最新垂徑定理的教學(xué)設(shè)計(jì)(熱門16篇)

格式:DOC 上傳日期:2023-11-10 20:14:14
最新垂徑定理的教學(xué)設(shè)計(jì)(熱門16篇)
時(shí)間:2023-11-10 20:14:14     小編:XY字客

總結(jié)是提高學(xué)習(xí)和工作效率的重要手段。研究相關(guān)文獻(xiàn)資料,了解前人的研究成果和經(jīng)驗(yàn),對寫作有很大幫助。以下是小編為大家整理的寫作技巧和方法,希望能夠幫助大家提高表達(dá)能力。

垂徑定理的教學(xué)設(shè)計(jì)篇一

垂直于弦的直徑也叫垂經(jīng)定理,是初中九年級(jí)人教版第二十四章第2節(jié)內(nèi)容,它是圓中有關(guān)計(jì)算方面比較重要的一節(jié)。

本節(jié)課主要經(jīng)過了三個(gè)環(huán)節(jié):第一個(gè)環(huán)節(jié)是讓學(xué)生通過折自制的圓形圖片得出圓是軸對稱圖形,每一條經(jīng)過圓心的直線都是它的對稱軸,它有無數(shù)條對稱軸。第二個(gè)環(huán)節(jié)是讓學(xué)生通過探究得出垂經(jīng)定理的內(nèi)容。第三個(gè)環(huán)節(jié)是利用垂經(jīng)定理解決有關(guān)方面的計(jì)算。其中,第二個(gè)環(huán)節(jié)是本節(jié)課的重點(diǎn),也是我這節(jié)課的一個(gè)亮點(diǎn)。具體經(jīng)過以下5個(gè)步驟:

(1)讓學(xué)生拿出自己手中的圓形圖片對折圓,找出圓心。(學(xué)生很感興趣,有些同學(xué)折的是兩條互相垂直的直徑得出圓心,有些同學(xué)折的是兩條斜交的直徑得出圓心,但方法都很好。)。

(2)讓兩條互相垂直的直徑其中一條不動(dòng),另一條直徑向下平移,變成一條普通的弦,并且和原來的一條直徑仍然保持垂直關(guān)系。

(3)讓學(xué)生在自己的圖片上畫出與直徑垂直的弦,并讓他們把圓形圖片沿直徑對折,問學(xué)生會(huì)發(fā)現(xiàn)什么結(jié)論?(平分弦,也平分弦所對的兩條?。?。

(4)問學(xué)生在什么樣條件下得出這些結(jié)論的?

(5)最后引導(dǎo)學(xué)生歸納出垂經(jīng)定理的內(nèi)容,教師再補(bǔ)充、強(qiáng)調(diào)并板書。

通過這一探究過程,大部分學(xué)生參與到課堂中去,并培養(yǎng)了學(xué)生動(dòng)手操作和創(chuàng)新的能力,也激發(fā)了學(xué)生探究問題的興趣,學(xué)生就在這種輕松、愉快的活動(dòng)中掌握了垂徑定理,實(shí)現(xiàn)了教學(xué)的有效性,這是在這節(jié)課中我感覺最成功的地方。

當(dāng)然,整節(jié)課也有許多不足之處。例如,在對垂經(jīng)定理有關(guān)計(jì)算方面的安排上欠妥,具體表現(xiàn)在:

(1)把課本中趙州橋的問題作為第一個(gè)練習(xí)題讓學(xué)生解決稍微偏難,應(yīng)該先解決一些簡單的類型題。比如:已知弦的長度和圓心到弦的距離,求圓的半徑這類題,這樣的話學(xué)生不但鞏固了垂經(jīng)定理,而且也能體會(huì)到成功的喜悅,等再處理趙州橋的問題就變成水到渠成的事情了。

(2)垂經(jīng)定理中平分弦的證明過程盡量給學(xué)生留點(diǎn)時(shí)間讓學(xué)生板書出來,這樣可以防止學(xué)生缺少主動(dòng)性,并且會(huì)有更多的學(xué)生參與到課堂中去。

(3)應(yīng)該給學(xué)生滲透一些情感教育,讓學(xué)生知道數(shù)學(xué)來源于生活,又應(yīng)用于生活??傊?,在教學(xué)設(shè)計(jì)和課堂教學(xué)中應(yīng)充分了解學(xué)生,研究學(xué)生,我們不僅要備教材,而且還要備學(xué)生。要真正樹立以學(xué)生的發(fā)展為本的教學(xué)理念。只有這樣,才能為學(xué)生提供充分的教學(xué)活動(dòng)和交流的機(jī)會(huì),使學(xué)生從單純的的知識(shí)接受者變?yōu)閿?shù)學(xué)學(xué)習(xí)的主人。

垂徑定理的教學(xué)設(shè)計(jì)篇二

各位專家、評委:

你們好!很高興能有機(jī)會(huì)參加這次活動(dòng),并得到您的指導(dǎo)。

我說課的題目是:圓的軸對稱性——垂徑定理及其推論。它是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》九年級(jí)上冊第二十四章第一節(jié)的第二部分《垂直于弦的直徑》的內(nèi)容。。

這部分內(nèi)容教材安排了兩課時(shí),其中第一課時(shí)講圓的軸對稱性,第二課時(shí)講圓的旋轉(zhuǎn)不變性。

結(jié)合我對教材的理解和我所任教班級(jí)學(xué)生的實(shí)際情況,我將圓的軸對稱性一課時(shí)內(nèi)容調(diào)整為兩課時(shí),今天我所講的是第一課時(shí)——垂徑定理及其推論。

下面,我就從教學(xué)內(nèi)容,教學(xué)目標(biāo)、教學(xué)方法與手段、教學(xué)過程設(shè)計(jì)等四個(gè)方面進(jìn)行說明。

