總結(jié)是一種反思的過程,通過總結(jié)我們可以提高自己的思考能力。在總結(jié)中,可以提出自己對未來改進(jìn)和提高的建議和規(guī)劃。這是一些實用的技巧和方法,可以幫助我們更好地完成任務(wù)。
maya建模論文篇一
為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重數(shù)學(xué)建模思想的有效培養(yǎng),促進(jìn)學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應(yīng)充分考慮小學(xué)生的性格特點,提高數(shù)學(xué)建模思想培養(yǎng)的有效性?;诖?,文章將從不同的方面對小學(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進(jìn)行初步的探討。
作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動的順利開展,有利于提高復(fù)雜數(shù)學(xué)問題的處理效率,保持?jǐn)?shù)學(xué)課堂教學(xué)的高效性。要實現(xiàn)這樣的發(fā)展目標(biāo),增強(qiáng)小學(xué)生數(shù)學(xué)建模思想的實際培養(yǎng)效果,需要加強(qiáng)對學(xué)生動手實踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環(huán)節(jié)中,可能會存在一定的問題,影響著數(shù)學(xué)教學(xué)計劃的實施。因此,教師需要利用學(xué)生動手實踐能力的作用,實現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過程中享受到更多的快樂。比如,在講解“認(rèn)識角”知識的過程中,某些學(xué)生認(rèn)為邊越長角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R點有更加正確而全面的認(rèn)識,教師可以通過在黑板上設(shè)置一些能夠活動的三角板,讓學(xué)生親自動手操作,以此得出角與邊長的正確關(guān)系,為后續(xù)教學(xué)計劃的實施打下堅實的基礎(chǔ)。通過這種教學(xué)方法的合理運用,可以激發(fā)出學(xué)生們在數(shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對數(shù)學(xué)建模思想有一定的了解,在未來學(xué)習(xí)過程中能夠保持良好的`數(shù)學(xué)建模能力。
通過對小學(xué)階段各種數(shù)學(xué)實踐教學(xué)活動實際概況的深入分析,可知構(gòu)建良好的數(shù)學(xué)模型有利于加深學(xué)生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學(xué),福建莆田351164)點的深入理解,增強(qiáng)其主動參與數(shù)學(xué)建模教學(xué)活動的積極性。因此,為了使小學(xué)生數(shù)學(xué)建模思想培養(yǎng)能夠達(dá)到預(yù)期的效果,教師需要結(jié)合實際的教學(xué)內(nèi)容,建立必要的數(shù)學(xué)參考模型,提升學(xué)生對數(shù)學(xué)建模思想的整體認(rèn)知水平。比如,在講授“異分母分?jǐn)?shù)加減法”這部分知識的過程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計算,并說出原因。當(dāng)學(xué)生通過對問題的深入思考,總結(jié)出“單位不同不能直接計算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計算中為什么每一位都要對齊,實現(xiàn)“計數(shù)單位統(tǒng)一后才能計算”這一數(shù)學(xué)模型的構(gòu)建。在這樣的教學(xué)過程中,學(xué)生可以加深對知識點的理解,實現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng)。
加強(qiáng)小學(xué)生數(shù)學(xué)建模思想的有效培養(yǎng),需要在具體的教學(xué)活動開展中注重對數(shù)學(xué)思想的靈活運用,增強(qiáng)相關(guān)模型構(gòu)建的可靠性,促使學(xué)生在長期的數(shù)學(xué)學(xué)習(xí)中能夠不斷提高自身的數(shù)學(xué)能力,運用各種數(shù)學(xué)知識處理實際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學(xué)生對角的分類及畫角相關(guān)知識點的深入理解,教師可以將所有的學(xué)生分為不同的小組,讓學(xué)生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學(xué)設(shè)備的合理運用,利用動態(tài)化的文字與圖片對其中的知識要點進(jìn)行展示,確保學(xué)生們能夠在良好的教學(xué)模式中提升自身的認(rèn)知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強(qiáng)化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉(zhuǎn)知識點的過程中,教師應(yīng)通過對學(xué)生的正確引導(dǎo),運用三角板、圓柱等教學(xué)輔助工具,讓學(xué)生從不同的角度對各種軸對稱圖形、旋轉(zhuǎn)后得到的圖形進(jìn)行深入思考,提高自身數(shù)學(xué)建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學(xué)生數(shù)學(xué)建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學(xué)生的創(chuàng)新能力,優(yōu)化學(xué)生的思維方式,全面提升小學(xué)數(shù)學(xué)建模教學(xué)水平。
總之,加強(qiáng)小學(xué)生數(shù)學(xué)建模思想培養(yǎng)策略的制定與實施,有利于滿足素質(zhì)教育的更高要求,實現(xiàn)對小學(xué)生數(shù)學(xué)能力的有效鍛煉,確保相關(guān)的教學(xué)計劃能夠在規(guī)定的時間內(nèi)順利地完成。與此同時,結(jié)合當(dāng)前小學(xué)數(shù)學(xué)教育教學(xué)的實際發(fā)展概況,可知靈活運用各種科學(xué)的數(shù)學(xué)建模思想培養(yǎng)策略,有利于滿足學(xué)生數(shù)學(xué)建模學(xué)習(xí)中的多樣化需求,為相關(guān)教學(xué)目標(biāo)的順利實現(xiàn)提供可靠的保障。
[1]童小艷.小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生建模思想的策略[j].學(xué)子(教育新理念),20xx(6).
[2]白寧.先學(xué)而后教——小學(xué)生數(shù)學(xué)建模思想培養(yǎng)的捷徑[j].數(shù)學(xué)學(xué)習(xí)與研究,20xx(16).
maya建模論文篇二
高校數(shù)學(xué)教育是高等教育的基礎(chǔ)學(xué)科,占據(jù)重要的一席之地。如何改變學(xué)生對數(shù)學(xué)枯燥乏味的學(xué)習(xí)狀態(tài),讓學(xué)生輕松愉快地參與到數(shù)學(xué)學(xué)習(xí)中,是當(dāng)前高校數(shù)學(xué)教學(xué)者面臨的一個重要課題。在高校數(shù)學(xué)教學(xué)中開展數(shù)學(xué)建模競賽,不僅能培養(yǎng)學(xué)生的創(chuàng)新思維,還能有效提高提高學(xué)生的創(chuàng)新能力、綜合素質(zhì)和對數(shù)學(xué)的應(yīng)用能力。本文對高校開展數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)進(jìn)行了分析闡述,并對此進(jìn)行了一定的思考。
數(shù)學(xué)建模是一種融合數(shù)學(xué)邏輯思想的思考方法,通過運用抽象性的數(shù)學(xué)語言和數(shù)學(xué)邏輯思考方法,創(chuàng)造性的解決數(shù)學(xué)問題。當(dāng)前很多高校中開始引入數(shù)學(xué)建模思想來加強(qiáng)學(xué)生創(chuàng)新能力的培養(yǎng),可以使學(xué)生的邏輯思維能力和運用數(shù)學(xué)邏輯創(chuàng)新解決問題的能力得到提升。數(shù)學(xué)建模競賽起源于1985年的美國,幾年后國內(nèi)幾所高校數(shù)學(xué)建模教師組織學(xué)生開始參與美國的數(shù)學(xué)建模大賽,促進(jìn)了數(shù)學(xué)建模思維的快速發(fā)展。直到1992中國首屆數(shù)學(xué)建模大賽召開,而后一發(fā)不可收拾,至今仍以每年20%左右的速度增長,呈現(xiàn)一派繁榮景象。
2.1數(shù)學(xué)建模競賽自主性較強(qiáng)。自主性首先體現(xiàn)在在數(shù)學(xué)建模過程中學(xué)生可以根據(jù)自己的建模需要通過一切可以利用的資源、工具來進(jìn)行資料查閱和收集,建模比賽隊員可以根據(jù)自己的意見和思維進(jìn)行靈活自由解答,形式不拘一格。其次體現(xiàn)在數(shù)學(xué)建模競賽的組織形式呈現(xiàn)多元化特點,組織制度上也較為靈活多樣,數(shù)學(xué)建模主要側(cè)重于分析思想,沒有標(biāo)準(zhǔn)答案可以參考分享。2.2建模隊伍呈日益燎原之勢。1992年首屆中國數(shù)學(xué)建模大賽開展以來,其影響力與日俱增,高校和社會各界對數(shù)學(xué)建模頗為重視,參賽隊伍、參賽學(xué)生的質(zhì)量一直處于上升狀態(tài),數(shù)學(xué)模型也日漸合理科學(xué),學(xué)生團(tuán)隊在國際數(shù)學(xué)建模大賽中屢創(chuàng)驕人戰(zhàn)績。2.3組織培訓(xùn)日益加強(qiáng)。數(shù)學(xué)建模競賽對學(xué)生數(shù)學(xué)知識的掌握及靈活運用、口套表達(dá)、語言邏輯思維、綜合素質(zhì)都有著非常高的要求,因此高校遴選參賽選手都投入了很大的精力,組織培訓(xùn)的時間很長,培訓(xùn)內(nèi)容也很豐富,為數(shù)學(xué)建模競賽取得好成績奠定了堅實的基礎(chǔ)。
3.1學(xué)生的團(tuán)隊協(xié)作能力和意識得到增強(qiáng)。數(shù)學(xué)建模競賽的團(tuán)隊組織形式活潑自由,通常采用學(xué)生組隊模式開展,數(shù)學(xué)建模競賽隊伍形成一個團(tuán)結(jié)戰(zhàn)斗的整體,代表著不僅僅是學(xué)校的聲譽(yù),還一定程度上展示著國家的形象。經(jīng)過長時間的培訓(xùn),對數(shù)學(xué)模型的研究和分析,根據(jù)學(xué)生訓(xùn)練中的優(yōu)勢和特長,進(jìn)行合理科學(xué)的小組分工,讓學(xué)生快速高效地完成整個數(shù)學(xué)建模,在建模過程中學(xué)生統(tǒng)籌協(xié)作、密切配合,發(fā)揮各自的優(yōu)勢和長處,確保數(shù)學(xué)建模取得最大效用,學(xué)生的團(tuán)隊協(xié)作能力和意識得到鍛煉,責(zé)任感和榮譽(yù)感進(jìn)一步增強(qiáng),通過建模競賽彰顯團(tuán)隊的合作能力和中國數(shù)學(xué)建模方面的發(fā)展。
3.2高校學(xué)生參賽積極性高漲。近年來大學(xué)生數(shù)學(xué)建模競賽的參與性高漲,參賽人數(shù)保持著20%左右的上漲幅度,參賽成績也較為理想,創(chuàng)新能力得到了較好的鍛煉和培養(yǎng),綜合素質(zhì)得到提高,數(shù)學(xué)的應(yīng)用能力提升。
3.3高校學(xué)生數(shù)學(xué)邏輯思維能力和靈活運用知識的能力得到提升。數(shù)學(xué)建模競賽充滿著刺激性和挑戰(zhàn)性,是學(xué)生各方面綜合能力的一個展示。在數(shù)學(xué)建模競賽中,學(xué)生不僅要需要扎實豐厚的數(shù)學(xué)知識儲備,還需要具備清晰的數(shù)學(xué)邏輯思維和語言表達(dá)能力。同時要有機(jī)智的臨場發(fā)揮能力和應(yīng)變能力,不怯場、不驚慌,有充分的思想準(zhǔn)備,能輕松應(yīng)對其他參賽選手和評委的提問,能組織條理性、邏輯性的語言進(jìn)行表述,將參賽小組數(shù)學(xué)模型的含義和設(shè)計清晰完整的傳達(dá)給評委和其他參賽選手。在這個過程中,無疑會使學(xué)生的數(shù)學(xué)邏輯思維和語言表達(dá)能力及靈活運用數(shù)學(xué)知識的能力有一個較大的提升。
3.4學(xué)生的自學(xué)能力和意志力得到鍛。數(shù)學(xué)建模競賽對參賽學(xué)生的綜合知識和能力要求非常高,難度也非常大,需要與眾不同的智慧和能力??梢哉f數(shù)學(xué)建模過程中,有許多高深的知識難于理解,有的日常學(xué)習(xí)過程中根本接觸不到,需要數(shù)學(xué)建模參賽小組成員的互助合作,充分發(fā)揮各自優(yōu)勢和平時培訓(xùn)中的知識積淀,通過借助大量的工具書及參考資料,加上團(tuán)隊的`理解分析去摸索,探尋數(shù)學(xué)建模所需要的基礎(chǔ)知識,無疑這對學(xué)生的自學(xué)能力培養(yǎng)是一個很好的鍛煉。另外,搜尋資料、學(xué)習(xí)數(shù)學(xué)建模知識的過程是枯燥乏味的,需要長久的耐力和信心,無疑這對學(xué)生的堅毅不畏難的品質(zhì)是一個很好的培養(yǎng)和磨煉。
3.5創(chuàng)新思維與能力得到有效提升。經(jīng)過艱苦復(fù)雜的數(shù)學(xué)建模訓(xùn)練,高校學(xué)生信息收集與處理復(fù)雜問題的能力得到培養(yǎng)鍛煉,學(xué)生數(shù)量觀念得到增強(qiáng),能夠養(yǎng)成敏銳觀察事物數(shù)量變化的能力,數(shù)學(xué)的嚴(yán)謹(jǐn)推導(dǎo)也使學(xué)生養(yǎng)成認(rèn)真細(xì)心、一絲不茍的習(xí)慣,邏輯思維能力得到提高,思路變得更加富有條理性,能靈活地處理各種復(fù)雜問題,有效解決數(shù)學(xué)疑難,數(shù)學(xué)理論能更好第應(yīng)用于實踐,數(shù)學(xué)素養(yǎng)進(jìn)一步得到提升。
綜上所述,高校學(xué)生數(shù)學(xué)建模競賽的開展,能較高地提升學(xué)生的創(chuàng)新能力和綜合素養(yǎng),團(tuán)隊合作能力、競爭能力、表達(dá)交流能力、邏輯思維能力、意志品質(zhì)能力等都能得到良好的塑造。高校要積極組織和開展數(shù)學(xué)建模競賽,使學(xué)生的綜合素質(zhì)得到發(fā)展和鍛煉。學(xué)校用重視和鼓勵全體學(xué)生參與數(shù)學(xué)建模競賽,通過競賽實現(xiàn)學(xué)生各方面能力尤其是創(chuàng)新能力的培養(yǎng)。
[1]趙剛.高校數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)探究[j].才智,20xx(06).
