約100件。該店想通過降低售價(jià)、增加銷售量的辦法來提高利潤,經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低0.1元,其銷售量可增加10件。將這種商品的售價(jià)降低多少時(shí),能使銷售利潤最大? 在這個(gè)問題中,可提出如下問題供學(xué)生思考并回答:

1、商品的利潤與售價(jià)、進(jìn)價(jià)以及銷售量之間有什么關(guān)系?

[利潤=(售價(jià)-進(jìn)價(jià))×銷售量]

2、如果不降低售價(jià),該商品每件利潤是多少元?一天總的利潤是多少元?

[10-8=2(元),(10-8)×100=200(元)]

3、若每件商品降價(jià)x元,則每件商品的利潤是多少元?一天可銷

售約多少件商品?

[(10-8-x);(100+100x)]

4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,

[x的值不能任意取,其范圍是0≤x≤2]

5、若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。

[y=(10-8-x) (100+100x)(0≤x≤2)]

將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0<x

y=-2x2+20x(0<x<10)……(1) p="" (0≤x≤2)……(2)

三、觀察;概括

1、教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出以下問題讓學(xué)生思考回答;

(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)?

(各有1個(gè))

(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式? (分別是二次多項(xiàng)式)

(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)?

(都是用自變量的二次多項(xiàng)式來表示的)

(4)本章導(dǎo)圖中的問題以及p1頁的問題2有什么共同特點(diǎn)? 讓學(xué)生討論、交流,發(fā)表意見,歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。

2、二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng)。

四、課堂練習(xí)

1、(口答)下列函數(shù)中,哪些是二次函數(shù)?

(1)y=5x+1 (2)y=4x2-1

(3)y=2x3-3x2 (4)y=5x4-3x+1

2.p3練習(xí)第1,2題。

五、小結(jié)

1、請敘述二次函數(shù)的定義。

2,許多實(shí)際問題可以轉(zhuǎn)化為二次函數(shù)來解決,請你聯(lián)系生活實(shí)際,編一道二次函數(shù)應(yīng)用題,并寫出函數(shù)關(guān)系式。

六、作業(yè):略

北師大版初中數(shù)學(xué)教案篇八

1、使學(xué)生認(rèn)識字母表示數(shù)的意義,了解字母表示數(shù)是數(shù)學(xué)的一大進(jìn)步;

2、了解代數(shù)式的概念,使學(xué)生能說出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系;

3、通過對用字母表示數(shù)的講解,初步培養(yǎng)學(xué)生觀察和抽象思維的能力;

4、通過本節(jié)課的教學(xué),使學(xué)生深刻體會從特殊到一般的的數(shù)學(xué)思想方法。

1、 知識結(jié)構(gòu):本小節(jié)先回顧了小學(xué)學(xué)過的字母表示的兩種實(shí)例,一是運(yùn)算律,二是公式,從中看出字母表示數(shù)的優(yōu)越性,進(jìn)而引出代數(shù)式的概念。

2、教學(xué)重點(diǎn)分析:教科書,介紹了小學(xué)用字母表示數(shù)的實(shí)例,一個(gè)是運(yùn)算律,一個(gè)是常用公式,上述兩種例子應(yīng)用廣泛,且能很好地體現(xiàn)用字母表示數(shù)所具有的簡明、普遍的優(yōu)越性,用字母表示是數(shù)學(xué)從算術(shù)到代數(shù)的一大進(jìn)步,是代數(shù)的顯著特點(diǎn)。運(yùn)用算術(shù)的方法解決問題,是小學(xué)學(xué)生的思維方法 ,現(xiàn)在,從具體的數(shù)過渡到用字母表示數(shù),滲透了抽象概括的思維方法,在認(rèn)識上是一個(gè)質(zhì)的飛躍。對代數(shù)式的概念課文沒有直接給出,而是用實(shí)例形象地說明了代數(shù)式的概念。對代數(shù)式的概念可以從三個(gè)方面去理解:

(1)從具體的數(shù)到用字母表示數(shù),是抽象思維的開始,體現(xiàn)了特殊與一般的辨證關(guān)系,用字母表示數(shù)具有簡明、普遍的優(yōu)越性。