一、教學(xué)內(nèi)容的說明。

教師只有對教材有較為準(zhǔn)確、深刻、本質(zhì)的理解,并從“假如我是學(xué)生”的角度審視學(xué)生的可接受性,才能處理好教材。

垂徑定理及其推論反映了圓的重要性質(zhì),是證明線段相等、弧相等、垂直關(guān)系的重要依據(jù),為進(jìn)行圓的計(jì)算和作圖提供了重要依據(jù),因此這部分內(nèi)容是學(xué)習(xí)的重點(diǎn),垂徑定理及其推論的題設(shè)和結(jié)論較為復(fù)雜,容易混淆,因此也是學(xué)習(xí)的難點(diǎn)。

鑒于這種理解,通覽教材,我確定出如下教學(xué)內(nèi)容:

(1)了解圓的軸對稱性。

(2)弄清垂徑定理及其推論的題設(shè)和結(jié)論。(3)運(yùn)用垂徑定理及其推論進(jìn)行有關(guān)的計(jì)算和證明。

(4)學(xué)會(huì)與垂徑定理有關(guān)的添加輔助線的方法。

垂徑定理的教學(xué)設(shè)計(jì)篇三

導(dǎo)學(xué)案前置,學(xué)生是復(fù)習(xí)的引領(lǐng)者。通過及時(shí)批改導(dǎo)學(xué)案,發(fā)現(xiàn)學(xué)生在復(fù)習(xí)過程中的對知識(shí)理解的薄弱之處,對知識(shí)應(yīng)用的欠缺之處。主要存在的問題:對瞬時(shí)功率的定義式應(yīng)用不熟練;書寫動(dòng)能定理公式不是很熟練,主要表現(xiàn)在對變力做功束手無策。另外,學(xué)生剛參加完運(yùn)動(dòng)會(huì),興奮之余,學(xué)習(xí)狀態(tài)還需要調(diào)整。

1.鞏固強(qiáng)化瞬時(shí)功率的計(jì)算公式,會(huì)運(yùn)用瞬時(shí)功率的公式準(zhǔn)確解決問題;

2.鞏固強(qiáng)化摩擦力做功的特點(diǎn),熟練書寫動(dòng)能定理公式。

1.精心設(shè)計(jì)問題,引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律。

通過設(shè)計(jì)問題:物體沿粗糙斜面下滑,求物體下滑過程中摩擦力做的功?讓學(xué)生運(yùn)用功的公式計(jì)算出物體下滑過程中摩擦力做的功。教師引導(dǎo)學(xué)生對計(jì)算結(jié)果進(jìn)行分析,讓學(xué)生發(fā)現(xiàn)一個(gè)重要規(guī)律,物體沿斜面下滑摩擦力做的功與物體在相應(yīng)的水平面上滑動(dòng)摩擦力做的功是相等的。通過變式訓(xùn)練題,鞏固這個(gè)規(guī)律的應(yīng)用,學(xué)生收獲很大。

2.精心設(shè)計(jì)問題,提升學(xué)生對新舊知識(shí)的辨析能力。

初中學(xué)生學(xué)過功率,但是不對功率進(jìn)行分類,并且力和速度的方向始終同向。高中階段,根據(jù)時(shí)間長短,把功率分為平均功率和瞬時(shí)功率,并且力和速度的方向不在同一直線上。因此,計(jì)算瞬時(shí)功率時(shí),一定要考慮力和速度的方向夾角。學(xué)生受已有知識(shí)的影響頗深,很難意識(shí)到這個(gè)問題。由此我精心設(shè)計(jì)問題:飛行員抓住秋千桿在豎直面內(nèi)從高處擺下,求飛行員所受重力的瞬時(shí)功率的變化情況?要求學(xué)生嚴(yán)格按照瞬時(shí)功率的定義,計(jì)算出各個(gè)關(guān)鍵位置的重力的瞬時(shí)功率。通過計(jì)算發(fā)現(xiàn)重力的瞬時(shí)功率是從零變到不是零,最后再變到零。因此,重力的瞬時(shí)功率是先增大后減小,學(xué)生感到茅塞頓開。

1.復(fù)習(xí)課就要放手,讓學(xué)生去發(fā)現(xiàn)。

導(dǎo)學(xué)案前置,讓學(xué)生發(fā)現(xiàn)問題,展示問題,討論問題,最后解決問題。這樣極大的提高了課堂效率,學(xué)生的學(xué)習(xí)困惑得到了解決,學(xué)生對物理學(xué)習(xí)的自信心有了很大的提升,學(xué)生學(xué)習(xí)物理的積極性更強(qiáng)了。

2.精益求精,不斷改善。

通過本節(jié)課的學(xué)習(xí),學(xué)生能夠正確使用瞬時(shí)功率的公式,摩擦力做功的計(jì)算更加熟練,題目正確率大幅上升。像這種復(fù)習(xí)課堂怎么設(shè)計(jì),怎么上,我和老教師經(jīng)常交流,老教師的建議是根據(jù)學(xué)情,精心設(shè)計(jì)導(dǎo)學(xué)案,調(diào)動(dòng)學(xué)生對物理問題的探究欲。響應(yīng)學(xué)校號(hào)召,做好導(dǎo)學(xué)案,多讓學(xué)生講解,真正讓學(xué)生做課堂的主人。

垂徑定理的教學(xué)設(shè)計(jì)篇四

《動(dòng)能和動(dòng)能定理》是高中物理必修2第五章《機(jī)械能及其守恒定律》第七節(jié)的內(nèi)容,我從:教材分析、目標(biāo)分析、教法學(xué)法、教學(xué)過程、板書設(shè)計(jì)和教學(xué)反思六個(gè)緯度作如下匯報(bào):

1.內(nèi)容分析。

《動(dòng)能和動(dòng)能定理》主要學(xué)習(xí)一個(gè)物理概念:動(dòng)能;一個(gè)物理規(guī)律:動(dòng)能定理。從知識(shí)與技能上要掌握動(dòng)能表達(dá)式及其相關(guān)決定因素,動(dòng)能定理的物理意義和實(shí)際的應(yīng)用。