[2]陳羽,徐小紅,房少梅.數(shù)學(xué)建模實踐及其對培養(yǎng)學(xué)生創(chuàng)新思維的影響分析[j].科技創(chuàng)業(yè)月刊,20xx(08).
[3]趙建英.數(shù)學(xué)建模競賽對高校創(chuàng)新人才培養(yǎng)的促進(jìn)作用分析[j].科技展望,20xx(08)5.
[4]畢波,杜輝.關(guān)于高校開展數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)的思考[j].中國校外教育,20xx(12).
maya建模論文篇三
高校學(xué)生社團(tuán)是一種具有共同興趣愛好的學(xué)生自發(fā)組織的開展一些藝術(shù)、娛樂和學(xué)術(shù)型的活動的團(tuán)體。學(xué)生社團(tuán)以其鮮明的開放性、自主性以及多樣性等特點,為一些有特長的學(xué)生提供了廣闊的舞臺,讓這些學(xué)生可以更好的發(fā)揮自己的才能,促進(jìn)其更好的成才。全國大學(xué)生數(shù)學(xué)建模競賽是最早由教育部工業(yè)與數(shù)學(xué)應(yīng)用學(xué)會共同承辦的一個科技性的賽事,該比賽要通過數(shù)學(xué)和計算機(jī)的知識來解決實際生活中的問題,由于其特有的比賽形式,使得高職院校在全校范圍內(nèi)直接選拔參賽隊員是件費神的事情,因此,為了更好的為數(shù)學(xué)建模競賽選拔人才,激發(fā)學(xué)生的學(xué)習(xí)興趣,學(xué)術(shù)性社團(tuán)“數(shù)學(xué)建模協(xié)會”也就應(yīng)運而生。數(shù)學(xué)建模協(xié)會的成立,可以更好的為學(xué)生提供一個展示自己的機(jī)會,可以增強(qiáng)學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實際問題的能力,激發(fā)學(xué)生的創(chuàng)新思維,為數(shù)學(xué)建模競賽選拔人才。本文主要以西安航空職業(yè)技術(shù)學(xué)院數(shù)學(xué)建模協(xié)會為例,探討高職數(shù)學(xué)建模社團(tuán)活動開展的形式和意義。
(一)數(shù)學(xué)建模社團(tuán)有利于數(shù)學(xué)建模競賽的開展。高職數(shù)學(xué)建模協(xié)會為數(shù)學(xué)建模競賽搭建了一個平臺,是數(shù)學(xué)建模競賽強(qiáng)有力的后盾,數(shù)學(xué)建模競賽成績的取得與這個平臺密不可分,只有充分發(fā)揮數(shù)學(xué)建模社團(tuán)的作用,才能源源不斷的為數(shù)學(xué)建模提供人力和智力保障,才能更好的推動高職數(shù)學(xué)的學(xué)習(xí)氛圍。1、數(shù)學(xué)建模協(xié)會起著動員宣傳的作用從沒聽過,到知道,在到熟悉,只有通過大力宣傳和動員,才能讓更多的人了解數(shù)學(xué)建模,讓更多優(yōu)秀學(xué)生參加到數(shù)學(xué)建模競賽中。大學(xué)校園中有許多數(shù)學(xué)愛好者,他們對數(shù)學(xué)建模也有一定的認(rèn)識,只要有參加數(shù)學(xué)建?;顒拥脑竿?,都可以利用數(shù)學(xué)建模協(xié)會招新的機(jī)會,加入數(shù)學(xué)建模創(chuàng)新協(xié)會。將成績優(yōu)秀的學(xué)生邀請加入數(shù)學(xué)建模協(xié)會,對進(jìn)一步擴(kuò)大數(shù)學(xué)建模協(xié)會,夯實數(shù)學(xué)建?;A(chǔ),起著舉足輕重的作用。2、數(shù)學(xué)建模協(xié)會起著知識傳播的作用高職院校學(xué)生在校學(xué)習(xí)時間較短,學(xué)業(yè)較為繁重,課余時間較少,數(shù)學(xué)建模培訓(xùn)的時間不足,無法讓學(xué)生在短時期內(nèi)掌握較多的數(shù)學(xué)建模相關(guān)知識。因此,利用數(shù)學(xué)建模協(xié)會活動可以開展數(shù)學(xué)建模課程的培訓(xùn)工作,普及數(shù)學(xué)建模相關(guān)知識。采用“老帶新”的模式進(jìn)行數(shù)學(xué)建模知識的普及。通過制定系統(tǒng)的培訓(xùn)方案,在每年秋季競賽后,參加過競賽的同學(xué)對新入?yún)f(xié)會的成員可以進(jìn)行初級培訓(xùn),為今后的競賽奠定基礎(chǔ)。3、數(shù)學(xué)建模社團(tuán)起著選拔學(xué)生的作用每年數(shù)學(xué)建模競賽的隊員需要通過校內(nèi)賽等形式進(jìn)行選拔,此時,數(shù)學(xué)建模協(xié)會就起著校內(nèi)賽命題及選拔隊員的作用,當(dāng)然這種選拔方式也有的弊端,就是所有隊員都是來自校內(nèi)賽成績優(yōu)秀的學(xué)生,而校內(nèi)賽發(fā)揮不理想但建模能力突出或計算機(jī)技術(shù)水平優(yōu)秀的學(xué)生就沒法參加數(shù)學(xué)建模競賽。為確保每一位有能力的學(xué)生都能夠加入到建模競賽隊伍中來,可以通過校內(nèi)競賽與建模協(xié)會推薦兩者相結(jié)合的方式選拔建模競賽學(xué)生,以確保最優(yōu)優(yōu)秀的學(xué)生參加數(shù)學(xué)建模競賽。(二)數(shù)學(xué)建模社團(tuán)有利于大學(xué)生綜合素質(zhì)的培養(yǎng)。(1)數(shù)學(xué)建模社團(tuán)屬于專業(yè)的學(xué)術(shù)性社團(tuán),成立的目的是為了參加全國大學(xué)生數(shù)學(xué)建模競賽,數(shù)學(xué)建模社團(tuán)活動的趣味性和實踐性可以提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,增加學(xué)生參與競賽的熱情。社團(tuán)活動中的培訓(xùn)使學(xué)生可以更好的應(yīng)對競賽,取得更好的成績。另外,競賽之余還可以進(jìn)行其他領(lǐng)域的學(xué)術(shù)交流,比如計算機(jī),經(jīng)濟(jì),工程等領(lǐng)域,良好的交流氛圍激發(fā)學(xué)生的創(chuàng)新思維和意識,從而培養(yǎng)他們的創(chuàng)新能力。(2)數(shù)學(xué)建模社團(tuán)是學(xué)生自發(fā)組織的服務(wù)學(xué)生的群體,除了學(xué)術(shù)研究之外,還可以進(jìn)行一些創(chuàng)新創(chuàng)業(yè)的活動,具有更多的實踐的機(jī)會。比如,可以利用平時社團(tuán)所學(xué)的知識,以團(tuán)體的形式進(jìn)行一些數(shù)據(jù)處理的校企合作;也可以以微信平臺和微信群等發(fā)布一些數(shù)學(xué)建模相關(guān)的微課等,進(jìn)行一些微信群講座等等。這樣可以讓學(xué)生真正體會到數(shù)學(xué)的用處,達(dá)到學(xué)以致用的效果。(3)數(shù)學(xué)建模社團(tuán)是學(xué)生自發(fā)組織的學(xué)術(shù)性社團(tuán),社團(tuán)的組織機(jī)構(gòu)都是學(xué)生在擔(dān)任,社團(tuán)的活動也都是學(xué)生在協(xié)調(diào)策劃,甚至很多時候社團(tuán)的老成員都可以輔助老師進(jìn)行社團(tuán)的一些學(xué)術(shù)性的講座。因此,在學(xué)習(xí)的同時還鍛煉了他們的處事應(yīng)變能力團(tuán)隊合作的能力,可以說提高了學(xué)生的綜合素質(zhì)。
(一)數(shù)學(xué)建模社團(tuán)的管理形式。數(shù)學(xué)建模協(xié)會作為一個學(xué)生群體組織,需要好的制度和管理模式。以筆者所在學(xué)校為例,數(shù)學(xué)建模創(chuàng)新協(xié)會具有自己的一套規(guī)章管理制度;在管理形式方面是以“三個管理面”來進(jìn)行社團(tuán)管理和學(xué)術(shù)交流的,具體如下:1、學(xué)術(shù)交流面這個主要是通過“社團(tuán)內(nèi)部進(jìn)行學(xué)術(shù)交流活動”和“老帶新培訓(xùn)”兩部分組成,內(nèi)部的交流活動主要是學(xué)生之間的相互溝通和交流,以及不定期的邀請指導(dǎo)教師和外校專家做一些數(shù)學(xué)建模報告。老帶新培訓(xùn)是指社團(tuán)主席團(tuán)成員(一般是參加過前一年全國大學(xué)生數(shù)學(xué)建模競賽的學(xué)生)為新入社團(tuán)的學(xué)生進(jìn)行培訓(xùn),培訓(xùn)的內(nèi)容基本上都是之前指導(dǎo)教師對他們集訓(xùn)時的內(nèi)容,這種培訓(xùn)方式可以提升社團(tuán)成員的授課和理解問題的能力,對于在校大學(xué)生來說是一次很好的鍛煉。2、網(wǎng)絡(luò)交流面采用qq群,網(wǎng)絡(luò)空間和微信公眾平臺等開展社團(tuán)成員之間的交流互動,社團(tuán)宣傳。筆者所在學(xué)校的數(shù)學(xué)建模創(chuàng)新協(xié)會每一屆社團(tuán)都有相應(yīng)的qq群,另外,在20xx年也積極申請了微信平臺,目前的'關(guān)注量也在800余人,微信平臺的建立可以更方面使大學(xué)生關(guān)注數(shù)學(xué)建模相關(guān)信息,尤其是對大一新生可以更多的取了解數(shù)學(xué)建模,擴(kuò)大數(shù)學(xué)建模的受益面和影響力。力求在大學(xué)生中營造一種“人人知數(shù)模,人人愛數(shù)模,人人參與數(shù)模”的良好的教育環(huán)境,使建模活動廣泛化、群眾化。3、交流互訪面開展研討會,專家報告會,社團(tuán)聯(lián)誼會等交流活動,既可以豐富數(shù)學(xué)建模社團(tuán)學(xué)生的知識面,又能促進(jìn)數(shù)學(xué)知識的理解和吸收,通過與其他社團(tuán)的聯(lián)誼,豐富了社團(tuán)學(xué)生的業(yè)余生活,又能學(xué)習(xí)其他社團(tuán)好的管理經(jīng)驗,促進(jìn)社團(tuán)管理的制度化、規(guī)范化、專業(yè)化,也只有通過不斷的學(xué)習(xí),不斷的交流,才能真正“走出去”,建立一個管理完善,富有成效的學(xué)生社團(tuán)。(二)數(shù)學(xué)建模社團(tuán)的特色活動。數(shù)學(xué)建模社團(tuán)在開展學(xué)術(shù)活動和輔助教師進(jìn)行競賽培訓(xùn)的同時,還不定期的舉行一些活動,在提高學(xué)生學(xué)習(xí)興趣的同時也以擴(kuò)大了數(shù)學(xué)建模的影響力。以筆者坐在學(xué)校為例,每年可以開展一系列的數(shù)學(xué)建模活動。比如,數(shù)學(xué)建模創(chuàng)新協(xié)會納新,數(shù)學(xué)建模創(chuàng)新協(xié)會趣味運動會,數(shù)學(xué)科技節(jié),趣味數(shù)學(xué)知識競賽,數(shù)學(xué)建模經(jīng)驗交流會,數(shù)學(xué)建模校內(nèi)賽,數(shù)學(xué)輔導(dǎo)周,數(shù)學(xué)建模專題講座。這些社團(tuán)活動貫穿整個學(xué)年,不僅可以“由點及面、由淺入深”的對全國大學(xué)生數(shù)學(xué)建模競賽進(jìn)行宣傳,在最大的范圍內(nèi),提升數(shù)學(xué)建模大賽的影響力及參與度,成效較好。而且讓枯燥的學(xué)術(shù)型社團(tuán)變得豐富多彩,成為學(xué)生課后獲取知識的一種平臺,同時也是社團(tuán)蓬勃發(fā)展的利器。
總之,數(shù)學(xué)建模社團(tuán)活動的開展,有利于培養(yǎng)學(xué)生的創(chuàng)新意識和思維,有利于激發(fā)了學(xué)生的學(xué)習(xí)興趣,有利于豐富學(xué)生的課后生活,有利于調(diào)動了學(xué)生參加學(xué)術(shù)型社團(tuán)的積極性,同時也是高職院校組織參加數(shù)學(xué)建模競賽的強(qiáng)有力的后盾。
[1]胡建茹,王搖娟.加強(qiáng)專業(yè)社團(tuán)建設(shè)推進(jìn)大學(xué)生創(chuàng)新實踐能力培養(yǎng)[j].中國石油大學(xué)學(xué)報:社會科學(xué)版,20xx(12)。
[2]王珍娥,宋維,孫潔.?dāng)?shù)學(xué)社團(tuán)建設(shè)的探索與實踐[j].機(jī)械職業(yè)教育,20xx(7)。
[3]李湘玲,王泳興.大學(xué)生社團(tuán)發(fā)展與創(chuàng)新型人才培養(yǎng)互動機(jī)制研究:以吉首大學(xué)為例[j].黑龍江教育,20xx(11)。
[4]孫浩,葉正麟.西北工業(yè)大學(xué)數(shù)學(xué)建模創(chuàng)新教育之探索[j].高等數(shù)學(xué)研究,20xx(4)。
作者:張?zhí)m單位:西安航空職業(yè)技術(shù)學(xué)院通識教育學(xué)院。
maya建模論文篇四
摘要:數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
一、新課的引入需要發(fā)揮教師的作用。
教師在數(shù)學(xué)建模課堂上的引導(dǎo)作用首先體現(xiàn)在教師對新課的引入上。教師一段精彩的導(dǎo)入會點燃學(xué)生學(xué)習(xí)的熱情、激發(fā)學(xué)生的學(xué)習(xí)興趣、喚起學(xué)生的好奇心,能把學(xué)生的注意力迅速集中到要學(xué)的知識上來。這對提高教學(xué)質(zhì)量、提高學(xué)生的學(xué)習(xí)效果起著不可估量的作用。同時,新課前的導(dǎo)入環(huán)節(jié)是對學(xué)生進(jìn)行情感教育的最佳時刻。學(xué)生只有在教師的引導(dǎo)下才能夠體會到數(shù)學(xué)建模的價值、增強(qiáng)學(xué)好數(shù)學(xué)建模的信心。俗話說:“好的開始是成功的一半?!睌?shù)學(xué)建模課堂也是這樣。因此,在新課引入時要充分發(fā)揮教師的作用。
