一個(gè)好的教案可以提高教學(xué)效果,讓學(xué)生更好地理解和掌握知識(shí)。教案的編寫(xiě)過(guò)程中,需要注重對(duì)學(xué)生的思維習(xí)慣和學(xué)習(xí)方式的培養(yǎng)。隨后是教案范文,供大家學(xué)習(xí)和參考,希望對(duì)大家有所幫助。
高一數(shù)學(xué)必修教案全冊(cè)篇一
1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫(xiě)出數(shù)列的前幾項(xiàng)。
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)確定的。
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫(xiě)出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫(xiě)出該數(shù)列的一個(gè)通項(xiàng)公式。
(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫(xiě)出數(shù)列的`前幾項(xiàng)。
2、通過(guò)對(duì)一列數(shù)的觀察、歸納,寫(xiě)出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。
3、通過(guò)由求的過(guò)程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問(wèn)題引入,從中抽象出數(shù)列要研究的問(wèn)題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書(shū)中所給的例子,還有物品堆放個(gè)數(shù)的計(jì)算等。
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類(lèi)似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。
(3)由數(shù)列的通項(xiàng)公式寫(xiě)出數(shù)列的前幾項(xiàng)是簡(jiǎn)單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫(xiě)通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫(xiě)通項(xiàng)公式提供幫助。
(4)由數(shù)列的前幾項(xiàng)寫(xiě)出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來(lái)調(diào)整等。如果學(xué)生一時(shí)不能寫(xiě)出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系。
(5)對(duì)每個(gè)數(shù)列都有求和問(wèn)題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問(wèn)題是重點(diǎn)問(wèn)題,可先提出一個(gè)具體問(wèn)題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問(wèn)題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況。
(6)給出一些簡(jiǎn)單數(shù)列的通項(xiàng)公式,可以求其項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問(wèn)題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的。
高一數(shù)學(xué)必修教案全冊(cè)篇二
課型
新課
教學(xué)目標(biāo)
1.了解中心投影和平行投影的概念;
3.簡(jiǎn)單組合體與其三視圖之間的相互轉(zhuǎn)化.
教學(xué)過(guò)程
教學(xué)內(nèi)容
備注
一、
自主學(xué)習(xí)
1.照相、繪畫(huà)之所以有空間視覺(jué)效果,主要處決于線條、明暗和色彩,其中對(duì)線條畫(huà)法的基本原理是一個(gè)幾何問(wèn)題,我們需要學(xué)習(xí)這方面的知識(shí).
二、
質(zhì)疑提問(wèn)
下圖中的手影游戲,你玩過(guò)嗎?
光是直線傳播的,一個(gè)不透明物體在光的照射下,在物體后面的屏幕上會(huì)留下這個(gè)物體的影子,這種現(xiàn)象叫做投影.其中的光線叫做投影線,留下物體影子的屏幕叫做投影面.
一、中心投影與平行投影
思考2:用燈泡照射物體和用手電筒照射物體形成的投影分別是哪種投影?
投影的分類(lèi):
把一個(gè)空間幾何體投影到一個(gè)平面上,可以獲得一個(gè)平面圖形.從多個(gè)角度進(jìn)行投影就能較好地把握幾何體的形狀和大小,通常選擇三種正投影,即正面、側(cè)面和上面,并給出下列概念:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖.
側(cè)視圖:光線從幾何體的左面向右面正投影,得到的.投影圖.
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖.
幾何體的正視圖、側(cè)視圖和俯視圖,統(tǒng)稱(chēng)為幾何體的三視圖.
三、
問(wèn)題探究
思考2:如圖,設(shè)長(zhǎng)方體的長(zhǎng)、寬、高分別為a、b、c,那么其三視圖分別是什么?
思考3:圓柱、圓錐、圓臺(tái)的三視圖分別是什么?
思考5:球的三視圖是什么?下列三視圖表示一個(gè)什么幾何體?
例1:如圖是一個(gè)倒置的四棱柱的兩種擺放,試分別畫(huà)出其三視圖,并比較它們的異同.
四、
課堂檢測(cè)
五、
小結(jié)評(píng)價(jià)
1.空間幾何體的三視圖:正視圖、側(cè)視圖、俯視圖;
3.三視圖的應(yīng)用及與原實(shí)物圖的相互轉(zhuǎn)化.