通過例題2的探究,理解正負(fù)功的物理意義,初步從能量守恒與轉(zhuǎn)化的角度認(rèn)識(shí)功。在態(tài)度情感與價(jià)值觀上,在嘗試解決程序性問題的過程中,體驗(yàn)物理學(xué)科既是基于實(shí)驗(yàn)探究的一門實(shí)驗(yàn)性學(xué)科,同時(shí)也是嚴(yán)密數(shù)學(xué)語言邏輯的學(xué)科,只有兩種方法體系并重,才能有效地認(rèn)識(shí)自然,揭示客觀世界存在的物理規(guī)律。

2.內(nèi)容地位。

通過初中的學(xué)習(xí),對功和動(dòng)能概念已經(jīng)有了相關(guān)的認(rèn)識(shí),通過第六節(jié)的實(shí)驗(yàn)探究,認(rèn)識(shí)到做功與物體速度變化的關(guān)系。將本節(jié)課設(shè)計(jì)成一堂理論探究課有著積極的意義。因?yàn)橥ㄟ^“動(dòng)能定理”的學(xué)習(xí),深入理解“功是能量轉(zhuǎn)化的量度”,并在解釋功能關(guān)系上有著深遠(yuǎn)的意義。為此設(shè)計(jì)如下目標(biāo):

1、三維教學(xué)目標(biāo)。

(一)、知識(shí)與技能。

1.理解動(dòng)能的概念,并能進(jìn)行相關(guān)計(jì)算;

(二)、過程與方法。

1.掌握恒力作用下動(dòng)能定理的推導(dǎo);

2.體會(huì)變力作用下動(dòng)能定理解決問題的優(yōu)越性;

(三)、情感態(tài)度與價(jià)值觀。

體會(huì)“狀態(tài)的變化量量度復(fù)雜過程量”這一物理思想;感受數(shù)學(xué)語言對物理過程描述的。

簡潔美;

2.教學(xué)重點(diǎn)、難點(diǎn):

重點(diǎn):對動(dòng)能公式和動(dòng)能定理的理解與應(yīng)用。

難點(diǎn):通過對動(dòng)能定理的理解,加深對功、能關(guān)系的認(rèn)識(shí)。

學(xué)生的學(xué)法采?。喝蝿?wù)驅(qū)動(dòng)和合作探究;

選取多媒體展示、嘗試練習(xí)題和“任務(wù)驅(qū)動(dòng)問題”本節(jié)課為一課時(shí)。

設(shè)計(jì)成6個(gè)教學(xué)環(huán)節(jié):提出問題,導(dǎo)入新課;任務(wù)驅(qū)動(dòng),感知教材;合作探究,分享交流;精講點(diǎn)撥,釋疑解惑;典例引領(lǐng),內(nèi)化反思;課堂總結(jié),布置作業(yè)。

垂徑定理的教學(xué)設(shè)計(jì)篇五

首先講下這節(jié)課,我的一些思路:

在教學(xué)方法與教材處理方面,根據(jù)現(xiàn)在的教材特點(diǎn),教學(xué)內(nèi)容以及在新課標(biāo)理念的指導(dǎo)下,最后決定讓學(xué)生在課堂上多動(dòng)手、多觀察、多交流,最后得出定理,這個(gè)方法符合新課程理念觀點(diǎn),也符合教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一的原則。

同時(shí),在教學(xué)中,我充分利用教具和投影儀,提高教學(xué)效率。在實(shí)驗(yàn),演示,操作,觀察,練習(xí)等師生的共同活動(dòng)中啟發(fā)學(xué)生,培養(yǎng)學(xué)生直覺思維能力,結(jié)合學(xué)生實(shí)際情況作適當(dāng)?shù)耐貜V。

我參加這次教學(xué)技能大賽,獲益良多主要體現(xiàn)在以下幾個(gè)方面:

(1)在數(shù)學(xué)教學(xué)中,一些結(jié)論的表述是很重要的,而我在這節(jié)課上有些表述確實(shí)不是很正確;而且我在課堂上,尤其是知識(shí)點(diǎn)的聯(lián)系方面的引導(dǎo)詞,更加需要再努力鉆研。今后我將在這方面下工夫,在去聽其他數(shù)學(xué)老師的課時(shí),要注意其他老師在知識(shí)點(diǎn)同知識(shí)點(diǎn)之間的過渡語句。

(2)一些該讓學(xué)生知道的知識(shí)點(diǎn),講得不夠透徹。如cd是直徑,其實(shí)應(yīng)該可以拓展為過圓心的直線(要多強(qiáng)調(diào),而不是一筆帶過);不能夠用數(shù)量關(guān)系求的,應(yīng)該要適當(dāng)?shù)匾龑?dǎo)學(xué)生設(shè)未知數(shù)。而不是直接告訴學(xué)生這種題目就是要設(shè)未知數(shù)。同樣在已知一條邊,不夠條件求解時(shí),也要引導(dǎo)學(xué)生利用未知數(shù)來解題的這種題目,引導(dǎo)得不夠,或者話引導(dǎo)得不夠深刻,學(xué)生就會(huì)覺得是老師直接將知識(shí)倒向他,而他不一定能接受。

(3)在學(xué)案設(shè)計(jì)方面,在時(shí)間上把握得不夠準(zhǔn)確,設(shè)計(jì)的學(xué)案內(nèi)容太多,在這節(jié)課上如果估計(jì)過量已經(jīng)足夠的話,垂徑定理的推論其實(shí)可以放在下節(jié)課。這樣就不會(huì)使得后面講推論的時(shí)間太短,太倉促。前面復(fù)習(xí)用的時(shí)間太長,在復(fù)習(xí)的部分應(yīng)該多加些關(guān)于勾股定理的計(jì)算的題目,使學(xué)生在后面解直角三角形時(shí)能夠更加快,更熟練;而學(xué)案中練習(xí)題的量太少,而且是題型太單一,可以再做多些找相等的量的基礎(chǔ)訓(xùn)練,對b班的學(xué)生更加熟悉垂徑定理,基礎(chǔ)題目的掌握對b班大有好處。

(4)其實(shí)這節(jié)課還有個(gè)作圖思想要灌輸比學(xué)生,即是教學(xué)生如果見到弦心距,弦,那么直接連半徑構(gòu)成直角三角形;如果就是只知道一條弦的題目,就要邊弦心距都要作出來,而這兩種題目我的訓(xùn)練都不到位。