(2)代數(shù)式中并不要求數(shù)和表示數(shù)的字母同時(shí)出現(xiàn),單獨(dú)的一個(gè)數(shù)和字母也是代數(shù)式。如:2,m都是代數(shù)式。

xxx等都不是代數(shù)式。

3、教學(xué)難點(diǎn)分析:能正確說出一個(gè)代數(shù)式的數(shù)量關(guān)系,即用語言表達(dá)代數(shù)式的意義,一定要理清代數(shù)式中含有的各種運(yùn)算及其順序。用語言表達(dá)代數(shù)式的意義,具體說法沒有統(tǒng)一規(guī)定,以簡明而不引起誤會為出發(fā)點(diǎn)。

如:說出代數(shù)式7(a-3)的意義。

分析 7(a-3)讀成7乘a減3,這樣就產(chǎn)生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數(shù)式7(a-3)的最后運(yùn)算是積,應(yīng)把a(bǔ)-3作為一個(gè)整體。所以,7(a-3)的意義是7與(a-3)的積。

4、書寫代數(shù)式的注意事項(xiàng):

(1)代數(shù)式中數(shù)字與字母或者字母與字母相乘時(shí),通常把乘號簡寫作“·”或省略不寫,同時(shí)要求數(shù)字應(yīng)寫在字母前面。

如3×a ,應(yīng)寫作3a 或?qū)懽?a ,a×b 應(yīng)寫作3.a 或?qū)懽鱝b 。帶分?jǐn)?shù)與字母相乘,應(yīng)把帶分?jǐn)?shù)化成假分?jǐn)?shù),數(shù)字與數(shù)字相乘一般仍用“×”號。

(2)代數(shù)式中有除法運(yùn)算時(shí),一般按照分?jǐn)?shù)的寫法來寫。

(3)含有加減運(yùn)算的代數(shù)式需注明單位時(shí),一定要把整個(gè)式子括起來。

5、對本節(jié)例題的分析:

例1是用代數(shù)式表示幾個(gè)比較簡單的數(shù)量關(guān)系,這些小學(xué)都學(xué)過。比較復(fù)雜一些的數(shù)量關(guān)系的代數(shù)式表示,課文安排在下一節(jié)中專門介紹。

例2是說出一些比較簡單的代數(shù)式的意義。因?yàn)榇鷶?shù)式中用字母表示數(shù),所以把字母也看成數(shù),一種特殊的數(shù),就可以像看待原來比較熟悉的數(shù)式一樣,說出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系,只是另外還要考慮乘號可能省略等新規(guī)定而已。

6、教法建議

(1)因?yàn)檫@一章知識大部分在小學(xué)學(xué)習(xí)過,講授新課之前要先復(fù)習(xí)小學(xué)學(xué)過的運(yùn)算律,在學(xué)生原有的認(rèn)知結(jié)構(gòu)上,提出新的問題。這樣即復(fù)習(xí)了舊知識,又引出了新知識,能激發(fā)學(xué)生的學(xué)習(xí)興趣。在教學(xué)中,一定要注意發(fā)揮本章承上啟下的作用,搞好小學(xué)數(shù)學(xué)與初中代數(shù)的銜接,使學(xué)生有一個(gè)良好的開端。

(2)在本節(jié)的學(xué)習(xí)過程中,要使學(xué)生理解代數(shù)式的概念,首先要給學(xué)生多舉例子(學(xué)生比較熟悉、貼近現(xiàn)實(shí)生活的例子),使學(xué)生從感性上認(rèn)識什么是代數(shù)式,理清代數(shù)式中的運(yùn)算和運(yùn)算順序,才能正確說出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系,從而認(rèn)識字母表示數(shù)的意義——普遍性、簡明性,也為列代數(shù)式做準(zhǔn)備。

(3)條件比較好的學(xué)校,老師可選用一些多媒體課件,激發(fā)學(xué)生的學(xué)習(xí)興趣,增強(qiáng)學(xué)生自主學(xué)習(xí)的能力。