高一數(shù)學(xué)必修教案全冊(cè)篇三
教學(xué)目標(biāo)。
熟悉兩角和與差的正、余公式的推導(dǎo)過(guò)程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問(wèn)題。
教學(xué)重難點(diǎn)。
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
教學(xué)過(guò)程。
復(fù)習(xí)。
兩角差的余弦公式。
用-b代替b看看有什么結(jié)果?
高一數(shù)學(xué)必修教案全冊(cè)篇四
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
1、理解平面向量的坐標(biāo)的概念;
2、掌握平面向量的坐標(biāo)運(yùn)算;
3、會(huì)根據(jù)向量的坐標(biāo),判斷向量是否共線.
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):平面向量的坐標(biāo)運(yùn)算
教學(xué)難點(diǎn):向量的坐標(biāo)表示的理解及運(yùn)算的準(zhǔn)確性.
教學(xué)過(guò)程
平面向量基本定理:
什么叫平面的一組基底?
平面的基底有多少組?
引入:
1.平面內(nèi)建立了直角坐標(biāo)系,點(diǎn)a可以用什么來(lái)
表示?
2.平面向量是否也有類(lèi)似的表示呢?
高一數(shù)學(xué)必修教案全冊(cè)篇五
1.閱讀課本練習(xí)止。
2.回答問(wèn)題:
(1)課本內(nèi)容分成幾個(gè)層次?每個(gè)層次的中心內(nèi)容是什么?
(2)層次間的聯(lián)系是什么?
(3)對(duì)數(shù)函數(shù)的定義是什么?
(4)對(duì)數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?
3.完成練習(xí)。
4.小結(jié)。
二、方法指導(dǎo)。
1.在學(xué)習(xí)對(duì)數(shù)函數(shù)時(shí),同學(xué)們應(yīng)從熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫(huà)對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類(lèi)討論而且對(duì)每一類(lèi)問(wèn)題也可以多選幾個(gè)不同的底,畫(huà)在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
2.本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問(wèn)題都應(yīng)圍繞著這條主線展開(kāi),同學(xué)們?cè)趯W(xué)習(xí)時(shí)應(yīng)該把兩個(gè)函數(shù)進(jìn)行類(lèi)比,通過(guò)互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì)。
一、提問(wèn)題。
1.對(duì)數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
2.兩個(gè)函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?
3.是否所有的函數(shù)都有反函數(shù)?試舉例說(shuō)明。
二、變題目。
1.試求下列函數(shù)的反函數(shù):
(1);(2);(3);(4)。
2.求下列函數(shù)的定義域:。
(1);(2);(3)。
3.已知?jiǎng)t=;的定義域?yàn)椤?/p>
1.對(duì)數(shù)函數(shù)的有關(guān)概念。
(1)把函數(shù)叫做對(duì)數(shù)函數(shù),叫做對(duì)數(shù)函數(shù)的底數(shù)。
(2)以10為底數(shù)的對(duì)數(shù)函數(shù)為常用對(duì)數(shù)函數(shù)。
(3)以無(wú)理數(shù)為底數(shù)的對(duì)數(shù)函數(shù)為自然對(duì)數(shù)函數(shù)。
2.反函數(shù)的概念。
在指數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是;在對(duì)數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是,像這樣的兩個(gè)函數(shù)叫做互為反函數(shù)。
3.與對(duì)數(shù)函數(shù)有關(guān)的定義域的求法:
4.舉例說(shuō)明如何求反函數(shù)。
一、課外作業(yè):習(xí)題3-5a組1,2,3,b組1,
二、課外思考:
1.求定義域:
2.求使函數(shù)的函數(shù)值恒為負(fù)值的的取值范圍。
高一數(shù)學(xué)必修教案全冊(cè)篇六
教學(xué)目標(biāo)。
3.讓學(xué)生深刻理解向量在處理平面幾何問(wèn)題中的優(yōu)越性.
教學(xué)重難點(diǎn)。
教學(xué)重點(diǎn):用向量方法解決實(shí)際問(wèn)題的基本方法:向量法解決幾何問(wèn)題的“三步曲”.
教學(xué)難點(diǎn):如何將幾何等實(shí)際問(wèn)題化歸為向量問(wèn)題.
教學(xué)過(guò)程。
由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長(zhǎng)度、夾角等都可以由向量的線性運(yùn)算及數(shù)量積表示出來(lái),因此,可用向量方法解決平面幾何中的一些問(wèn)題,下面我們通過(guò)幾個(gè)具體實(shí)例,說(shuō)明向量方法在平面幾何中的運(yùn)用。
思考:
運(yùn)用向量方法解決平面幾何問(wèn)題可以分哪幾個(gè)步驟?