最后,這些失誤給了我一個(gè)今后的努力的方向。在今后的學(xué)習(xí)中,我努力鉆研教材改正自己缺點(diǎn)。

垂徑定理的教學(xué)設(shè)計(jì)篇六

教學(xué)方法與教材處理:我選用引導(dǎo)發(fā)現(xiàn)法和直觀演示法。讓學(xué)生在課堂上多活動(dòng)、多觀察、多合作、多交流,主動(dòng)參與到整個(gè)教學(xué)活動(dòng)中來,組織學(xué)生參與“實(shí)驗(yàn)―――觀察―――猜想―――證明”的活動(dòng),最后得出定理,這符合新課程理念下的“要把學(xué)生學(xué)習(xí)知識(shí)當(dāng)作認(rèn)識(shí)事物的過程來進(jìn)行教學(xué)”的觀點(diǎn),也符合教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一的原則。同時(shí),在教學(xué)中,我充分利用學(xué)校新安裝的班班通工程,利用課件,既增強(qiáng)了學(xué)生的學(xué)習(xí)興趣,又提高教學(xué)效果,在實(shí)驗(yàn),演示,操作,觀察,練習(xí)等師生的共同活動(dòng)中啟發(fā)學(xué)生,讓每個(gè)學(xué)生動(dòng)手、動(dòng)口、動(dòng)眼、動(dòng)腦,培養(yǎng)學(xué)生直覺思維能力,這符合新課程理念下的.直觀性與可接受性原則。另外,教學(xué)中我還注重用不同圖片的顏色對比來啟發(fā)學(xué)生。

設(shè)計(jì)的特色:為了給學(xué)生營造一個(gè)民主、平等而又富有詩意的課堂,我以新數(shù)學(xué)課程標(biāo)準(zhǔn)下的基本理念和總體目標(biāo)為指導(dǎo)思想在教學(xué)過程中始終面向全體學(xué)生,依據(jù)學(xué)生的實(shí)際水平,選擇適當(dāng)?shù)慕虒W(xué)起點(diǎn)和教學(xué)方法,充分讓學(xué)生參與教學(xué),在合作交流的過程中,獲得良好的情感體驗(yàn)。通過“實(shí)驗(yàn)――觀察――猜想――證明”的思想,讓每個(gè)學(xué)生都有所得,我注意前后知識(shí)的鏈接,進(jìn)行各學(xué)科間的整合,為學(xué)生提供了廣闊的思考空間,同時(shí)輔以相應(yīng)的音樂,為學(xué)生創(chuàng)設(shè)輕松、愉快、高雅的學(xué)習(xí)氛圍,在學(xué)習(xí)中感悟生活中的數(shù)學(xué)美。

垂徑定理的教學(xué)設(shè)計(jì)篇七

1、內(nèi)容地位:從知識(shí)體系上看,《垂徑定理》是義務(wù)教育新課程標(biāo)準(zhǔn)人教版九年級(jí)(上冊)第三章內(nèi)容,是在學(xué)生學(xué)習(xí)了《旋轉(zhuǎn)與中心對稱》之后,對特殊的中心對稱圖形圓的深度學(xué)習(xí)的過程,是學(xué)生學(xué)習(xí)了圓的基本概念之后,對圓的基本性質(zhì)的新探究。是中考的必考考點(diǎn)之一。

2、學(xué)習(xí)目標(biāo):

(1)利用圓的對稱性探究垂徑定理。(2)能運(yùn)用垂徑定理解決問題。(3)全心投入,細(xì)心認(rèn)真。

3、重點(diǎn)難點(diǎn):

學(xué)習(xí)重點(diǎn):垂徑定理的探究及運(yùn)用。學(xué)習(xí)難點(diǎn):利用垂徑定理解決問題。

二、學(xué)情分析。

1.學(xué)生心理特征:進(jìn)入初三,學(xué)生思維活躍,求知欲強(qiáng),對探索問題充滿好奇,在課堂上有互相競爭的渴望,相比以前,他們有一定的知識(shí)儲(chǔ)備,但學(xué)習(xí)積極性有所減退,自我意識(shí)增強(qiáng)。

2.學(xué)生認(rèn)知基礎(chǔ):在學(xué)習(xí)本節(jié)之前,學(xué)生已經(jīng)學(xué)習(xí)了《圓的基本概念》,明確了直徑、弦等基本概念,會(huì)運(yùn)用軸對稱的性質(zhì)解決問題,學(xué)習(xí)了勾股定理,具備了進(jìn)一步學(xué)習(xí)《垂徑定理》的基本能力.3.學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):學(xué)生在之前的學(xué)習(xí)中,已明確了展示課的學(xué)習(xí)程序,并能利用學(xué)案,準(zhǔn)備展示,變式訓(xùn)練,歸納方法,靈活運(yùn)用,具備了學(xué)習(xí)活動(dòng)的經(jīng)驗(yàn)基礎(chǔ).

三、教法學(xué)法分析。

學(xué)法分析:作為一節(jié)展示課,學(xué)生將在教師的帶領(lǐng)下經(jīng)歷明確目標(biāo)、溫故知新、準(zhǔn)備展示、展示所學(xué)、鞏固提升等過程,培養(yǎng)學(xué)生獨(dú)學(xué)靜思、有效交流、積極合作、大膽展示的良好學(xué)習(xí)習(xí)慣。

四、教學(xué)過程及大致時(shí)間分配(1)明確目標(biāo)、(1分鐘)。

目標(biāo)出示在黑板上,教師引導(dǎo)學(xué)生理解(2)溫故知新(3分鐘)。

采用個(gè)別提問的方式,復(fù)習(xí)基本知識(shí)點(diǎn),為扎實(shí)做充分準(zhǔn)備(3)分配任務(wù),準(zhǔn)備展示(5分鐘)。