二、在教學(xué)任務(wù)的設(shè)計上需要發(fā)揮教師的作用。
數(shù)學(xué)建模課堂一般應(yīng)采用任務(wù)型教學(xué)模式,是讓學(xué)生通過自主探究、合作學(xué)習(xí)、交流展示的方式完成一系列學(xué)習(xí)任務(wù)來達(dá)到特定的教學(xué)目標(biāo)和學(xué)習(xí)目標(biāo)。學(xué)生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設(shè)計質(zhì)量的高低。教師應(yīng)通過設(shè)計一系列高質(zhì)量的問題把復(fù)雜的數(shù)學(xué)建模問題分解成若干簡單問題來引導(dǎo)學(xué)生更好地發(fā)揮其主動性。學(xué)生也只有在這些問題的正確引導(dǎo)下才能突破難點并向著學(xué)習(xí)目標(biāo)努力,有效防止學(xué)生思考、探究、交流的內(nèi)容偏離學(xué)習(xí)目標(biāo)等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。
三、在新舊知識的聯(lián)系點上需要發(fā)揮教師的作用。
建構(gòu)主義強(qiáng)調(diào)新知識是在學(xué)生已有知識的基礎(chǔ)上通過學(xué)生自身有意義的建構(gòu)獲得的。筆者認(rèn)為,學(xué)生自主建構(gòu)知識應(yīng)在教師的科學(xué)引導(dǎo)下進(jìn)行。尤其是對于數(shù)學(xué)建模這樣高難度的知識更是這樣。失去了教師的科學(xué)引導(dǎo),學(xué)生易產(chǎn)生疲倦感,久而久之會喪失學(xué)習(xí)數(shù)學(xué)建模的興趣和信心。因此,在新舊知識聯(lián)系點上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準(zhǔn)確掌握教學(xué)目標(biāo)、難點的基礎(chǔ)上,充分考慮學(xué)生的認(rèn)知能力、習(xí)慣、思維方式,通過有針對性的具體問題喚起學(xué)生對舊知識的回憶,再通過啟發(fā)性問題引導(dǎo)學(xué)生去發(fā)現(xiàn)新知識,從而實現(xiàn)溫故知新的目的。在教師引領(lǐng)下學(xué)生自主建構(gòu)知識可以使學(xué)生少走彎路,從而使學(xué)生更加高效地自主探究、掌握新知識。
四、在教學(xué)重點、難點上需要教師的引導(dǎo)。
教學(xué)的重點、難點是每一節(jié)課的核心和主線,只有準(zhǔn)確把握了重點、突破了難點才能更好地掌握本節(jié)課的內(nèi)容。在強(qiáng)調(diào)學(xué)生自主探究、小組合作學(xué)習(xí)的課堂教學(xué)模式中,數(shù)學(xué)建模教材的重點、難點學(xué)生往往把握不準(zhǔn)、難以突破。這就需要教師科學(xué)引導(dǎo)學(xué)生主動去發(fā)現(xiàn)重點、突破難點。教師引導(dǎo)學(xué)生發(fā)現(xiàn)重點、突破難點并不是讓教師直接告訴學(xué)生本節(jié)課的重點是什么、怎樣突破難點,而是通過具體問題的引導(dǎo)讓學(xué)生自己找到重點、并通過學(xué)生自己的思考、討論解決疑難問題。學(xué)生在教師的引導(dǎo)下通過自己的努力、討論解決了疑難后,學(xué)生會非常興奮,從而會越來越喜歡數(shù)學(xué)建模課。相反,在沒有教師引導(dǎo)的數(shù)學(xué)建模課堂中,學(xué)生經(jīng)常被困難嚇倒,從而對數(shù)學(xué)建模課產(chǎn)生畏懼感。由此可見,教師對學(xué)生的科學(xué)引導(dǎo)是學(xué)生學(xué)好數(shù)學(xué)建模必不可少的環(huán)節(jié)。在以學(xué)生為本、注重學(xué)生全面發(fā)展、提倡課堂中突出學(xué)生主體地位的背景下,教師的引導(dǎo)仍是數(shù)學(xué)建模課堂中不可缺失的要素。數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
maya建模論文篇五
1培養(yǎng)創(chuàng)造性思維學(xué)生在學(xué)習(xí)數(shù)學(xué)知識的過程中,雖然其接受的知識和經(jīng)驗是前人研究和發(fā)現(xiàn)的成果,但對于學(xué)生來說,其處于知識再發(fā)現(xiàn)的地位。教師向?qū)W生教授數(shù)學(xué)發(fā)現(xiàn)的思維和方法,換言之就是重點引導(dǎo)學(xué)生重溫數(shù)學(xué)經(jīng)驗和知識的研究道路,進(jìn)而保證學(xué)生的再發(fā)現(xiàn)能夠順利實現(xiàn)。這也是培養(yǎng)學(xué)生創(chuàng)新思維和能力的一個重要途徑。利用數(shù)學(xué)建模能夠有效地彌補(bǔ)數(shù)學(xué)教學(xué)過程中存在的缺陷,使學(xué)生充分體會到數(shù)學(xué)發(fā)現(xiàn)過程中的樂趣,進(jìn)而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和積極性,培養(yǎng)其創(chuàng)造性思維。
2選擇經(jīng)典案例開展數(shù)學(xué)建模討論、分析教師在實際的數(shù)學(xué)課堂教學(xué)中,可選擇一些社會實際案例為講授分析的主要對象,如實際生活和高科技的熱點話題。教師可對此類實例進(jìn)行必要的分析與講解,在此過程中,積極引導(dǎo)學(xué)生獨立鉆研和研究問題,并培養(yǎng)學(xué)生主動查閱相關(guān)資料、自主討論的能力。與此同時,教師還要及時與學(xué)生進(jìn)行交流,答疑釋難,并要求學(xué)生在自己實際能力的基礎(chǔ)上構(gòu)建恰當(dāng)?shù)哪P?,由易到難,循序漸進(jìn)。除此之外,還要使學(xué)生充分發(fā)揮其主觀能動性,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,思考問題以及處理問題的能力。以微積分方程為例,教師在課堂教學(xué)中,可以“經(jīng)濟(jì)增長”作為主要案例,向?qū)W生系統(tǒng)地闡述微積分方程的實際應(yīng)用過程,進(jìn)一步加深學(xué)生對知識的理解、掌握和應(yīng)用。
3同時開設(shè)數(shù)學(xué)建模與高等數(shù)學(xué)課程在職業(yè)院校數(shù)學(xué)教學(xué)過程中,同時開設(shè)數(shù)學(xué)建模與高等數(shù)學(xué)課程,能夠有效提高學(xué)生對基礎(chǔ)知識的理解能力和掌握程度,促進(jìn)學(xué)生實踐動手能力的培養(yǎng)。在數(shù)學(xué)建模課程的開設(shè)中,應(yīng)該在教師的指導(dǎo)下,充分利用教學(xué)軟件,引導(dǎo)學(xué)生動手實驗和計算,加深學(xué)生對知識的掌握。在此過程中,使學(xué)生充分了解到運用數(shù)學(xué)理論和方法去分析和解決實際問題的全過程,進(jìn)一步提高學(xué)生的積極性和思維意識能力,使他們意識到數(shù)學(xué)在實際生活應(yīng)用中的關(guān)鍵作用。同時,促使學(xué)生將計算機(jī)技術(shù)融入數(shù)學(xué)學(xué)習(xí)中去,以現(xiàn)代化的高新科技為媒介,著手實際社會問題的解決。
4創(chuàng)新教學(xué)模式根據(jù)職業(yè)院校學(xué)生學(xué)習(xí)的特點和知識水平,重點提高學(xué)生運用數(shù)學(xué)的技能和思維方式來處理實際生活和專業(yè)問題的能力。要想從根本上培養(yǎng)學(xué)生的創(chuàng)新能力,一定要改變原來單一固定的教學(xué)模式,嘗試和探索基于學(xué)生實際情況的教學(xué)措施和方式。經(jīng)過長期的實踐經(jīng)驗研究,討論式教學(xué)和雙向教學(xué)方式對培養(yǎng)學(xué)生的能力非常有效。這兩種教學(xué)模式能夠加深學(xué)生參與課堂教學(xué)的程度,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的'主動性,最終達(dá)到提高教學(xué)效率的目的。所以,數(shù)學(xué)建模可以以具體問題為媒介,采用小組集體討論解決問題的方法,培養(yǎng)學(xué)生的創(chuàng)新能力和意識,進(jìn)一步加快職業(yè)技術(shù)院校數(shù)學(xué)教學(xué)模式的創(chuàng)新。
5組建數(shù)學(xué)建模團(tuán)隊在實際的數(shù)學(xué)教學(xué)中,教師可引導(dǎo)學(xué)生構(gòu)建數(shù)學(xué)建模團(tuán)隊。在教師對數(shù)學(xué)建模的深入分析為基礎(chǔ),充分調(diào)動學(xué)生參與問題解決的主動性,師生積極互動,最終完成數(shù)學(xué)建模。如此一來,不僅能夠有效培養(yǎng)學(xué)生積極進(jìn)取的良好學(xué)習(xí)態(tài)度,而且還能夠促進(jìn)學(xué)生數(shù)學(xué)邏輯思維能力的提高。
6搭建校內(nèi)數(shù)學(xué)建模網(wǎng)絡(luò)平臺在職業(yè)技術(shù)院校中構(gòu)建校內(nèi)數(shù)學(xué)建模網(wǎng)絡(luò)平臺,積極宣傳與數(shù)學(xué)建模有關(guān)的知識經(jīng)驗,為學(xué)生主動獲取數(shù)學(xué)建模信息提供各種數(shù)據(jù)資料。數(shù)學(xué)建模網(wǎng)絡(luò)平臺的搭建,能夠有效促進(jìn)教師和學(xué)生,學(xué)生與學(xué)生之間的交流與溝通,大大縮短學(xué)生和數(shù)學(xué)建模之間的距離,進(jìn)而促進(jìn)學(xué)生自主學(xué)習(xí)能力的提高和培養(yǎng)。
總而言之,數(shù)學(xué)建模思想是學(xué)生將基礎(chǔ)理論知識與實際解決問題的方法相結(jié)合的最佳途徑。將數(shù)學(xué)建模融入職業(yè)院校數(shù)學(xué)中,全面培養(yǎng)學(xué)生的創(chuàng)新意識和數(shù)學(xué)應(yīng)用能力,進(jìn)一步使數(shù)學(xué)為達(dá)成學(xué)院的教學(xué)和培養(yǎng)計劃奠定基礎(chǔ),為培養(yǎng)更多更優(yōu)秀的現(xiàn)代化社會人才服務(wù)。
maya建模論文篇六
數(shù)學(xué),源于人們對生產(chǎn)與生活實際問題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來,信息技術(shù)飛速發(fā)展,推動了應(yīng)用數(shù)學(xué)的發(fā)展,使數(shù)學(xué)日益滲透到社會各個領(lǐng)域.中考實際應(yīng)用題目更貼近日常生活,具有時代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計、幾何等模型.數(shù)學(xué)課程標(biāo)準(zhǔn)指出,教師在教學(xué)中應(yīng)引導(dǎo)學(xué)生從實際背景中理清數(shù)學(xué)關(guān)系、把握變化規(guī)律,能從實際問題中建立數(shù)學(xué)模型.教師要為學(xué)生創(chuàng)造用數(shù)學(xué)的氛圍,引導(dǎo)學(xué)生參與自主學(xué)習(xí)、自主探索、自主提問、自主解決,體驗做數(shù)學(xué)的過程,從而提高解決實際問題的能力.
一是教師未能實現(xiàn)角色轉(zhuǎn)換.建模教學(xué)離不開學(xué)生“做”數(shù)學(xué)的過程,因而教師在教學(xué)中要留有讓學(xué)生思考、想象的空間,讓他們自主選擇方法.然而部分教師對學(xué)生缺乏信任,由“引導(dǎo)者”變?yōu)椤肮噍斦摺?,將解題過程直接教給學(xué)生,影響了學(xué)生建模能力的提高.二是教師的專業(yè)素養(yǎng)有待提高.開展建模教學(xué),需要教師具有一定的專業(yè)素養(yǎng),能駕馭課堂教學(xué),激發(fā)學(xué)生的興趣,啟發(fā)學(xué)生進(jìn)行思考,誘發(fā)學(xué)生進(jìn)行探索,但是部分教師專業(yè)素養(yǎng)有待提高,或認(rèn)為建模就是解應(yīng)用題,或重生活味輕數(shù)學(xué)味,或使討論活動流于形式.三是學(xué)生的抽象能力較差.在建模教學(xué)中,教師須呈現(xiàn)生活中的實際問題,其題目長、信息量大、數(shù)據(jù)多,需要學(xué)生經(jīng)歷閱讀提取有用的信息,但是部分學(xué)生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學(xué)生成功建模.
1.自主探索原則.
學(xué)生長期處于師講、生聽的教學(xué)模式,淪為被動接受知識的“容器”,難有創(chuàng)造的意識.在教學(xué)中,教師要為學(xué)生創(chuàng)設(shè)輕松愉悅的探究氛圍,讓學(xué)生手腦并用,在探索、交流、操作中提高解決問題的`能力.
2.因材施教原則.
教師要著眼于學(xué)生原有的認(rèn)知結(jié)構(gòu),要貼近學(xué)生的最近發(fā)展區(qū),引導(dǎo)他們從舊知的角度思考,找出問題的解決方法。
3.可接受性原則.