(4)老師在講解第一節(jié)之前,一定要對全章內(nèi)容和課時(shí)安排有一個(gè)了解,注意前后知識的銜接,只有這樣,我們老師才能教給學(xué)生系統(tǒng)的而不是一些零散的知識,久而久之,學(xué)生頭腦中自然會形成一個(gè)完整的知識體系。

(5)因?yàn)槭切聦W(xué)期代數(shù)的第一節(jié)課,老師一定要給學(xué)生一個(gè)好印象,好的開端等于成功了一半。那么,怎么才能給學(xué)生留下好印象呢?首先,你要盡量在學(xué)生面前展示自己的才華。比,英語口語好的老師,可以用英語做一個(gè)自我介紹,然后為學(xué)生說一段祝福語。第二,上課時(shí)盡量使用多種語言與學(xué)生交流,其中包括情感語言(眉目語言、手勢語言等),讓學(xué)生感受到老師對他的關(guān)心。

7、教學(xué)重點(diǎn)、難點(diǎn):

重點(diǎn):用字母表示數(shù)的意義

難點(diǎn):學(xué)會用字母表示數(shù)及正確說出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系。

一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

1、在小學(xué)我們曾學(xué)過幾種運(yùn)算律?都是什么?如可用字母表示它們?

(通過啟發(fā)、歸納最后師生共同得出用字母表示數(shù)的五種運(yùn)算律)

(1)加法交換律 a+b=b+a;

(2)乘法交換律 a·b=b·a;

(3)加法結(jié)合律 (a+b)+c=a+(b+c);

(4)乘法結(jié)合律 (ab)c=a(bc);

(5)乘法分配律 a(b+c)=ab+ac

指出:

(1)“×”也可以寫成“·”號或者省略不寫,但數(shù)與數(shù)之間相乘,一般仍用“×”;

(2)上面各種運(yùn)算律中,所用到的字母a,b,c都是表示數(shù)的字母,它代表我們過去學(xué)過的一切數(shù)

2、(投影)從甲地到乙地的路程是15千米,步行要3小時(shí),騎車要1小時(shí),乘汽車要0.25小時(shí),試問步行、騎車、乘汽車的速度分別是多少?

3、若用s表示路程,t表示時(shí)間,ν表示速度,你能用s與t表示ν嗎?

4、(投影)一個(gè)正方形的邊長是a厘米,則這個(gè)正方形的周長是多少?面積是多少?

(用i厘米表示周長,則i=4a厘米;用s平方厘米表示面積,則s=a2平方厘米)

此時(shí),教師應(yīng)指出:

(1)用字母表示數(shù)可以把數(shù)或數(shù)的關(guān)系,簡明的表示出來;

(2)在公式與中,用字母表示數(shù)也會給運(yùn)算帶來方便;

(3)像上面出現(xiàn)的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代數(shù)式。那么究竟什么叫代數(shù)式呢?代數(shù)式的意義又是什么呢?這正是本節(jié)課我們將要學(xué)習(xí)的內(nèi)容。

1、代數(shù)式

單獨(dú)的一個(gè)數(shù)字或單獨(dú)的一個(gè)字母以及用運(yùn)算符號把數(shù)或表示數(shù)的字母連接而成的式子叫代數(shù)式。學(xué)習(xí)代數(shù),首先要學(xué)習(xí)用代數(shù)式表示數(shù)量關(guān)系,明確代數(shù)上的意義。

2、舉例說明

例1 填空:

(1)每包書有12冊,n包書有__________冊;

(2)溫度由t℃下降到2℃后是_________℃;

(3)棱長是a厘米的正方體的體積是_____立方厘米;

(4)產(chǎn)量由m千克增長10%,就達(dá)到_______千克

(此例題用投影給出,學(xué)生口答完成)

解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m

例2 說出下列代數(shù)式的意義:

解:(1)2a+3的意義是2a與3的和;(2)2(a+3)的意義是2與(a+3)的積;

(5)a2+b2的意義是a,b的平方的和;(6)(a+b)2的意義是a與b的和的平方

說明:

(1)本題應(yīng)由教師示范來完成;

(2)對于代數(shù)式的意義,具體說法沒有統(tǒng)一規(guī)定,以簡明而不致引起誤會為出發(fā)點(diǎn)如第(1)小題也可以說成“a的2倍加上3”或“a的2倍與3的和”等等