教師分配展示的任務(wù),并指導(dǎo)學(xué)生做展示的前期準(zhǔn)備。(4)小組展示,變式訓(xùn)練(20分鐘)。

學(xué)生分組有序展示,在展示中鼓勵(lì)提問,可做變式訓(xùn)練。要求展示者書寫規(guī)范,過程完整,聲音洪亮,表達(dá)流利,銜接緊湊。(5)歸納梳理、整理學(xué)案(3分鐘)。

學(xué)生將錯(cuò)誤的題目整理,補(bǔ)充不完整的解題過程,要求用雙色筆。(6)反饋檢測、鞏固提高(12分鐘)。

完成學(xué)案反饋檢測部分,力爭按下課能夠完成。

五、教后反思垂直于弦的直徑也叫垂經(jīng)定理,是初中階段圓中有關(guān)計(jì)算方面比較重要的一節(jié)。本節(jié)課主要經(jīng)過了三個(gè)環(huán)節(jié):第一個(gè)環(huán)節(jié)是讓學(xué)生通過折自制的圓形圖片得出圓是軸對稱圖形,每條經(jīng)過圓心的直線都是它的對稱軸,它有無數(shù)條對稱軸。第二個(gè)環(huán)節(jié)是讓學(xué)生通過探究得出垂經(jīng)定理的內(nèi)容。第三個(gè)環(huán)節(jié)是利用垂經(jīng)定理解決有關(guān)方面的計(jì)算。其中,第二個(gè)環(huán)節(jié)是本節(jié)課的重點(diǎn),也是我這節(jié)課的一個(gè)亮點(diǎn)。具體經(jīng)過以下5個(gè)步驟:

(1)讓學(xué)生拿出自己手中的圓形圖片對折圓,找出圓心。(學(xué)生很感興趣,有些同學(xué)折的是兩條互相垂直的直徑得出圓心,有些同學(xué)折的是兩條斜交的直徑得出圓心,但方法都很好。)。

(2)讓兩條互相垂直的直徑其中一條不動(dòng),另一條直徑向下平移,變成一條普通的弦,并且和原來的一條直徑仍然保持垂直關(guān)系。

(3)讓學(xué)生在自己的圖片上畫出與直徑垂直的弦,并讓他們把圓形圖片沿直徑對折,問學(xué)生會(huì)發(fā)現(xiàn)什么結(jié)論?(平分弦,也平分弦所對的兩條?。?/p>

(4)問學(xué)生在什么樣條件下得出這些結(jié)論的?

(5)最后引導(dǎo)學(xué)生歸納出垂經(jīng)定理的內(nèi)容,教師再補(bǔ)充、強(qiáng)調(diào)并板書。通過這一探究過程,大部分學(xué)生參與到課堂中去,并培養(yǎng)了學(xué)生動(dòng)手操作和創(chuàng)新的能力,也激發(fā)了學(xué)生探究問題的興趣,學(xué)生就在這種輕松、愉快的活動(dòng)中掌握了垂徑定理,實(shí)現(xiàn)了教學(xué)的有效性,這是在這節(jié)課中我感覺最成功的地方。

當(dāng)然,整節(jié)課也有許多不足之處。例如,在對垂經(jīng)定理有關(guān)計(jì)算方面的安排上欠妥,具體表現(xiàn)在:(1)把課本中趙州橋的問題作為第一個(gè)練習(xí)題讓學(xué)生解決稍微偏難,應(yīng)該先解決一些簡單的類型題。比如:已知弦的長度和圓心到弦的距離,求圓的半徑這類題,這樣的話學(xué)生不但鞏固了垂經(jīng)定理,而且也能體會(huì)到成功的喜悅,等再處理趙州橋的問題就變成水到渠成的事情了。(2)垂經(jīng)定理中平分弦的證明過程盡量給學(xué)生留點(diǎn)時(shí)間讓學(xué)生板書出來,這樣可以防止學(xué)生缺少主動(dòng)性,并且會(huì)有更多的學(xué)生參與到課堂中去。

(3)應(yīng)該給學(xué)生滲透一些情感教育,讓學(xué)生知道數(shù)學(xué)來源于生活,又應(yīng)用于生活。

總之,在教學(xué)設(shè)計(jì)和課堂教學(xué)中應(yīng)充分了解學(xué)生,研究學(xué)生,我們不僅要備教材,而且還要備學(xué)生。要真正樹立以學(xué)生的發(fā)展為本的教學(xué)理念。只有這樣,才能為學(xué)生提供充分的教學(xué)活動(dòng)和交流的機(jī)會(huì),使學(xué)生從單純的的知識(shí)接受者變?yōu)閿?shù)學(xué)學(xué)習(xí)的主人。

垂徑定理的教學(xué)設(shè)計(jì)篇八

1、知識(shí)與技能目標(biāo):會(huì)用勾股定理及直角三角形的判定條件解決實(shí)際問題。

2、過程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。

3、情感態(tài)度與價(jià)值觀目標(biāo):通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;通過有關(guān)勾股定理的歷史講解,對學(xué)生進(jìn)行德育。

勾股定理的應(yīng)用

勾股定理的應(yīng)用

知識(shí)點(diǎn)1:(已知兩邊求第三邊)

1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為xx。

2.已知直角三角形的兩邊長為3、4,則另一條邊長是xx。

3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長?

知識(shí)點(diǎn)2:

利用方程求線段長

(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?

(2)de與ce的位置關(guān)系

(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?

利用方程解決翻折問題

3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點(diǎn)b與點(diǎn)d重合,折痕為ef,求de的長。

談一談你這節(jié)課都有哪些收獲?