數(shù)學(xué)建模內(nèi)容的設(shè)計,要符合學(xué)生的年齡特點和認(rèn)知能力,能讓學(xué)生理解所探究的內(nèi)容.若設(shè)計的問題不切實際,往往會扼殺學(xué)生的興趣,教師要密切聯(lián)系教學(xué)內(nèi)容、生活實際,讓學(xué)生有能力解決問題.
maya建模論文篇七
一、數(shù)學(xué)建模思想的內(nèi)涵分析。
數(shù)學(xué)建模思想產(chǎn)生于上個世紀(jì)的六七十年代,在“新數(shù)運動”和“回到基礎(chǔ)”的數(shù)學(xué)教學(xué)研究之后,數(shù)學(xué)教育的問題意識逐漸增強(qiáng),數(shù)學(xué)建模作為問題素養(yǎng)培養(yǎng)的重要方法也逐漸被人們所認(rèn)識到。在我國,以華羅庚為代表的數(shù)學(xué)家通過中學(xué)數(shù)學(xué)競賽與數(shù)學(xué)講座等方式向中學(xué)生介紹數(shù)學(xué)建模思想,雖然此時并沒有明確采用數(shù)學(xué)建模的名稱,但數(shù)學(xué)建模在解決數(shù)學(xué)問題中的應(yīng)用已受到重視。在幾十年的發(fā)展過程中,數(shù)學(xué)建模思想取得了很大發(fā)展。目前,我國初中數(shù)學(xué)建模思想在初中數(shù)學(xué)教育中廣泛應(yīng)用,新課程改革和素質(zhì)教育的實施,推動了學(xué)生數(shù)學(xué)應(yīng)用意識的加強(qiáng),促進(jìn)數(shù)學(xué)建模的教學(xué)方法的應(yīng)用。但由于教師教育理念的陳舊和教學(xué)方法的不科學(xué),導(dǎo)致數(shù)學(xué)建模思想的應(yīng)用受到限制。數(shù)學(xué)建模思想的重要性在于以下幾點:
首先,數(shù)學(xué)建模思想作為一種學(xué)習(xí)方法,可以將初中數(shù)學(xué)知識結(jié)合起來,在知識的相互滲透中挖掘出數(shù)學(xué)學(xué)習(xí)的規(guī)律。數(shù)學(xué)建模是一種綜合性較強(qiáng)的數(shù)學(xué)解題方法,初中數(shù)學(xué)建模教學(xué)中,不僅包括實際的生活內(nèi)容,還包括了多種學(xué)科,數(shù)學(xué)建模的范圍比較廣闊。
其次,數(shù)學(xué)建??梢院喕畔ⅰ?shù)學(xué)建模的目的是將繁雜的數(shù)學(xué)信息通過科學(xué)的模型直觀反映出來,將問題的主要方面表現(xiàn)出來,以所學(xué)知識對問題進(jìn)行解讀。數(shù)學(xué)建模能夠讓學(xué)生體驗建模的過程,教師將建模思想傳授給學(xué)生,讓學(xué)生在小組討論中找出最佳的建模方法,將學(xué)生的獨立思考和團(tuán)隊合作結(jié)合起來,為學(xué)生的建?;顒犹峁┝己玫目臻g。
再次,數(shù)學(xué)建模將簡化后的信息抽象為數(shù)學(xué)問題,利用已知條件,對數(shù)學(xué)問題進(jìn)行分析,以數(shù)學(xué)思維將文字語言數(shù)學(xué)化,以解決問題,通過模型的建立,以簡化、抽象的方法將數(shù)學(xué)學(xué)習(xí)中的問題進(jìn)行有效解決。再者,數(shù)學(xué)建模強(qiáng)調(diào)教學(xué)中的因材施教,對學(xué)生的學(xué)習(xí)水平和認(rèn)知差異進(jìn)行分析,發(fā)揮學(xué)生的學(xué)習(xí)潛能和優(yōu)勢,提高學(xué)生的數(shù)學(xué)思維能力。
最后,數(shù)學(xué)建模的應(yīng)用性強(qiáng)。隨著經(jīng)濟(jì)社會道德快速發(fā)展,數(shù)學(xué)知識已深入到人們生產(chǎn)生活的各個方面,數(shù)學(xué)思維能力及數(shù)學(xué)應(yīng)用能力的要求也越來越高,數(shù)學(xué)建模思想不僅能提高數(shù)學(xué)應(yīng)用能力,還能極大促進(jìn)數(shù)學(xué)思維能力的發(fā)展。在高考應(yīng)用題解答中,建模思想能夠方便學(xué)生的解題,情景模擬式的考題形式,對學(xué)生的語言能力及數(shù)學(xué)分析能力要求較高,數(shù)學(xué)建模思想體現(xiàn)了素質(zhì)教育對學(xué)生全面發(fā)展的要求。
(一)審題,即建模準(zhǔn)備階段。
在初中數(shù)學(xué)的學(xué)習(xí)中,首先應(yīng)仔細(xì)閱讀題目,對問題的背景進(jìn)行分析,將相關(guān)的已知數(shù)據(jù)進(jìn)行整合,分清題目中的已知量與未知量之間的關(guān)系。在審題過程中,一定要把握住題干中關(guān)鍵字詞的數(shù)學(xué)含義,如增加、減少、不大于、不小于、至少等等。在審題過程中,可以在頭腦中形成一套解題思路,再根據(jù)已知量情況,選擇最佳的問題解決方法。初中數(shù)學(xué)的審題有一定的難度,教師應(yīng)引導(dǎo)學(xué)生對題目進(jìn)行分析,找出問題的關(guān)鍵內(nèi)容,提取有用的解題數(shù)據(jù)。在這個過程中,教師應(yīng)加強(qiáng)對學(xué)生閱讀能力的培養(yǎng)以及數(shù)學(xué)思維的培養(yǎng),將形象繁雜的語言轉(zhuǎn)化為抽象簡潔的數(shù)學(xué)語言,為建模和解題做好準(zhǔn)備工作。
(二)建立數(shù)學(xué)模型。
在對題目信息進(jìn)行準(zhǔn)確分析之后,就應(yīng)該著手建立數(shù)學(xué)模型。將繁雜的語言文字抽象化為簡潔的數(shù)學(xué)語言,從題干中提取相關(guān)的數(shù)量關(guān)系,將該數(shù)量關(guān)系以數(shù)學(xué)符號或數(shù)學(xué)公式進(jìn)行分析,從而建立起一個完整的數(shù)學(xué)模型。數(shù)學(xué)建模過程對學(xué)生來說有一定的難度,對于比較抽象的模型或相對復(fù)雜的建模方法,教師應(yīng)先給出相應(yīng)的范例,同時可以采取小組討論的方法來激發(fā)學(xué)生的學(xué)習(xí)興趣,根據(jù)學(xué)生的建模類型的適用性、可行性、效率等進(jìn)行對比分析,根據(jù)題目類型選擇最恰當(dāng)?shù)臄?shù)學(xué)模型。
(三)求解數(shù)學(xué)模型。
根據(jù)已建立的數(shù)學(xué)模型,運用所學(xué)知識選擇最佳的問題解決方法,簡化運算方式,以最短的時間求解出該問題的解。同時,應(yīng)對求解過程中的變量范圍和其他限制性條件予以注意。在模型求解過程中,應(yīng)該重視算法簡化及工具的使用,還包括跨學(xué)科知識的應(yīng)用等方面的內(nèi)容也應(yīng)該予以重視。教師可以充分利用模型求解的過程,拓展學(xué)生的知識面,激發(fā)學(xué)生的學(xué)習(xí)興趣和欲望,培養(yǎng)學(xué)生的數(shù)學(xué)思維。模型求解過程的難度不是很大,可以通過學(xué)生獨立完成或者在分組中完成。
(四)模型驗證。
通過問題的求解,檢驗該求解結(jié)果是否與實際要求相符合,同時也應(yīng)對該求解結(jié)果與數(shù)學(xué)模型的匹配性進(jìn)行檢驗,實現(xiàn)最佳解決方案的實施。模型驗證應(yīng)在具體的問題中來檢測,以實際問題現(xiàn)象和數(shù)據(jù)對結(jié)果進(jìn)行分析,保證模型結(jié)果的適用性、合理性和準(zhǔn)確性。如果檢驗結(jié)果不符,則要修改模型結(jié)構(gòu),通過不斷改進(jìn)以符合實際情況。模型驗證環(huán)節(jié)是學(xué)生最易忽略的地方。在數(shù)學(xué)模型求解完成之后,由于模型與實際問題存在著一定地位問題,導(dǎo)致模型設(shè)計的不合理。這些都需要在模型驗證過程中予以解決。因此,在模型求解完成之后,教師應(yīng)要求學(xué)生將模型與公式對照檢驗,發(fā)現(xiàn)模型存在的問題,進(jìn)而解決問題。在多次的測量中,得出比較準(zhǔn)確的解題結(jié)果,之后則可以進(jìn)行模型參數(shù)變化及擴(kuò)展等教學(xué)內(nèi)容。
綜上所述,初中數(shù)學(xué)建模方法的實施,能夠幫助學(xué)生在數(shù)學(xué)學(xué)習(xí)中以建模方法來解決數(shù)學(xué)實際問題,在數(shù)學(xué)建模思想的不斷強(qiáng)化過程中,提高學(xué)生的數(shù)學(xué)建模意識。數(shù)學(xué)建模意識的培養(yǎng)并非一蹴而就,而是在長期的數(shù)學(xué)教學(xué)中所形成的一種數(shù)學(xué)解題方法。數(shù)學(xué)建模意識的培養(yǎng),離不開教師的積極作用,教師應(yīng)樹立數(shù)學(xué)建模思想,將數(shù)學(xué)建模作為數(shù)學(xué)思維培養(yǎng)的重要方法。
同時,數(shù)學(xué)建模思想改變了教師“一言堂”式的'課堂教學(xué)方式,發(fā)揮小組合作的重要作用,在小組的討論和相互學(xué)習(xí)中,培養(yǎng)了學(xué)生的主動參與意識,激發(fā)學(xué)生的學(xué)習(xí)興趣,促進(jìn)課堂教學(xué)效果的提高。
參考文獻(xiàn):
[1]付威.淺談初中數(shù)學(xué)教學(xué)中建模思想的滲透[j].文理導(dǎo)航(下旬),,(2):56.
[2]徐多多.淺析初中數(shù)學(xué)建模思想的有效運用[j].科海故事博覽·科教論壇,2012,(12).
maya建模論文篇八
將建模的思想有效的滲透到應(yīng)用數(shù)學(xué)的教學(xué)過程中去,是我們當(dāng)前開展應(yīng)用數(shù)學(xué)教育的未來發(fā)展趨勢,怎樣才能夠使應(yīng)用數(shù)學(xué)更好的服務(wù)社會經(jīng)濟(jì)的發(fā)展,充分發(fā)揮數(shù)學(xué)工具在實際問題解決中的重要作用,是我們當(dāng)前進(jìn)行應(yīng)用數(shù)學(xué)研究的核心問題,而建模思想在應(yīng)用數(shù)學(xué)中的運用則能夠很好的解決這一問題。
1當(dāng)前應(yīng)用數(shù)學(xué)的發(fā)展現(xiàn)狀以及未來發(fā)展趨勢。
數(shù)學(xué)教育至少應(yīng)該涵蓋純粹數(shù)學(xué)和應(yīng)用數(shù)學(xué)兩方面內(nèi)容,目前我國數(shù)學(xué)教育內(nèi)容以純粹數(shù)學(xué)為主,極少包括應(yīng)用數(shù)學(xué)內(nèi)容,這割裂了數(shù)學(xué)與外部世界的血肉聯(lián)系,使數(shù)學(xué)變成了多數(shù)學(xué)生眼中的抽象、枯燥、無用的思維游戲,而厭學(xué)成風(fēng)。因此,大家對現(xiàn)行的數(shù)學(xué)教育不滿意,期望改革,期望找到方法激發(fā)學(xué)生的學(xué)習(xí)興趣、培養(yǎng)學(xué)生利用數(shù)學(xué)解決各種實際問題的能力。在不改變傳統(tǒng)的教學(xué)體系的前提下,有機(jī)地融入應(yīng)用數(shù)學(xué)內(nèi)容,應(yīng)是解決現(xiàn)存問題的有效方法。事實上,數(shù)學(xué)發(fā)展的根本原動力,它的最初的根源,是來自客觀實際的需要,數(shù)學(xué)教學(xué)中理應(yīng)突出數(shù)學(xué)思想的來龍去脈,揭示數(shù)學(xué)概念和公式的實際來源和應(yīng)用,恢復(fù)并暢通數(shù)學(xué)與外部世界的血肉聯(lián)系。伴隨著社會生產(chǎn)力的不斷發(fā)展,多個學(xué)科交叉發(fā)展,使得應(yīng)用數(shù)學(xué)逐漸發(fā)展成擁有眾多發(fā)展方向的學(xué)科,應(yīng)用數(shù)學(xué)所運用的領(lǐng)域不斷延伸,已經(jīng)不再局限于傳統(tǒng)的、而是想著更為寬闊的、新興的學(xué)科以及高新技術(shù)領(lǐng)域發(fā)展,應(yīng)用數(shù)學(xué)目前已經(jīng)滲透到社會經(jīng)濟(jì)發(fā)展的各個行業(yè),在這一大背景下,應(yīng)用數(shù)學(xué)的研究者就擁有了極大的發(fā)展空間以及展示才能的舞臺,也迎來了應(yīng)用數(shù)學(xué)發(fā)展的新機(jī)遇。
2開展數(shù)學(xué)建模的意義。
數(shù)學(xué)這一學(xué)科不僅具有概念抽象性、邏輯嚴(yán)密性、體系完整性以及結(jié)論確定性,而且還具備非常明顯的應(yīng)用廣泛性,伴隨著計算機(jī)網(wǎng)絡(luò)在社會生活中的廣泛運用,人們對于實踐問題的解決要求越來越精確,這就給應(yīng)用數(shù)學(xué)的廣泛運用帶來了前所未有的機(jī)遇。應(yīng)用數(shù)學(xué)在這一背景下也已經(jīng)成為當(dāng)前高科技水平的一個重要內(nèi)容,應(yīng)用數(shù)學(xué)建模思想的引入與使用能夠極大的提升自身應(yīng)用數(shù)學(xué)的綜合水平以及思維意識,開展應(yīng)用數(shù)學(xué)建模不僅能夠有效的提升自己的學(xué)習(xí)熱情與探究意識,而且還能夠?qū)I(yè)知識同建模密切結(jié)合在一起,對于專業(yè)知識的有效掌握是非常有益的。
3滲透建模思想的對策措施。
3.1充分重視建模的橋梁作用。
建模是實現(xiàn)數(shù)學(xué)知識與現(xiàn)實問題相聯(lián)系的橋梁與紐帶,通過進(jìn)行建模能夠有效的將實際問題進(jìn)行簡化。在這一轉(zhuǎn)化的過程中,應(yīng)當(dāng)深入實際進(jìn)行調(diào)查、收集相關(guān)數(shù)據(jù)信息,認(rèn)真分析對象的獨特特征及規(guī)律,構(gòu)建起反映實際問題的數(shù)學(xué)關(guān)系,運用數(shù)學(xué)理論進(jìn)行問題的解決。這正是各個學(xué)科之間進(jìn)行有效聯(lián)系的結(jié)合點,通過引進(jìn)建模思想,不僅能夠使我們有效掌握數(shù)學(xué)理論之外的實踐問題,還能夠推動創(chuàng)新意識的提升,因此,我們應(yīng)當(dāng)充分重視建模的作用。