例3 用代數(shù)式表示:

(1)m與n的和除以10的商;

(2)m與5n的差的平方;

(3)x的2倍與y的和;

(4)ν的立方與t的3倍的積

分析:用代數(shù)式表示用語言敘述的數(shù)量關(guān)系要注意:①弄清代數(shù)式中括號的使用;②字母與數(shù)字做乘積時(shí),習(xí)慣上數(shù)字要寫在字母的前面

1、填空:(投影)

(1)n箱蘋果重p千克,每箱重_____千克;

(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高為_____厘米;

(3)底為a,高為h的三角形面積是______;

(4)全校學(xué)生人數(shù)是x,其中女生占48%?則女生人數(shù)是____,男生人數(shù)是____

2、說出下列代數(shù)式的意義:(投影)

3、用代數(shù)式表示:(投影)

(1)x與y的和;

(2)x的平方與y的立方的差;

(3)a的60%與b的2倍的和;

(4)a除以2的商與b除3的商的和。

首先,提出如下問題:

1、本節(jié)課學(xué)習(xí)了哪些內(nèi)容?

2、用字母表示數(shù)的意義是什么?

3、什么叫代數(shù)式?

教師在學(xué)生回答上述問題的基礎(chǔ)上,指出:

①代數(shù)式實(shí)際上就是算式,字母像數(shù)字一樣也可以進(jìn)行運(yùn)算;

②在代數(shù)式和運(yùn)算結(jié)果中,如有單位時(shí),要正確地使用括號。

1、一個(gè)三角形的三條邊的長分別的a,b,c,求這個(gè)三角形的周長

2、張強(qiáng)比王華大3歲,當(dāng)張強(qiáng)a歲時(shí),王華的年齡是多少?

3、飛機(jī)的速度是汽車的40倍,自行車的速度是汽車的1/3 ,若汽車的速度是ν千米/時(shí),那么,飛機(jī)與自行車的速度各是多少?

4、a千克大米的售價(jià)是6元,1千克大米售多少元?

5、圓的半徑是r厘米,它的面積是多少?

6、用代數(shù)式表示:

(1)長為a,寬為b米的長方形的周長;

(2)寬為b米,長是寬的2倍的長方形的周長;

(3)長是a米,寬是長的1/3 的長方形的周長;

(4)寬為b米,長比寬多2米的長方形的周長。

北師大版初中數(shù)學(xué)教案篇九

教學(xué)目標(biāo)

1、了解公式的意義,使學(xué)生能用公式解決簡單的實(shí)際問題;

2、初步培養(yǎng)學(xué)生觀察、分析及概括的能力;

3、通過本節(jié)課的教學(xué),使學(xué)生初步了解公式來源于實(shí)踐又反作用于實(shí)踐。

教學(xué)建議

一、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):通過具體例子了解公式、應(yīng)用公式。

難點(diǎn):從實(shí)際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來的歸納的思想方法。

二、重點(diǎn)、難點(diǎn)分析

人們從一些實(shí)際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時(shí),首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計(jì)算時(shí),就是求代數(shù)式的值了。有的公式,可以借助運(yùn)算推導(dǎo)出來;有的公式,則可以通過實(shí)驗(yàn),從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認(rèn)識和改造世界帶來很多方便。

三、知識結(jié)構(gòu)

本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進(jìn)的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過觀察歸納推導(dǎo)公式解決一些實(shí)際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。

四、教法建議

1、對于給定的可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認(rèn)識公式中每一個(gè)字母、數(shù)字的意義,以及這些數(shù)量之間的對應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊(yùn)涵的思想,明確公式的應(yīng)用具有普遍性,達(dá)到對公式的靈活應(yīng)用。

2、在教學(xué)過程中,應(yīng)使學(xué)生認(rèn)識有時(shí)問題的解決并沒有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運(yùn)算推導(dǎo)新公式。

3、在解決實(shí)際問題時(shí),學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進(jìn)一步地解決問題。這種從特殊到一般、再從一般到特殊認(rèn)識過程,有助于提高學(xué)生分析問題、解決問題的能力。

【本文地址:http://mlvmservice.com/zuowen/1154083.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