應(yīng)用勾股定理解決實(shí)際問題

本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的'有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對勾股定理的理解,提高學(xué)生對數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對勾股定理的觀察、計(jì)算、猜想、證明及簡單應(yīng)用的過程;第二課時(shí)是通過例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過從實(shí)際問題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問題的意識(shí)和應(yīng)用能力。

垂徑定理的教學(xué)設(shè)計(jì)篇九

勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫了直角三角形的特點(diǎn)。學(xué)習(xí)勾股定理極其逆定理是進(jìn)一步認(rèn)識(shí)和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)?!?0xx版數(shù)學(xué)課程標(biāo)準(zhǔn)》對勾股定理教學(xué)內(nèi)容的要求是:

1、在研究圖形性質(zhì)和運(yùn)動(dòng)等過程中,進(jìn)一步發(fā)展空間觀念;

2、在多種形式的數(shù)學(xué)活動(dòng)中,發(fā)展合情推理能力;

3、經(jīng)歷從不同角度分析問題和解決問題的方法的過程,體驗(yàn)解決問題方法的多樣性;

4、探索勾股定理及其逆定理,并能運(yùn)用它們解決一些簡單的實(shí)際問題。

本節(jié)課的教學(xué)目標(biāo)是:

1、能正確運(yùn)用勾股定理及其逆定理解決簡單的實(shí)際問題。

教學(xué)重點(diǎn)和難點(diǎn):

應(yīng)用勾股定理及其逆定理解決實(shí)際問題是重點(diǎn)。

把實(shí)際問題化歸成數(shù)學(xué)模型是難點(diǎn)。

根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋和運(yùn)用的同時(shí),在思維能力情感態(tài)度和價(jià)值觀等方面得到進(jìn)步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實(shí)際問題情境,使教學(xué)活動(dòng)充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問題。在教學(xué)過程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學(xué)生在獲得知識(shí)的同時(shí)提高能力。

在教學(xué)設(shè)計(jì)中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識(shí)由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。

第一環(huán)節(jié):情境引入

情景1:復(fù)習(xí)提問:勾股定理的語言表述以及幾何語言表達(dá)?

設(shè)計(jì)意圖:溫習(xí)舊知識(shí),規(guī)范語言及數(shù)學(xué)表達(dá),體現(xiàn)

設(shè)計(jì)意圖:既靈活考察學(xué)生對勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。

第二環(huán)節(jié):合作探究(圓柱體表面路程最短問題)

情景3:課本引例(螞蟻怎樣走最近)

第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問題逐步變?yōu)殚L方體表面的距離最短問題)

設(shè)計(jì)意圖:將問題的條件稍做改變,讓學(xué)生嘗試獨(dú)立解決,拓展學(xué)生視野,又加深他們對知識(shí)的理解和鞏固。再將圓柱問題變?yōu)檎襟w長方體問題,學(xué)生有了之前的經(jīng)驗(yàn),自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長方體問題中學(xué)生會(huì)有不同的做法,正好透分類討論思想。

第四環(huán)節(jié):議一議

設(shè)計(jì)意圖:

第五環(huán)節(jié):方程與勾股定理

第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):

1、解決實(shí)際問題的方法是建立數(shù)學(xué)模型求解、

2、在尋求最短路徑時(shí),往往把空間問題平面化,利用勾股定理及其逆定理解決實(shí)際問題。

3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。

第七環(huán)作業(yè)設(shè)計(jì):

第一道題難度較小,大部分學(xué)生可以獨(dú)立完成,第二道題有較大難度,可以交流討論完成。

知識(shí)技能:了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過程、

數(shù)學(xué)思考:在勾股定理的探索過程中,發(fā)展合情推理能力,體會(huì)數(shù)形結(jié)合的思想、解決問題:

1、通過拼圖活動(dòng),體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,發(fā)展形象思維、

2、在探究活動(dòng)中,學(xué)會(huì)與人合作并能與他人交流思維的過程和探究結(jié)果、

情感態(tài)度:

1、通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)熱情、

2、在探究活動(dòng)中,體驗(yàn)解決問題方法的多樣性,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神、

1、重點(diǎn)是探索和證明勾股定理、

2、難點(diǎn)是用拼圖的方法證明勾股定理、

垂徑定理的教學(xué)設(shè)計(jì)篇十

垂徑定理的推證是以圓是軸對稱圖形的性質(zhì)為依據(jù)的,因此,垂徑定理既是圓的性質(zhì)---軸對稱性質(zhì)的重要體現(xiàn),也是今后證明線段相等、角相等、弧相等、垂直關(guān)系的重要依據(jù)。本節(jié)內(nèi)容是本章基礎(chǔ),是圓的有關(guān)計(jì)算和圓的有關(guān)證明的一個(gè)重要工具。

根據(jù)初三學(xué)生的認(rèn)知水平,我選用引導(dǎo)發(fā)現(xiàn)法和直觀演示法,讓學(xué)生在課堂上多活動(dòng)、多觀察,主動(dòng)參與到整個(gè)教學(xué)活動(dòng)中來,組織學(xué)生參與“實(shí)驗(yàn)---觀察---猜想---證明”的活動(dòng),最后得出定理。這不僅讓學(xué)生對所學(xué)內(nèi)容留下了深刻的印象,而且充分地調(diào)動(dòng)學(xué)生學(xué)習(xí)的熱情,讓學(xué)生學(xué)會(huì)學(xué)習(xí),學(xué)會(huì)研究問題的方法,培養(yǎng)學(xué)生的能力。

由于明確了教學(xué)目標(biāo),因此在授課中,新知識(shí)的.引入與使用過程顯得更為流暢,學(xué)生也更加的投入。經(jīng)過這節(jié)課的學(xué)習(xí),學(xué)生基本掌握了垂徑定理的本質(zhì):2個(gè)條件和2個(gè)結(jié)論,并能在垂徑定理的基礎(chǔ)上推出其推論。且能應(yīng)用它們進(jìn)行簡單的計(jì)算和證明,較好的達(dá)到了教學(xué)目標(biāo),完成了教學(xué)任務(wù),教學(xué)效果良好。

本節(jié)課也存在著不足和需改進(jìn)之處:

1、在得出結(jié)論后,沒有留出足夠的時(shí)間給學(xué)生對定理進(jìn)行理解和記憶。致使一些中等以下的學(xué)生對定理的內(nèi)容運(yùn)用時(shí)不熟練。

2、在訓(xùn)練中題目較容易,應(yīng)適當(dāng)提高學(xué)生對新知識(shí)的理解體會(huì)。不僅要把基礎(chǔ)的東西訓(xùn)練牢固,還要適當(dāng)提高題目的高度,讓不同的學(xué)生都有所獲,都能體會(huì)到成功的快樂,長此以往學(xué)生便對數(shù)學(xué)產(chǎn)生興趣,提高成績也就容易了.