3.2將建模的方法以及相關(guān)理論引入到數(shù)學(xué)教學(xué)中來。
我國當(dāng)前數(shù)學(xué)課程教學(xué)體系的現(xiàn)狀包括高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計等幾個部分。當(dāng)前應(yīng)用數(shù)學(xué)的發(fā)展,滿足這一學(xué)科的建設(shè)以及其他學(xué)科對這一學(xué)科的需要,教師在教學(xué)中應(yīng)當(dāng)將問題的背景介紹清楚,并列出幾種解決方案,啟發(fā)學(xué)生進(jìn)行討論并構(gòu)建數(shù)學(xué)模型。學(xué)生們在課堂上就能夠獲得更多的思考和討論的機(jī)會,能夠充分調(diào)動學(xué)生們的積極性,使其能夠立足實際進(jìn)行思考,這樣一來就形成了以實際問題為基礎(chǔ)的數(shù)學(xué)建模教學(xué)特色。
3.3積極參加“數(shù)學(xué)模型”課等相關(guān)課程與活動。
數(shù)學(xué)應(yīng)用綜合性的實驗,要求我們掌握數(shù)學(xué)知識的綜合性運用,做法是老師先講一些數(shù)學(xué)建模的一些應(yīng)用實例,然后學(xué)生上機(jī)實踐,強(qiáng)調(diào)學(xué)生的動手實踐?!皵?shù)學(xué)實驗”課應(yīng)該說是數(shù)學(xué)模型的輔助課程,主要培養(yǎng)我們的數(shù)學(xué)思維和創(chuàng)新能力,還應(yīng)當(dāng)組織一些建模比賽,不斷提升數(shù)學(xué)建模的綜合水平。
上述幾個部分的論述與分析,我們看到,在應(yīng)用數(shù)學(xué)中加強(qiáng)建模思想具有非常重要的意義,不僅需要在課堂學(xué)習(xí)過程中認(rèn)真掌握數(shù)學(xué)理論知識,還應(yīng)當(dāng)深入了解數(shù)學(xué)理論在實際生活中的可用之處,盡可能的使應(yīng)用數(shù)學(xué)與自身所學(xué)專業(yè)相聯(lián)系,這樣,才能夠使應(yīng)用數(shù)學(xué)的能力與水平在日常實踐過程中得到提升。就當(dāng)前高等數(shù)學(xué)的現(xiàn)狀來看,加強(qiáng)創(chuàng)新意識以及將實際問題轉(zhuǎn)化為數(shù)學(xué)問題能力的培養(yǎng),提升綜合運用本專業(yè)知識以來解決實踐問題的能力,使創(chuàng)新思維得到最大限度的發(fā)揮。
maya建模論文篇九
在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學(xué)質(zhì)量,新時期對大學(xué)數(shù)學(xué)教學(xué)提出了更高的要求。大學(xué)數(shù)學(xué)作為課堂教學(xué)的主體,教師在傳授知識的同時,要注重學(xué)生學(xué)習(xí)能力和解決問題能力的培養(yǎng)。
數(shù)學(xué)知識來源于生活,應(yīng)用于生活,如微積分作為高等數(shù)學(xué)知識中的典型代表,在各個行業(yè)中具有不可或缺的作用。為此,任課教師在大學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力十分重要,在傳授知識的過程中幫助學(xué)生利用所學(xué)知識來解決實際問題。一般情況下,教師著重介紹相關(guān)數(shù)學(xué)概念和原理,推導(dǎo)常用公式,促使學(xué)生能夠記住公式,學(xué)會公式的應(yīng)用過程,逐漸掌握解題技巧。
因此,如何能夠在傳授知識的同時,促使學(xué)生掌握數(shù)學(xué)學(xué)習(xí)方法,將所學(xué)知識應(yīng)用到實踐中來解決數(shù)學(xué)問題是一個首要問題。從大量教學(xué)實踐中可以了解到,在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想十分重要,有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,促使學(xué)生積極投入其中,切實提升學(xué)生的數(shù)學(xué)專業(yè)水平。
在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想,應(yīng)該結(jié)合實際情況,深入挖掘數(shù)學(xué)知識。在教學(xué)中,教師應(yīng)該充分發(fā)揮自身引導(dǎo)作用,聯(lián)系學(xué)生數(shù)學(xué)知識實際學(xué)習(xí)情況,有針對性地整合數(shù)學(xué)知識,了解相關(guān)數(shù)學(xué)內(nèi)容,這樣不僅可以豐富教學(xué)內(nèi)容,還可以為課堂教學(xué)注入新的活力,有效激發(fā)學(xué)生的學(xué)習(xí)興趣,提升學(xué)習(xí)成效。具體表現(xiàn)在以下方面:
(一)閉區(qū)間連續(xù)函數(shù)的性質(zhì)。
閉區(qū)間連續(xù)函數(shù)的性質(zhì)內(nèi)容是大學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,由于知識理論性較強(qiáng),知識較為抽象,學(xué)習(xí)難度較大,在講解完相關(guān)理論知識后,可以引入椅子的穩(wěn)定問題,創(chuàng)建數(shù)學(xué)模型,提問學(xué)生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學(xué)生可以了解到這一問題同所學(xué)知識相關(guān)聯(lián),閉區(qū)間連續(xù)函數(shù)的性質(zhì)可以解決這一問題。學(xué)生整合所學(xué)知識,通過對問題的分析,可以了解到利用介值定理來解決問題。通過建立數(shù)學(xué)模型,學(xué)生更加充分地掌握了閉區(qū)間連續(xù)函數(shù)的`性質(zhì),提升了學(xué)習(xí)成效,為后續(xù)知識學(xué)習(xí)打下了堅實的基礎(chǔ)。
(二)定積分。
定積分是高等數(shù)學(xué)教學(xué)中的重要組成部分,在解決幾何問題時均有所應(yīng)用,并且被廣泛應(yīng)用在實際生活中。如,在一道全國大學(xué)生數(shù)學(xué)建模競賽題目中,計算煤矸石的堆積,煤礦采煤時所產(chǎn)生的煤矸石,為了處理煤矸石就需要征用土地來堆放煤矸石,根據(jù)上級主管部門的年產(chǎn)量計劃和經(jīng)費如何堆放煤矸石?題目中的關(guān)鍵點在于堆放煤矸石的征地費用和電費的計算。征地費計算難度較小,但是煤矸石堆積的電費計算難度較高,但此項內(nèi)容涉及定積分中的變力做功知識點。學(xué)生掌握這些內(nèi)容后就可以建立數(shù)學(xué)模型,更加高效地了解如何根據(jù)預(yù)期開采量來堆放煤矸石。通過數(shù)學(xué)模型,學(xué)生也可以了解到定積分內(nèi)容同實際生活之間的聯(lián)系,學(xué)習(xí)積極性就會大大提升。
(三)最值問題。
在高等數(shù)學(xué)中,最值問題占比比較大,同時在實際生活中應(yīng)用較為普遍,導(dǎo)數(shù)知識可以解決實際生活中的最值問題,這就需要提高對導(dǎo)數(shù)知識實際應(yīng)用的重視程度。教師在為學(xué)生講解完導(dǎo)數(shù)的相關(guān)概念知識后,通過建立關(guān)于天空的采空模型,提問學(xué)生為什么雨后太陽出來了,雨滴還在空中,那么將為人們呈現(xiàn)出什么樣的景色?學(xué)生回答彩虹。繼續(xù)提問彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對此,學(xué)生的興趣較為濃厚,可以分為若干個小組進(jìn)行討論。通過分析可以得出,雨滴可以反射太陽光,形成彩虹。結(jié)合光線的反射和折射定律,借助所學(xué)的導(dǎo)數(shù)知識來計算得出太陽光偏轉(zhuǎn)角度的最值,有效解決實際學(xué)習(xí)的問題,加深對知識的理解和記憶,提升數(shù)學(xué)知識學(xué)習(xí)成效。
(四)微分方程。
微分方程知識同實際生活之間息息相關(guān),建立微分方程可以有效解決實際生活中的問題。這就需要學(xué)生在了解微分方程知識的基礎(chǔ)上,進(jìn)一步建立數(shù)學(xué)模型來解決問題。如,在當(dāng)前社會進(jìn)步和發(fā)展下,人均物質(zhì)生活水平顯著提升,肥胖成為危害人們身體健康的主要問題之一,受到社會各界廣泛的關(guān)注和重視。通過問題精簡化和假設(shè),可以得到微分方程模型,在分析方程中飲食控制和運動鍛煉兩個關(guān)鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹立正確的減肥理念。
(五)矩陣。
在高等數(shù)學(xué)教學(xué)中,矩陣的概念較為抽象和復(fù)雜,在講解問題之前,應(yīng)該根據(jù)知識點來創(chuàng)設(shè)教學(xué)情境,輔助教學(xué)活動。通過引入企業(yè)工廠生產(chǎn)總成本模型,充分描述工廠生產(chǎn)中需要的原材料和勞動力,并且詳細(xì)記錄管理費用。這有助于加深人們對矩陣概念的認(rèn)知和理解,提升學(xué)習(xí)成效,同時幫助學(xué)生深入理解和記憶,鍛煉學(xué)生的數(shù)學(xué)解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學(xué)生的數(shù)學(xué)建模意識。
綜上所述,在大學(xué)數(shù)學(xué)教學(xué)中,可以通過數(shù)學(xué)建模思想來引導(dǎo)學(xué)生養(yǎng)成良好的自主學(xué)習(xí)能力,發(fā)揮自身的主體能動性和創(chuàng)新能力,提升學(xué)生解決問題的能力,將所學(xué)知識靈活運用到實際生活中,養(yǎng)成良好的數(shù)學(xué)素養(yǎng)。
maya建模論文篇十
摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過程中數(shù)學(xué)建模入手,對如何將數(shù)學(xué)建模運用到學(xué)生解題過程中進(jìn)行了分析。
數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實際中遇到的問題,換句話說,就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問題利用簡單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f,小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對今后的學(xué)習(xí)起到極大的影響。因此,對于小學(xué)數(shù)學(xué)教師來說,不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實際問題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進(jìn),如何有效的將數(shù)學(xué)建模運用在小學(xué)數(shù)學(xué)教學(xué)過程中,是每個小學(xué)數(shù)學(xué)教師都值得思考的問題。
數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識,讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問題。在這一過程中,數(shù)學(xué)教師要注意以下兩個問題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問題也必須要符合生活實際,讓學(xué)生對所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進(jìn)行數(shù)學(xué)建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學(xué)學(xué)習(xí)的積極性,讓他們在數(shù)學(xué)建模中獲得成就感,增加自信心,以此來提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。
二、提高學(xué)生想象力,用數(shù)學(xué)建模簡化問題。
對于小學(xué)生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點,提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問題,讓題目簡單化。具體來說,就是在面對復(fù)雜的'數(shù)學(xué)問題時,教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進(jìn)行引導(dǎo),讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導(dǎo)他們進(jìn)行數(shù)學(xué)建模,解決問題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問題簡單化。
三、選擇合適的題目作為建模案例。
在數(shù)學(xué)建模過程中,教師也要時刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時教師主要應(yīng)該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達(dá)到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對題目進(jìn)行深入的分析,看是否在擁有趣味性、真實性的同時符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學(xué)生進(jìn)行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。
四、引導(dǎo)學(xué)生主動進(jìn)行數(shù)學(xué)建模。
在教師經(jīng)過反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識,了解了數(shù)學(xué)建模過程,并且能夠在解題過程中簡單的使用數(shù)學(xué)建模。此時,教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問題,就要在解題過程中多對學(xué)生進(jìn)行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進(jìn)行數(shù)學(xué)建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗,提高自己數(shù)學(xué)建模水平,同時這樣的方式能夠讓數(shù)學(xué)建模深入到每一個學(xué)生的心中,逐漸影響每一個學(xué)生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過去的傳統(tǒng)教學(xué)思路,增加學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對于小學(xué)數(shù)學(xué)教師來說,值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。
maya建模論文篇十一
Maya是一款功能強(qiáng)大、應(yīng)用廣泛的三維建模軟件,我在使用Maya進(jìn)行建模的過程中積累了一些心得體會。在這篇文章中,我將分享我對Maya建模的總結(jié),希望能對初學(xué)者有所幫助。
第一段:了解建?;A(chǔ)知識。
Maya是一個復(fù)雜的軟件,建模需要一定的基礎(chǔ)知識。在開始使用Maya之前,我花了一些時間學(xué)習(xí)3D建模的相關(guān)技術(shù)和原理。了解基本的建模工具、操作方法和建模流程是建立一個堅實基礎(chǔ)的關(guān)鍵。掌握了這些基礎(chǔ)知識之后,我能夠更好地理解和運用Maya的功能。
第二段:善于利用Maya的建模工具。
Maya擁有豐富多樣的建模工具,熟練掌握這些工具對于高效建模至關(guān)重要。其中,我最常使用的工具包括多邊形建模工具、曲線工具和變形工具等。通過反復(fù)使用這些工具,我不僅提升了自己的建模技術(shù),還發(fā)現(xiàn)了一些更高效的建模方法。通過不斷實踐和嘗試,我掌握了一些常用的建模技巧,例如使用邊緣環(huán)繞、子對象編輯和對稱建模等。同時,我也發(fā)現(xiàn)Maya具有很多隱藏的快捷鍵和功能,學(xué)會使用這些快捷方式可以提高建模效率。
第三段:注重細(xì)節(jié)和拓展視野。
建模過程中,我意識到注重細(xì)節(jié)對于模型的質(zhì)量和真實感十分重要。在建模過程中,我會不斷調(diào)整曲線、面、頂點和邊等元素的位置和形狀,使得模型更加精確。此外,我還會注意一些模型的細(xì)節(jié),如添加紋理、光照和渲染,使得模型看起來更加逼真。除了注重細(xì)節(jié),我還努力拓展自己的視野,學(xué)習(xí)不同的建模技術(shù)和方法。通過參考其他藝術(shù)家的作品和學(xué)習(xí)他們的建模流程,我不斷提高自己的建模技巧和創(chuàng)造力。
第四段:勤于練習(xí)與分享。
在學(xué)習(xí)和使用Maya的過程中,我發(fā)現(xiàn)只有勤于練習(xí)才能提高自己的建模水平。我會根據(jù)自己的興趣和需求選擇不同的建模項目進(jìn)行練習(xí)和實踐。通過不斷嘗試不同的場景、角色和物體,我獲得了更豐富的建模經(jīng)驗和技巧。同時,我也積極參與建模社區(qū)的交流和分享。在建模社區(qū)中,我能夠結(jié)識一些志同道合的朋友,并與他們交流和分享自己的建模心得和技巧。這種互相學(xué)習(xí)和交流的氛圍對于提高建模水平和創(chuàng)造力十分有益。
第五段:持續(xù)學(xué)習(xí)和不斷探索。
Maya作為一款功能強(qiáng)大的建模軟件,它的學(xué)習(xí)和應(yīng)用永無止境。在使用Maya進(jìn)行建模的過程中,我深感自己仍然有很多需要學(xué)習(xí)和提升的地方。因此,我會持續(xù)學(xué)習(xí)新的建模技術(shù)和方法,并不斷探索Maya的各種功能和工具。通過不斷學(xué)習(xí)和實踐,我相信自己會變得越來越熟練和有經(jīng)驗,不僅在建模方面取得進(jìn)步,還能夠應(yīng)對不同的建模挑戰(zhàn),并創(chuàng)造出更加精美和獨特的作品。
總結(jié)起來,Maya建模需要掌握一定的基礎(chǔ)知識,善于利用Maya的建模工具,注重細(xì)節(jié)和拓展視野,勤于練習(xí)與分享,持續(xù)學(xué)習(xí)和不斷探索。通過遵循這些原則,我相信每個人都可以在Maya建模領(lǐng)域取得進(jìn)步,并創(chuàng)造出令人驚嘆的作品。
maya建模論文篇十二
Maya建模是計算機(jī)圖形學(xué)中的一個重要領(lǐng)域,涉及到三維場景的建立和模型的創(chuàng)建。通過學(xué)習(xí)和實踐,我積累了一些心得體會。本文將分為五個段落,分別討論建模前的準(zhǔn)備工作、建模過程中的技巧和注意事項、建模的難點與挑戰(zhàn)、建模實戰(zhàn)經(jīng)驗以及建模的發(fā)展趨勢與展望。
第一段,建模前的準(zhǔn)備工作。在進(jìn)行Maya建模之前,我們需要有充足的準(zhǔn)備工作,包括了解所需建模的對象、進(jìn)行相關(guān)的素材收集以及對其進(jìn)行細(xì)致的觀察和分析。只有對建模的對象有深入的了解,才能更好地進(jìn)行具體的建模工作。
第二段,建模過程中的技巧和注意事項。在進(jìn)行建模過程時,需要掌握一些技巧和注意事項。首先,要善于使用Maya的各種工具和功能,例如多邊形建模和NURBS建模等。其次,要靈活運用各種不同的建模技巧,例如使用設(shè)置布爾操作、邊緣環(huán)操作等。另外,要注意建模過程中的細(xì)節(jié)和精度,避免出現(xiàn)模型過于簡單或者細(xì)節(jié)過于復(fù)雜的問題。
第三段,建模的難點與挑戰(zhàn)。Maya建模并不是一項容易的工作,其中存在著一些難點與挑戰(zhàn)。其中之一是模型的拓?fù)鋯栴},即如何合理地組織模型的邊、面和點的關(guān)系,以達(dá)到模型的流暢和細(xì)致。另外,模型的細(xì)節(jié)處理也是一個難點,需要準(zhǔn)確捕捉和再現(xiàn)對象的細(xì)節(jié)特征,這需要豐富的經(jīng)驗和良好的觀察力。
第四段,建模實戰(zhàn)經(jīng)驗。通過了解建模的基本概念和技巧,并運用于實際的建模實踐中,我積累了一些經(jīng)驗。首先,要保持耐心和專注,不斷嘗試和改進(jìn)自己的建模技巧。其次,在建模過程中,要及時保存模型的不同版本,以備不時之需。最后,要不斷學(xué)習(xí)和交流,與其他建模者分享心得體會,從他們的經(jīng)驗中汲取養(yǎng)分。
第五段,建模的發(fā)展趨勢與展望。Maya作為一款強(qiáng)大的建模軟件,不斷更新和發(fā)展。未來的建模趨勢將更加注重于簡化操作流程和提高建模效率,同時也將更加強(qiáng)調(diào)對模型的真實感和逼真感。此外,隨著技術(shù)的不斷發(fā)展,虛擬和增強(qiáng)現(xiàn)實領(lǐng)域?qū)τ诮5男枨笠矊⒅饾u增加,Maya建模將面臨更多挑戰(zhàn)和機(jī)遇。
總結(jié)起來,Maya建模是一項需要良好準(zhǔn)備、技巧和耐心的工作。通過不斷學(xué)習(xí)和實踐,我們可以不斷提升自己的建模能力,并在建模實戰(zhàn)中積累經(jīng)驗。未來,Maya建模將繼續(xù)發(fā)展,為我們提供更多的建模工具和技巧。希望本文的分享能夠?qū)φ趯W(xué)習(xí)和從事Maya建模的朋友們有所啟發(fā)和幫助。
maya建模論文篇十三
Maya是一款專業(yè)的三維計算機(jī)圖形軟件,廣泛應(yīng)用于電影、動畫制作、游戲開發(fā)等領(lǐng)域。作為一名初學(xué)者,我在學(xué)習(xí)和使用Maya的過程中,積累了一些心得體會。在下面的文章中,我將分享五個方面的體會,包括Maya的功能強(qiáng)大性、學(xué)習(xí)曲線的陡峭、模型的細(xì)節(jié)處理、創(chuàng)造性的發(fā)揮和團(tuán)隊合作的重要性。
首先,Maya的功能非常強(qiáng)大,幾乎可以實現(xiàn)你關(guān)于三維建模的任何想法。無論是簡單的幾何體,還是復(fù)雜的有機(jī)形狀,Maya都可以輕松應(yīng)對。不僅如此,Maya還提供了豐富的材質(zhì)、燈光和動畫功能,使得模型可以更加逼真的呈現(xiàn)在屏幕上。這一點對于想要進(jìn)一步提升作品質(zhì)量的藝術(shù)家來說,是非常有吸引力的。
然而,Maya的學(xué)習(xí)曲線也是非常陡峭的。作為一個功能如此復(fù)雜的軟件,初學(xué)者可能會感到有些不知所措。從最基礎(chǔ)的界面布局到高級的建模技術(shù),都需要花費大量的時間和精力去學(xué)習(xí)和掌握。但是,不要氣餒。通過系統(tǒng)的學(xué)習(xí)和實踐,我發(fā)現(xiàn)自己的技能在不斷提高,慢慢地能夠自如地使用Maya進(jìn)行建模。
在模型的細(xì)節(jié)處理上,Maya提供了各種各樣的工具和技巧,使得藝術(shù)家可以在模型上添加細(xì)節(jié),使其更加豐富和生動。通過Maya的細(xì)分建模和邊緣環(huán)合并等技術(shù),我學(xué)會了如何打磨模型,使其變得更加光滑和流暢。此外,Maya的繪制和貼圖功能也非常出色,可以用來添加各種紋理和顏色。通過這些工具和技巧,模型可以更加真實的模擬出現(xiàn)實生活中的細(xì)節(jié)。
Maya給予了藝術(shù)家們很大的創(chuàng)造性發(fā)揮空間。通過在Maya中建模,藝術(shù)家可以將他們的想象變?yōu)楝F(xiàn)實。Maya提供了各種基本的工具和模型,也支持模型的自定義和修改。通過靈活運用各種工具和效果,藝術(shù)家可以創(chuàng)造出獨特且個性化的作品。這種創(chuàng)造性的發(fā)揮能夠激發(fā)藝術(shù)家們的靈感,并促使他們不斷嘗試和創(chuàng)新。
Maya還非常適合團(tuán)隊合作。在大型項目中,不同的藝術(shù)家可能分工合作,各自負(fù)責(zé)不同的模型建造和動畫制作。在Maya中,可以輕松地導(dǎo)入和導(dǎo)出不同的文件格式,使得不同藝術(shù)家之間可以無縫地銜接和交換工作。此外,Maya還支持版本控制和協(xié)作功能,方便不同人員之間的合作和協(xié)調(diào)。團(tuán)隊合作可以極大地提高工作效率,并推動項目的順利進(jìn)行。
總之,Maya建模是一項非常有挑戰(zhàn)性但又非常有趣的事情。通過學(xué)習(xí)和實踐,我逐漸掌握了Maya的基本技能,并發(fā)現(xiàn)其功能的強(qiáng)大性和應(yīng)用的廣泛性。Maya不僅僅是一種工具,更是一種藝術(shù)的表達(dá)方式。在未來的學(xué)習(xí)和使用過程中,我將繼續(xù)探索Maya的更多功能,并嘗試在各個領(lǐng)域發(fā)揮我的創(chuàng)意和想象力。
maya建模論文篇十四
摘要:數(shù)學(xué)作為很多學(xué)科的計算工具,可以說是現(xiàn)代科學(xué)的基礎(chǔ),要想利用數(shù)學(xué)來解決實際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,本文在數(shù)學(xué)建模思想概念和特點的基礎(chǔ)上,從計算機(jī)軟件、實際生活中的應(yīng)用等方面,對其應(yīng)用的發(fā)展進(jìn)行了分析,最后從分析問題、建立模型、校驗?zāi)P腿齻€階段,對數(shù)學(xué)建模的方法,進(jìn)行了深入的研究。
引言。
隨著自然科學(xué)的發(fā)展,利用數(shù)學(xué)等思想來解決實際問題,越來越受到人們的重視,數(shù)學(xué)作為一門歷史悠久的自然科學(xué),是在實際應(yīng)用的基礎(chǔ)上發(fā)展起來,但是隨著理論研究的深入,現(xiàn)在數(shù)學(xué)理論已經(jīng)非常先進(jìn),很多理論都無法付諸實踐,在這種背景下,如何利用現(xiàn)有的數(shù)學(xué)理論來解決實際問題,成為了很多專家和學(xué)者研究的問題。通過實際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學(xué)來解決實際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,將實際的問題轉(zhuǎn)化成數(shù)學(xué)符號的表達(dá)方式,這樣才能夠通過數(shù)學(xué)計算,來解決一些實際問題,從某種意義上來說,計算機(jī)就是由若干個數(shù)學(xué)模型組成的,計算機(jī)軟件之所以能夠解決實際問題,就是根據(jù)實際應(yīng)用的需要,建立了一個相應(yīng)的數(shù)學(xué)模型,這樣才能夠讓計算機(jī)來解決。