垂徑定理的教學(xué)設(shè)計(jì)篇十一

知識(shí)與技能:

了解勾股定理的一些證明方法,會(huì)簡單應(yīng)用勾股定理解決問題。

在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會(huì)數(shù)形結(jié)合、從特殊到一般等數(shù)學(xué)思想。

通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學(xué)生的民族自豪感。

1、創(chuàng)設(shè)情境。

師生活動(dòng):教師引導(dǎo)學(xué)生尋找圖形中的直角三角形和正方形等,并引導(dǎo)學(xué)生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過今天的學(xué)習(xí),就能理解會(huì)徽圖案的含義。

設(shè)計(jì)意圖:本節(jié)課是本章的起始課,重視引言教學(xué),從國際數(shù)學(xué)家大會(huì)的會(huì)徽說起,設(shè)置懸念,引入課題。

觀看洋蔥數(shù)學(xué)中關(guān)于勾股定理引入的視頻,讓我們一起走進(jìn)神奇的數(shù)學(xué)世界。

追問:由這三個(gè)正方形的邊長構(gòu)成的等腰直角三角形三條邊長之間又有怎么樣的關(guān)系?

師生活動(dòng):教師引導(dǎo)學(xué)生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。

設(shè)計(jì)意圖:從最特殊的等腰直角三角形入手,便于學(xué)生觀察得到結(jié)論。

問題3:數(shù)學(xué)研究遵循從特殊到一般的數(shù)學(xué)思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個(gè)方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。

師生活動(dòng):學(xué)生獨(dú)立思考后小組討論,難點(diǎn)是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結(jié)得出可以通過割、補(bǔ)兩種方法,求出其面積。

垂徑定理的教學(xué)設(shè)計(jì)篇十二

勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。

教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。

據(jù)此,制定教學(xué)目標(biāo)如下:

1、理解并掌握勾股定理及其證明。

2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。

3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

勾股定理的證明和應(yīng)用。

勾股定理的證明。

教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):

以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的`主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程。

切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。

通過演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:

1、由故事引入,3000多年前有個(gè)叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4。那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。

3、板書課題,出示學(xué)習(xí)目標(biāo)。

教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。

1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。

2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;

(1)這兩個(gè)圖形有什么特點(diǎn)?

(2)你能寫出這兩個(gè)圖形的面積嗎?

(3)如何運(yùn)用勾股定理?是否還有其他形式?

這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。

2、出示例1學(xué)生試解,師生共同評價(jià),以加深對例題的理解與運(yùn)用。針對例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

引導(dǎo)學(xué)生對知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。

垂徑定理的教學(xué)設(shè)計(jì)篇十三

勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫了直角三角形的特點(diǎn)。學(xué)習(xí)勾股定理極其逆定理是進(jìn)一步認(rèn)識(shí)和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)?!?0xx版數(shù)學(xué)課程標(biāo)準(zhǔn)》對勾股定理教學(xué)內(nèi)容的要求是:

1、在研究圖形性質(zhì)和運(yùn)動(dòng)等過程中,進(jìn)一步發(fā)展空間觀念;

2、在多種形式的數(shù)學(xué)活動(dòng)中,發(fā)展合情推理能力;

3、經(jīng)歷從不同角度分析問題和解決問題的方法的過程,體驗(yàn)解決問題方法的多樣性;

4、探索勾股定理及其逆定理,并能運(yùn)用它們解決一些簡單的實(shí)際問題。

本節(jié)課的教學(xué)目標(biāo)是:

1、能正確運(yùn)用勾股定理及其逆定理解決簡單的實(shí)際問題。

教學(xué)重點(diǎn)和難點(diǎn):

應(yīng)用勾股定理及其逆定理解決實(shí)際問題是重點(diǎn)。

把實(shí)際問題化歸成數(shù)學(xué)模型是難點(diǎn)。

根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋和運(yùn)用的同時(shí),在思維能力情感態(tài)度和價(jià)值觀等方面得到進(jìn)步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實(shí)際問題情境,使教學(xué)活動(dòng)充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問題。在教學(xué)過程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學(xué)生在獲得知識(shí)的同時(shí)提高能力。

在教學(xué)設(shè)計(jì)中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識(shí)由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。

第一環(huán)節(jié):情境引入。

情景1:復(fù)習(xí)提問:勾股定理的語言表述以及幾何語言表達(dá)?

設(shè)計(jì)意圖:溫習(xí)舊知識(shí),規(guī)范語言及數(shù)學(xué)表達(dá),體現(xiàn)。

設(shè)計(jì)意圖:既靈活考察學(xué)生對勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。

第二環(huán)節(jié):合作探究(圓柱體表面路程最短問題)。

情景3:課本引例(螞蟻怎樣走最近)。

第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問題逐步變?yōu)殚L方體表面的距離最短問題)。

設(shè)計(jì)意圖:將問題的條件稍做改變,讓學(xué)生嘗試獨(dú)立解決,拓展學(xué)生視野,又加深他們對知識(shí)的理解和鞏固。再將圓柱問題變?yōu)檎襟w長方體問題,學(xué)生有了之前的經(jīng)驗(yàn),自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長方體問題中學(xué)生會(huì)有不同的做法,正好透分類討論思想。

第四環(huán)節(jié):議一議。

設(shè)計(jì)意圖:

第五環(huán)節(jié):方程與勾股定理。

第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):

1、解決實(shí)際問題的方法是建立數(shù)學(xué)模型求解、

2、在尋求最短路徑時(shí),往往把空間問題平面化,利用勾股定理及其逆定理解決實(shí)際問題、

3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。

意圖:鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史、《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)第七環(huán)作業(yè)設(shè)計(jì):