數(shù)學(xué)是一門歷史悠久的自然科學(xué),在古時候,由于實際應(yīng)用的需要,人們就已經(jīng)開始使用數(shù)學(xué)來解決實際問題,但是受到當(dāng)時技術(shù)條件的限制,數(shù)學(xué)理論的水平比較低,只是利用數(shù)學(xué)來進(jìn)行計數(shù)等,隨著經(jīng)濟(jì)和科技水平的提高,尤其是在工業(yè)革命之后,自然科學(xué)得到了極大的發(fā)展,對于利用自然科學(xué)來解決實際問題,也成為了人們研究的重點,在市場經(jīng)濟(jì)的推動下,人們將這些理論知識轉(zhuǎn)化成為產(chǎn)品。計算機(jī)就是在這種背景下產(chǎn)生的,在數(shù)學(xué)理論的基礎(chǔ)上,將電路的通和不通兩種狀態(tài),與數(shù)學(xué)的二進(jìn)制相結(jié)合,這樣就能夠讓計算機(jī)來處理實際問題,從本質(zhì)上來說,這就是數(shù)學(xué)建模思想的范疇,但是在計算機(jī)出現(xiàn)的早期,數(shù)學(xué)建模的理論還沒有形成,隨著計算機(jī)軟件技術(shù)的發(fā)展,人們逐漸的意識到數(shù)學(xué)建模的重要性,發(fā)現(xiàn)利用數(shù)學(xué)建模思想,可以解決很多實際的問題,而數(shù)學(xué)建模的概念,就是將遇到的實際問題,利用特定的數(shù)學(xué)符號進(jìn)行描述,這樣實際問題就轉(zhuǎn)化為數(shù)學(xué)問題,可以利用數(shù)學(xué)的計算方法來解決。
如何解決實際問題,從有人類文明開始,就成為了人們研究的重點,隨著自然科學(xué)的發(fā)展,出現(xiàn)了很多具體的學(xué)科,利用這些不同的學(xué)科,可以解決不同的實際問題,而數(shù)學(xué)就是其中最重要的一門學(xué)科,而且是其他學(xué)科的基礎(chǔ),如物理學(xué)科中,數(shù)學(xué)就是一個計算的工具,由此可以看出數(shù)學(xué)的重要性,進(jìn)入到信息時代后,計算機(jī)得到了普及應(yīng)用,無論是日常生活中還是工作中,計算機(jī)都有非常重要的應(yīng)用,而在信息時代,注重的是解決問題的效率。與其他解決問題的方式相比,數(shù)學(xué)建模顯然更加科學(xué),現(xiàn)在數(shù)學(xué)建模已經(jīng)成為了一門獨立的學(xué)科,很多高校中都開設(shè)了這門課程,為了培養(yǎng)學(xué)生們利用數(shù)學(xué)解決實際問題的能力,我國每年都會舉辦全國性的數(shù)學(xué)建模大賽,采用開放式的參賽方式,對學(xué)生們的數(shù)學(xué)建模能力進(jìn)行考驗,而大賽的題目,很多都是一些實際問題,對于比賽的結(jié)果,每個參賽隊伍的建模方式都有一定的差異,其中選出一個最有效的方式成為冠軍。由此可以看出,對于一個實際的問題,可以建立多個數(shù)學(xué)模型進(jìn)行解決,但是執(zhí)行的效率具有一定的差異,如有些計算的步驟較少,而有些計算的過程比較簡單,而如何評價一個模型的效率,必須從各個方面進(jìn)行綜合的考慮。
2.1計算機(jī)軟件中數(shù)學(xué)建模思想的應(yīng)用。
通過深入的分析可以知道,計算機(jī)之所以能夠解決實際問題,很大程度上依賴與計算機(jī)軟件,而計算機(jī)軟件自身就是一個或幾個數(shù)學(xué)模型,在軟件開發(fā)的過程中,首先要進(jìn)行需求的分析,這其實就是數(shù)學(xué)建模的第一個環(huán)節(jié),對問題進(jìn)行分析,在了解到問題之后,就要通過計算機(jī)語言,對問題進(jìn)行描述,而計算機(jī)語言是人與計算機(jī)進(jìn)行溝通的語言,最終這些語言都要轉(zhuǎn)化成0和1二進(jìn)制的方式,這樣計算機(jī)才能夠進(jìn)行具體的計算。由此可以看出,計算機(jī)就是依靠數(shù)學(xué)來解決實際問題,而每個計算機(jī)軟件,都可以認(rèn)為是一個數(shù)學(xué)模型,如在早期的計算機(jī)程序設(shè)計中,受到當(dāng)時計算機(jī)技術(shù)水平的限制,采用的還是低級語言,由于低級語言人們很難理解,因此在程序編寫之前,都會先建立一個數(shù)學(xué)模型,然后將這個模型轉(zhuǎn)化成相應(yīng)的計算機(jī)語言,這樣計算機(jī)就可以解決實際的問題,由于計算機(jī)能夠自行計算的特點,只要輸入相應(yīng)的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計算。
經(jīng)過了多年的發(fā)展,現(xiàn)在數(shù)學(xué)建模自身已經(jīng)非常完善,為了培養(yǎng)我國的數(shù)學(xué)建模人才,從1992年開始,每年我國都會舉辦一屆全國數(shù)學(xué)建模大賽,所有的高校學(xué)生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對于題目設(shè)置的也比較靈活,會有多個題目提供給隊員選擇,學(xué)生可以根據(jù)自己的實際情況,來選擇一個最適合自己的問題。而數(shù)學(xué)建模大賽舉辦的主要目的,就是讓學(xué)生們掌握如何利用數(shù)學(xué)理論,來解決實際問題,在學(xué)習(xí)數(shù)學(xué)知識的過程中,很多學(xué)生會認(rèn)為,數(shù)學(xué)與實踐的距離很遠(yuǎn),學(xué)習(xí)的都是純理論的知識,學(xué)習(xí)的興趣很低,與一些實踐密切相關(guān)的學(xué)科相比,選擇數(shù)學(xué)專業(yè)的學(xué)生很少,而數(shù)學(xué)建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學(xué),并利用數(shù)學(xué)來解決復(fù)雜的問題。受到特殊的歷史因素影響,我國自然科學(xué)發(fā)展的起步較晚,在建國后經(jīng)歷了很長一段時間封,閉發(fā)展,與西方發(fā)達(dá)國家之間的交流比較少,因此對于數(shù)學(xué)建模等現(xiàn)代科學(xué),研究的時間比較短,導(dǎo)致目前我國很少會利用數(shù)學(xué)建模來解決實際問題,相比之下,發(fā)達(dá)國家在很多領(lǐng)域中,經(jīng)常會用到數(shù)學(xué)建模的知識,如在企業(yè)日常運營中,需要進(jìn)行市場調(diào)研等工作,而對于這些調(diào)研工作的處理,在進(jìn)行之前都會建立一個數(shù)學(xué)模型,然后按照這個建立的模型來處理。
從本質(zhì)上來說,數(shù)學(xué)是在實際應(yīng)用的基礎(chǔ)上,逐漸形成的一門學(xué)科,但是受到當(dāng)時技術(shù)水平的限制,雖然人們已經(jīng)懂得去計算,卻并知道自己使用的是數(shù)學(xué)知識,隨著自然科學(xué)的發(fā)展,對數(shù)學(xué)的應(yīng)用越來越多,而數(shù)學(xué)自身理論的發(fā)展速度很快,遠(yuǎn)遠(yuǎn)超過了實際應(yīng)用的范圍,同時隨著其他學(xué)科的發(fā)展,數(shù)學(xué)變成了一種計算的工具,因此數(shù)學(xué)應(yīng)用的第一個階段中,主要是作為一種工具。隨著電子計算機(jī)的出現(xiàn),對數(shù)學(xué)的應(yīng)用達(dá)到了一個極限,人們在數(shù)學(xué)和物理的基礎(chǔ)上,制作出了能夠自動計算的機(jī)器,在計算機(jī)出現(xiàn)的早期,受到性能和體積上的限制,只能進(jìn)行一些簡單的數(shù)學(xué)計算,還不能解決實際的問題,但是計算機(jī)語言和軟件技術(shù)的.發(fā)展,使其在很多領(lǐng)域得到了應(yīng)用,在計算的基礎(chǔ)上,能夠解決很多問題,而軟件程序的開發(fā),其實就是建立數(shù)學(xué)模型的過程,由此可以看出,數(shù)學(xué)建模思想應(yīng)用的第二階段中,主要是以現(xiàn)代計算機(jī)等電子設(shè)備的方式,來解決實際的問題。
3.1分析問題。
數(shù)學(xué)模型的應(yīng)用都是為了解決實際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實際問題時,首先要對問題進(jìn)行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學(xué)符號,如果能夠直接用數(shù)學(xué)語言來進(jìn)行描述,那么就可以容易的建立相應(yīng)的數(shù)學(xué)模型,但是通過實際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟(jì)和科技的發(fā)展,遇到的問題越來越復(fù)雜,其中很多都無法直接用數(shù)學(xué)語言來描述,這就增加了數(shù)學(xué)建模的難度。由此可以看出,分析問題作為數(shù)學(xué)建模的第一個環(huán)節(jié),也是最重要的一個環(huán)節(jié),如果問題分析的不夠具體,那么將無法建立出數(shù)學(xué)模型,同時對數(shù)學(xué)模型的建立也具有非常重要的影響,通過實際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學(xué)模型,都是對問題分析的比較徹底,甚至有些獨特的理解,只有這樣才能夠采用建立一個最簡單的模型,而隨著數(shù)學(xué)建模自身的發(fā)展,現(xiàn)在建立模型的過程中,對于一個實際的問題,經(jīng)常需要建立多個模型,這樣通過多個數(shù)學(xué)模型協(xié)同來解決一個問題。
在分析實際問題后,就要用數(shù)學(xué)符號來描述要解決的問題,這是建立數(shù)學(xué)模型的準(zhǔn)備環(huán)節(jié),要想利用數(shù)學(xué)來解決實際問題,無論采用哪種方式,都要轉(zhuǎn)化成數(shù)學(xué)語言,然后才能夠通過計算的方式解決,而數(shù)學(xué)模型的過程,就是在描述完成后,建立相應(yīng)的數(shù)學(xué)表達(dá)式,通常情況下,在分析問題時,都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個規(guī)律是數(shù)學(xué)建模的基礎(chǔ)。如果無法找到這個規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學(xué)定律,從而建立相應(yīng)的表達(dá)式,最后解決相應(yīng)的問題,由此可以看出,分析問題的內(nèi)在規(guī)律,是影響數(shù)學(xué)建模的重要因素,而這個規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學(xué)知識外,也可以結(jié)合其他學(xué)科的知識,尤其是現(xiàn)在遇到的問題越來越復(fù)雜,對于以往簡單的問題,只需要建立一個簡單的模型即可解決,而現(xiàn)在復(fù)雜的問題,經(jīng)常需要建立多個模型。因此現(xiàn)在數(shù)學(xué)建模的難度越來越大,從近些年全國數(shù)學(xué)建模大賽的題目就可以看出,對于問題的描述越來越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學(xué)生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實際問題的解決提供了良好的參考,目前我國對數(shù)學(xué)建模的研究有限,尤其是與西方發(fā)達(dá)國家相比,實踐的機(jī)會還比較少。
在數(shù)學(xué)模型建立之后,對于這個模型是否能夠解決實際問題,具體的執(zhí)行效率如何,都需要進(jìn)行校驗,因此檢驗是數(shù)學(xué)模型建立最后的一個環(huán)節(jié),也是非常重要的一個步驟,通常情況下,經(jīng)過校驗都能夠發(fā)現(xiàn)模型中存在的一些問題,從而進(jìn)行完善,這樣才能夠保證嚴(yán)謹(jǐn)性,在實際校驗的過程中,要對數(shù)學(xué)模型的每個部分進(jìn)行驗證,通過輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒有問題,就說明該模型可以解決實際問題。除了檢驗?zāi)P偷臏?zhǔn)確外,校驗還有另外一個作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學(xué)模型計算的整個過程,這時就可以對具體的細(xì)節(jié)進(jìn)行優(yōu)化,如哪部分可以減少計算的步驟,或者簡化計算的方式等,這樣可以使整個模型更加科學(xué)、合理,由此可以看出,校驗工作對于數(shù)學(xué)模型的建立,具有非常重要的意義。
4結(jié)語。
通過全文的分析可以知道,對于數(shù)學(xué)理論的應(yīng)用,從很久之前就已經(jīng)開始了,但是數(shù)學(xué)建模思想的出現(xiàn),卻是隨著計算機(jī)技術(shù)的發(fā)展,逐漸形成的一門學(xué)科,電子計算機(jī)的出現(xiàn),在很大程度上改變了處理事情的方式,利用計算機(jī)軟件,只要輸入相應(yīng)的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學(xué)模型完成的任務(wù),只是計算機(jī)的出現(xiàn),省略了中間的計算過程,因此計算機(jī)軟件的方式,是數(shù)學(xué)建模思想最好的應(yīng)用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應(yīng)的程序。
maya建模論文篇十五
運籌學(xué)與數(shù)學(xué)建模2門課程聯(lián)系密切,在運籌學(xué)教學(xué)中,適當(dāng)融入數(shù)學(xué)建模思想,能大幅度提高學(xué)生應(yīng)用數(shù)學(xué)解決實際問題的能力.從運籌學(xué)教學(xué)中教學(xué)大綱的改革、教學(xué)環(huán)節(jié)的設(shè)計等方面進(jìn)行了探索與實踐.教學(xué)實踐表明,將數(shù)學(xué)建模思想融入到運籌學(xué)教學(xué)中能提高課堂教學(xué)的效果,鍛煉學(xué)生的動手實踐能力.
maya建模論文篇十六
第一條,論文用白色a4紙打印(單面、雙面均可);上下左右各留出至少2.5厘米的頁邊距;從左側(cè)裝訂。
第二條,論文第一頁為承諾書,第二頁為編號專用頁,具體內(nèi)容見本規(guī)范第3、4頁。
第三條,論文第三頁為摘要專用頁(含標(biāo)題和關(guān)鍵詞,但不需要翻譯成英文),從此頁開始編寫頁碼;頁碼必須位于每頁頁腳中部,用阿拉伯?dāng)?shù)字從“1”開始連續(xù)編號。摘要專用頁必須單獨一頁,且篇幅不能超過一頁。
第四條,從第四頁開始是論文正文(不要目錄,盡量控制在20頁以內(nèi));正文之后是論文附錄(頁數(shù)不限)。
第五條,論文附錄至少應(yīng)包括參賽論文的所有源程序代碼,如實際使用的軟件名稱、命令和編寫的全部可運行的源程序(含excel、spss等軟件的交互命令);通常還應(yīng)包括自主查閱使用的數(shù)據(jù)等資料。賽題中提供的數(shù)據(jù)不要放在附錄。如果缺少必要的源程序或程序不能運行,可能會被取消評獎資格。論文附錄必須打印裝訂在論文紙質(zhì)版中。如果確實沒有需要以附錄形式提供的信息,論文可以沒有附錄。
第六條,論文正文和附錄不能有任何可能顯示答題人身份和所在學(xué)校及賽區(qū)的信息。
第七條,引用別人的成果或其他公開的資料(包括網(wǎng)上資料)必須按照科技論文寫作的規(guī)范格式列出參考文獻(xiàn),并在正文引用處予以標(biāo)注。
第八條,本規(guī)范中未作規(guī)定的,如排版格式(字號、字體、行距、顏色等)不做統(tǒng)一要求,可由賽區(qū)自行決定。在不違反本規(guī)范的前提下,各賽區(qū)可以對論文增加其他要求。
第九條,參賽隊?wèi)?yīng)按照《全國大學(xué)生數(shù)學(xué)建模競賽報名和參賽須知》的要求命名和提交以下兩個電子文件,分別對應(yīng)于參賽論文和相關(guān)的支撐材料。
第十條,參賽論文的電子版不能包含承諾書和編號專用頁(即電子版論文第一頁為摘要頁)。除此之外,其內(nèi)容及格式必須與紙質(zhì)版完全一致(包括正文及附錄),且必須是一個單獨的文件,文件格式只能為pdf或者word格式之一(建議使用pdf格式),不要壓縮,文件大小不要超過20mb。
第十一條,支撐材料(不超過20mb)包括用于支撐論文模型、結(jié)果、結(jié)論的所有必要文件,至少應(yīng)包含參賽論文的所有源程序,通常還應(yīng)包含參賽論文使用的`數(shù)據(jù)(賽題中提供的原始數(shù)據(jù)除外)、較大篇幅的中間結(jié)果的圖形或表格、難以從公開渠道找到的相關(guān)資料等。所有支撐材料使用winrar軟件壓縮在一個文件中(后綴為rar);如果支撐材料與論文內(nèi)容不相符,該論文可能會被取消評獎資格。支撐材料中不能包含承諾書和編號專用頁,不能有任何可能顯示答題人身份和所在學(xué)校及賽區(qū)的信息。如果確實沒有需要提供的支撐材料,可以不提供支撐材料。
第十二條,不符合本格式規(guī)范的論文將被視為違反競賽規(guī)則,可能被取消評獎資格。
第十三條,本規(guī)范的解釋權(quán)屬于全國大學(xué)生數(shù)學(xué)建模競賽組委會。
說明:
(1)本科組參賽隊從a、b題中任選一題,??平M參賽隊從c、d題中任選一題。
(2)賽區(qū)可自行決定是否在競賽結(jié)束時收集參賽論文的紙質(zhì)版,但對于送全國評閱的論文,賽區(qū)必須提供符合本規(guī)范要求的紙質(zhì)版論文(承諾書由賽區(qū)組委會保存,不必提交給全國組委會)。
(3)賽區(qū)評閱前將紙質(zhì)版論文第一頁(承諾書)取下保存,同時在第一頁和第二頁建立“賽區(qū)評閱編號”(由各賽區(qū)規(guī)定編號方式),“賽區(qū)評閱紀(jì)錄”表格可供賽區(qū)評閱時使用(由各賽區(qū)自行決定是否使用)。評閱后,賽區(qū)對送全國評閱的論文在第二頁建立“送全國評閱統(tǒng)一編號”(編號方式由全國組委會規(guī)定),然后送全國評閱。
maya建模論文篇十七
Maya建模是一種應(yīng)用廣泛的3D全景制作軟件,它不僅具有強(qiáng)大的建模功能,還擁有精美的渲染效果。作為一名初學(xué)者,經(jīng)過近期學(xué)習(xí),我對于這個軟件的使用體會和心得有所總結(jié)。
第一段:建模前準(zhǔn)備。
在使用Maya進(jìn)行建模之前,對于模型的原始構(gòu)思和設(shè)計是非常重要的。在建模前,可以先在紙上簡單地繪制一個草圖,也可以采用手繪板進(jìn)行繪畫,這樣不僅可以提高建模效率,還可以避免一些不必要的錯誤。另外,為了避免建模過程中丟失數(shù)據(jù),最好先將模型復(fù)制一份備份。
第二段:建模規(guī)劃。
建模需要遵守一定的規(guī)劃和步驟。例如,從幾何圖形的最基本部分開始,逐漸向復(fù)雜的模型轉(zhuǎn)移,如圓、正方形、圓柱體、正方體等。在復(fù)雜模型的建立過程中,尤其要注意光滑的拓?fù)浣Y(jié)構(gòu),保持模型的平滑性和完整性,以確保將來的渲染效果。
第三段:建模技巧。
在熟練掌握了建模規(guī)劃后,還需要熟悉一些技巧。例如,建模時可以將上下和左右部分分別對應(yīng)在左右屏幕上,這樣可以更加精確地定位和調(diào)整模型。同時,對于經(jīng)常出現(xiàn)的重復(fù)模式,可以使用循環(huán)翻轉(zhuǎn)或數(shù)組工具,這樣可以提高建模效率和速度。
第四段:模型細(xì)節(jié)。
在Maya的建模過程中,一些細(xì)節(jié)也需要特別留意。例如,模型的凹凸、色彩等都需要在建模時加入,這樣可以使建模更加真實,對后期制作有很大的幫助。同時,要注意在建模過程中,模型的邊角線條、細(xì)節(jié)紋理的密度、精細(xì)程度等方面都要謹(jǐn)慎處理,這樣才能滿足最終渲染效果的要求。
第五段:渲染與完善。
建模后,就需要對模型進(jìn)行渲染和完善。在進(jìn)行渲染時,可以根據(jù)模型的要求選擇不同的燈光角度和環(huán)境,調(diào)整光線和材質(zhì)等,通過Maya的渲染器可以得到非常真實和優(yōu)美的渲染效果。同時,還需要通過修復(fù)模型的細(xì)節(jié)缺陷,完善模型中的色彩、圖案等,確保模型的完整性和魅力。
總結(jié)。
在Maya建模的過程中,規(guī)劃、技巧和細(xì)節(jié)是非常關(guān)鍵的,同時還需要結(jié)合渲染和完善等環(huán)節(jié)加以完善。通過這些步驟的不斷實踐和嘗試,建模能力和技術(shù)會不斷提高。這個過程需要耐心、毅力和專注,重要的是始終保持對建模的熱愛與興趣,堅持不懈地學(xué)習(xí)和實踐,才能最終在建模領(lǐng)域取得成功。
maya建模論文篇十八
就當(dāng)前高等數(shù)學(xué)的教育教學(xué)而言,高數(shù)老師對學(xué)生的計算能力、思考能力以及邏輯思維能力過于重視,一切以課本為基礎(chǔ)開展教學(xué)活動。作為一門充滿活力并讓人感到新奇的學(xué)科,由于教育觀念和思想的落后,課堂教學(xué)之中沒有穿插應(yīng)用實例,在工作的時候?qū)W生不知道怎樣把問題解決,工作效率無法進(jìn)一步提升,不僅如此,陳舊的教學(xué)理念和思想讓學(xué)生漸漸的失去學(xué)習(xí)的興趣和動力。
(二)教學(xué)方法傳統(tǒng)化。
教學(xué)方法的優(yōu)秀與否在學(xué)生學(xué)習(xí)的過程中發(fā)揮著重要的作用,也直接影響著學(xué)生的學(xué)習(xí)成績。一般高數(shù)老師在授課的時候都是以課本的順次進(jìn)行,也就意味著老師“由定義到定理”、“由習(xí)題到練習(xí)”,這種默守陳規(guī)的教學(xué)方式無法為學(xué)生營造活躍的學(xué)習(xí)氛圍,讓學(xué)生獨自學(xué)習(xí)、思考的能力進(jìn)一步下降。這就要求教師致力于和諧課堂氛圍營造以及使用新穎的教育教學(xué)方法,讓學(xué)生在課堂中主動參與學(xué)習(xí)。
二、建模在高等數(shù)學(xué)教學(xué)中的作用。
對學(xué)生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問題的能力進(jìn)行培養(yǎng)的過程中,數(shù)學(xué)建模發(fā)揮著重要的作用。最近幾年,國內(nèi)出現(xiàn)很多以數(shù)學(xué)建模為主體的賽事活動以及教研活動,其在學(xué)生學(xué)習(xí)興趣的提升、激發(fā)學(xué)生主動學(xué)習(xí)的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模還能培養(yǎng)學(xué)生不畏困難的品質(zhì),培養(yǎng)踏實的工作精神,在協(xié)調(diào)學(xué)生學(xué)習(xí)的知識、實際應(yīng)用能力等上有突出的作用。雖然國內(nèi)高等院校大都開設(shè)了數(shù)學(xué)建模選修課或者培訓(xùn)班,但是由于課程的要求和學(xué)生的認(rèn)知水平差異較大,所以課程無法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對學(xué)生的整體素質(zhì)進(jìn)行培養(yǎng),提升學(xué)生的創(chuàng)新精神以及創(chuàng)造力,讓學(xué)生滿足社會對復(fù)合型人才的需求,而最好的載體則是高等數(shù)學(xué)。
高等數(shù)學(xué)作為工科類學(xué)生的一門基礎(chǔ)課,由于其必修課的性質(zhì),把數(shù)學(xué)建模引入高等數(shù)學(xué)課堂中具有較廣的影響力。把數(shù)學(xué)建模思想滲入高等數(shù)學(xué)教學(xué)中,不僅能讓數(shù)學(xué)知識的本來面貌得以還原,更讓學(xué)生在日常中應(yīng)用數(shù)學(xué)知識的能力得到很好的培養(yǎng)。數(shù)學(xué)建模要求學(xué)生在簡化、抽象、翻譯部分現(xiàn)實世界信息的過程中使用數(shù)學(xué)的語言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來,以便于提升學(xué)生的表達(dá)能力。在實際的學(xué)習(xí)數(shù)學(xué)建模之后,需要檢驗現(xiàn)實的信息,確定最后的結(jié)果是否正確,通過這一過程中的鍛煉,學(xué)生在分析問題的過程中可以主動地、客觀的辯證的運用數(shù)學(xué)方法,最終得出解決問題的最好方法。因此,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模思想具有重要的意義。
三、將建模思想應(yīng)用在高等數(shù)學(xué)教學(xué)中的具體措施。
(一)在公式中使用建模思想。
在高數(shù)教材中占有重要位置的是公式,也是要求學(xué)生必須掌握的內(nèi)容之一。為了讓教師的'教學(xué)效果進(jìn)一步提升,在課堂上老師不僅要讓學(xué)生對計算的技巧進(jìn)一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學(xué)生對公式中使用建模思想理解的更透徹,老師還應(yīng)該結(jié)合實例開展教學(xué)。
(二)講解習(xí)題的時候使用數(shù)學(xué)模型的方式。
課本例題使用建模思想進(jìn)行解決,老師通過對例題的講解,很好的講述使用數(shù)學(xué)建模解決問題的方式,讓學(xué)生清醒的認(rèn)識在解決問題的過程中怎樣使用數(shù)學(xué)建模。完成每章學(xué)習(xí)的內(nèi)容之后,充分的利用時間為學(xué)生解疑答惑,以學(xué)生所學(xué)的專業(yè)情況和學(xué)生水平的高低選擇合適的例題,完成建模、解決問題的全部過程,提升學(xué)生解決問題的效率。
(三)組織學(xué)生積極參加數(shù)學(xué)建模競賽。
一般而言,在競賽中可以很好地鍛煉學(xué)生競爭意識以及獨立思考的能力。這就要求學(xué)校充分的利用資源并廣泛的宣傳,讓學(xué)生積極的參加競賽,在實踐中鍛煉學(xué)生的實際能力。在日常生活中使用數(shù)學(xué)建模解決問題,讓學(xué)生獨自思考,然后在競爭的過程中意識到自己的不足,今后也會努力學(xué)習(xí),改正錯誤,提升自身的能力。
四、結(jié)束語。
高等數(shù)學(xué)主要對學(xué)生從理論學(xué)習(xí)走向解決實際問題的能力進(jìn)行培養(yǎng),在高等數(shù)學(xué)中應(yīng)用建模思想,促使學(xué)生對高數(shù)知識更充分的理解,學(xué)習(xí)的難度進(jìn)一步降低,提升應(yīng)用能力和探索能力。當(dāng)前,在高等教學(xué)過程中引入建模思想還存在一定的不足,需要高校高等數(shù)學(xué)老師進(jìn)行深入的研究和探索的同時也需要學(xué)生很好的配合,以便于今后的教學(xué)中進(jìn)一步提升教學(xué)的質(zhì)量。
參考文獻(xiàn)。
[1]謝鳳艷,楊永艷。高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。齊齊哈爾師范高等??茖W(xué)校學(xué)報,20xx(02):119—120。
[2]李薇。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的探索與實踐[j]。教育實踐與改革,20xx(04):177—178,189。
[3]楊四香。淺析高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想的滲透[j]。長春教育學(xué)院學(xué)報,20xx(30):89,95。
[4]劉合財。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。貴陽學(xué)院學(xué)報,20xx(03):63—65。
maya建模論文篇十九
Maya是一款廣泛應(yīng)用于電影、動畫、游戲等領(lǐng)域的三維建模和動畫軟件,它為用戶提供了豐富多樣的建模工具和功能。通過學(xué)習(xí)和實踐,我積累了一些關(guān)于Maya建模的心得體會。本文將從基礎(chǔ)建模、細(xì)節(jié)處理、材質(zhì)貼圖、動畫效果和優(yōu)化技巧等五個方面進(jìn)行總結(jié)。
首先,基礎(chǔ)建模是Maya建模的入門環(huán)節(jié)。無論是人物、場景還是物體,一個好的基礎(chǔ)模型是關(guān)鍵。因此,建模前的準(zhǔn)備工作非常重要。首先,要對待建模的對象進(jìn)行深入的研究,理解其形狀、比例和細(xì)節(jié)等特征。同時,要注意使用正確的工具和技巧,例如基本幾何體的組合和修改,對稱建模的使用,還有遵循拓?fù)湟?guī)則等。
其次,細(xì)節(jié)處理是Maya建模中提升作品質(zhì)量的關(guān)鍵。在基礎(chǔ)模型建立完成后,我們可以通過添加細(xì)節(jié)來增強(qiáng)作品的真實感。使用Maya提供的雕刻工具,如SculptGeometryTool等進(jìn)行局部的細(xì)節(jié)雕刻,可以讓模型更加精細(xì)。同時,還可以利用紋理貼圖,如法線貼圖、置換貼圖和材質(zhì)貼圖等手段來增加細(xì)節(jié)和紋理的表現(xiàn)力。此外,對于表面細(xì)節(jié)的處理,我們需要注意光線的角度和強(qiáng)度,以便在渲染時能夠得到更好的效果。
第三,材質(zhì)貼圖是Maya建模中的重要環(huán)節(jié)。通過合理的材質(zhì)貼圖,我們可以為模型賦予不同的表現(xiàn)力和風(fēng)格。在選擇材質(zhì)時,需要考慮場景所需要的效果,例如金屬質(zhì)感、皮膚質(zhì)感或者玻璃質(zhì)感等。合理運用顏色、光澤度、反射和折射等參數(shù),可以更好地實現(xiàn)模型的真實感和引人入勝的視覺效果。此外,利用Maya的UV編輯工具,我們還可以調(diào)整材質(zhì)在模型上的分布,以便更好地展現(xiàn)紋理和圖案。
第四,動畫效果能夠為Maya建模增添生命力。在建模的過程中,我們可以通過應(yīng)用Maya的動畫工具和技巧賦予模型動態(tài)的特性。例如,建模一個角色后可以通過綁定骨骼、設(shè)置骨骼動畫和調(diào)整關(guān)鍵幀等步驟來實現(xiàn)角色的動態(tài)表現(xiàn)。此外,Maya還提供了豐富的特效工具和建模插件,如粒子系統(tǒng)、煙霧效果、布料模擬等,可以讓我們在建模中加入更多的創(chuàng)意和想象力。
最后,優(yōu)化技巧是Maya建模中不容忽視的一環(huán)。在建模過程中,為了保證模型的流暢和渲染效果的良好,必須注意模型的優(yōu)化。首先,要減少不必要的幾何面和面數(shù),簡化多邊形的結(jié)構(gòu)和數(shù)量。其次,使用合適的LOD(LevelofDetail)技術(shù),即根據(jù)模型在相機(jī)視野內(nèi)的距離遠(yuǎn)近,使用低、中、高三種不同細(xì)節(jié)級別的模型,以達(dá)到更好的性能和效果的平衡。此外,還要注意模型的層次和命名的規(guī)范性,便于后期的管理和修改。
綜上所述,Maya建模是一項需要不斷學(xué)習(xí)和實踐的技能,通過基礎(chǔ)建模、細(xì)節(jié)處理、材質(zhì)貼圖、動畫效果和優(yōu)化技巧的綜合應(yīng)用,我們可以創(chuàng)造出更加逼真、精細(xì)和生動的建模作品。只要不斷探索和嘗試,相信每個建模者都能找到屬于自己的獨特風(fēng)格和技巧。
【本文地址:http://mlvmservice.com/zuowen/11199235.html】