第一道題難度較小,大部分學(xué)生可以獨(dú)立完成,第二道題有較大難度,可以交流討論完成。

垂徑定理的教學(xué)設(shè)計(jì)篇十四

高三第一階段復(fù)習(xí),也稱“知識(shí)篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復(fù)習(xí)鞏固各個(gè)知識(shí)點(diǎn),熟練掌握基本方法和技能;然后站在全局的高度,對學(xué)過的知識(shí)產(chǎn)生全新認(rèn)識(shí)。在高一、高二時(shí),是以知識(shí)點(diǎn)為主線索,依次傳授講解的,由于后面的相關(guān)知識(shí)還沒有學(xué)到,不能進(jìn)行縱向聯(lián)系,所以,學(xué)的知識(shí)往往是零碎和散亂,而在第一輪復(fù)習(xí)時(shí),以章節(jié)為單位,將那些零碎的、散亂的知識(shí)點(diǎn)串聯(lián)起來,并將他們系統(tǒng)化、綜合化,把各個(gè)知識(shí)點(diǎn)融會(huì)貫通。對于普通高中的學(xué)生,第一輪復(fù)習(xí)更為重要,我們希望能做高考試題中一些基礎(chǔ)題目,必須側(cè)重基礎(chǔ),加強(qiáng)復(fù)習(xí)的針對性,講求實(shí)效。

一、內(nèi)容分析說明

1、本小節(jié)內(nèi)容是初中學(xué)習(xí)的多項(xiàng)式乘法的繼續(xù),它所研究的二項(xiàng)式的`乘方的展開式,與數(shù)學(xué)的其他部分有密切的聯(lián)系:

(1)二項(xiàng)展開式與多項(xiàng)式乘法有聯(lián)系,本小節(jié)復(fù)習(xí)可對多項(xiàng)式的變形起到復(fù)習(xí)深化作用。

(2)二項(xiàng)式定理與概率理論中的二項(xiàng)分布有內(nèi)在聯(lián)系,利用二項(xiàng)式定理可得到一些組合數(shù)的恒等式,因此,本小節(jié)復(fù)習(xí)可加深知識(shí)間縱橫聯(lián)系,形成知識(shí)網(wǎng)絡(luò)。

(3)二項(xiàng)式定理是解決某些整除性、近似計(jì)算等問題的一種方法。

試題,考察的題型穩(wěn)定,通常以選擇題或填空題出現(xiàn),有時(shí)也與應(yīng)用題結(jié)合在一起求某些數(shù)、式的近似值。

垂徑定理的教學(xué)設(shè)計(jì)篇十五

教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角的"形"的特點(diǎn),轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計(jì)算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說明勾股定理的正確性。

學(xué)生分析:

1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過三角尺的同學(xué)并不多,通過這樣的情景設(shè)計(jì),能非常簡單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。

2、以與勾股定理有關(guān)的人文歷史知識(shí)為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。

設(shè)計(jì)理念:本教案以學(xué)生手中舞動(dòng)的三角尺為知識(shí)背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗(yàn)勾股定理的探索和運(yùn)用過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的`民族自豪感和探究創(chuàng)新的精神。

教學(xué)目標(biāo):

1、經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過程,培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。

2、經(jīng)歷用多種割、補(bǔ)圖形的方法驗(yàn)證勾股定理的過程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界和有條理地思考能力以及語言表達(dá)能力等,感受勾股定理的文化價(jià)值。

3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛國熱情。

4、欣賞設(shè)計(jì)圖形美。

教學(xué)準(zhǔn)備階段:

學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。

老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。

(一)引入。

同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時(shí),你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)。

(二)實(shí)驗(yàn)探究。

1、取方格紙片,在上面先設(shè)計(jì)任意格點(diǎn)直角三角形,再以它們的每一邊分別向三角形外作正方形,設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計(jì)算每個(gè)正方形的面積,以四人小組為單位填寫下表:

(討論難點(diǎn):以斜邊為邊的正方形的面積找法)。

交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)。

(三)探索所得結(jié)論的正確性。

當(dāng)直角三角形的直角邊分別為a、b,斜邊為c時(shí),是否一定成立?

1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計(jì)合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)。

在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來交流講解,并引導(dǎo)學(xué)生進(jìn)行說理:

如圖2(用補(bǔ)的方法說明)。

師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為"畢達(dá)哥拉斯定理"。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計(jì)的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見課本52頁彩圖2—1,欣賞圖片)。

如圖3(用割的方法去探索)。

師介紹:(出示圖片)中國古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個(gè)結(jié)論。早在公元前2000年左右,大禹治水時(shí)期,就曾經(jīng)用過此方法測量土地的等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國時(shí)期吳國數(shù)學(xué)家趙爽曾構(gòu)造此圖驗(yàn)證了這一結(jié)論的正確性。他的這個(gè)證明,可謂別具匠心,極富創(chuàng)新意識(shí),他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹立了一個(gè)典范。他是我國有記載以來第一個(gè)證明這一結(jié)論的數(shù)學(xué)家。我國數(shù)學(xué)家們?yōu)榱思o(jì)念我國在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。

20xx年,世界數(shù)學(xué)家大會(huì)在中國北京召開,當(dāng)時(shí)選用這個(gè)圖案作為會(huì)場主圖,它標(biāo)志著我國古代數(shù)學(xué)的輝煌成就。

本節(jié)課學(xué)習(xí)的勾股定理用語言敘說為:

1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。

垂徑定理的教學(xué)設(shè)計(jì)篇十六

1、知識(shí)目標(biāo):

(1)掌握勾股定理;

(2)學(xué)會(huì)利用勾股定理進(jìn)行計(jì)算、證明與作圖;

(3)了解有關(guān)勾股定理的歷史.

2、能力目標(biāo):

(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;

(2)通過問題的解決,提高學(xué)生的運(yùn)算能力

3、情感目標(biāo):

(1)通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;

(2)通過有關(guān)勾股定理的歷史講解,對學(xué)生進(jìn)行德育教育.

教學(xué)重點(diǎn):勾股定理及其應(yīng)用

教學(xué)難點(diǎn):通過有關(guān)勾股定理的歷史講解,對學(xué)生進(jìn)行德育教育

教學(xué)用具:直尺,微機(jī)

教學(xué)方法:以學(xué)生為主體的討論探索法

【本文地址:http://mlvmservice.com/zuowen/10386600.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