運(yùn)用向量方法解決平面幾何問(wèn)題可以分哪幾個(gè)步驟?
“三步曲”:
(2)通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問(wèn)題;。
(3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系.
高一數(shù)學(xué)必修教案全冊(cè)篇七
1. 閱讀課本 練習(xí)止.
2. 回答問(wèn)題
(1)課本內(nèi)容分成幾個(gè)層次?每個(gè)層次的中心內(nèi)容是什么?
(2)層次間的聯(lián)系是什么?
(3)對(duì)數(shù)函數(shù)的定義是什么?
(4)對(duì)數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?
3. 完成 練習(xí)
4. 小結(jié).
二、方法指導(dǎo)
1. 在學(xué)習(xí)對(duì)數(shù)函數(shù)時(shí),同學(xué)們應(yīng)從熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫(huà)對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類(lèi)討論而且對(duì)每一類(lèi)問(wèn)題也可以多選幾個(gè)不同的底,畫(huà)在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
一、提問(wèn)題
1. 對(duì)數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
2.兩個(gè)函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?
3.是否所有的函數(shù)都有反函數(shù)?試舉例說(shuō)明.
二、變題目
1. 試求下列函數(shù)的反函數(shù):
(1) ; (2) ;
(3) ; (4) .
2. 求下列函數(shù)的定義域:
(1) ; (2) ; (3) .
3. 已知 則 = ; 的定義域?yàn)?.
1.對(duì)數(shù)函數(shù)的'有關(guān)概念
(1)把函數(shù) 叫做對(duì)數(shù)函數(shù), 叫做對(duì)數(shù)函數(shù)的底數(shù);
(2)以10為底數(shù)的對(duì)數(shù)函數(shù) 為常用對(duì)數(shù)函數(shù);
(3)以無(wú)理數(shù) 為底數(shù)的對(duì)數(shù)函數(shù) 為自然對(duì)數(shù)函數(shù).
2. 反函數(shù)的概念
在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對(duì)數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個(gè)函數(shù)叫做互為反函數(shù).
3. 與對(duì)數(shù)函數(shù)有關(guān)的定義域的求法:
4. 舉例說(shuō)明如何求反函數(shù).
一、課外作業(yè): 習(xí)題3-5 a組 1,2,3, b組1,
二、課外思考:
1. 求定義域: .
2. 求使函數(shù) 的函數(shù)值恒為負(fù)值的 的取值范圍.
高一數(shù)學(xué)必修教案全冊(cè)篇八
3.通過(guò)參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的愛(ài)好.
教學(xué)重點(diǎn)是通項(xiàng)公式的熟悉;教學(xué)難點(diǎn)是對(duì)公式的靈活運(yùn)用.
實(shí)物投影儀,多媒體軟件,電腦.
研探式.
一.復(fù)習(xí)提問(wèn)
等差數(shù)列的概念是從相鄰兩項(xiàng)的關(guān)系加以定義的,這個(gè)關(guān)系用遞推公式來(lái)表示比較簡(jiǎn)單,但我們要圍繞通項(xiàng)公式作進(jìn)一步的理解與應(yīng)用.
二.主體設(shè)計(jì)
通項(xiàng)公式反映了項(xiàng)與項(xiàng)數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項(xiàng)與公差確定后,數(shù)列的每一項(xiàng)便確定了,可以求指定的項(xiàng)(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項(xiàng),公差,求.”這是通項(xiàng)公式的簡(jiǎn)單應(yīng)用,由學(xué)生解答后,要求每個(gè)學(xué)生出一些運(yùn)用等差數(shù)列通項(xiàng)公式的題目,包括正用、反用與變用,簡(jiǎn)單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來(lái),分類(lèi)投影在屏幕上.
1.方程思想的運(yùn)用
(1)已知等差數(shù)列中,首項(xiàng),公差,則-397是該數(shù)列的第x項(xiàng).
(2)已知等差數(shù)列中,首項(xiàng),則公差
(3)已知等差數(shù)列中,公差,則首項(xiàng)
這一類(lèi)問(wèn)題先由學(xué)生解決,之后教師點(diǎn)評(píng),四個(gè)量,在一個(gè)等式中,運(yùn)用方程的思想方法,已知其中三個(gè)量的值,可以求得第四個(gè)量.
2.基本量方法的使用
(1)已知等差數(shù)列中,求的值.
(2)已知等差數(shù)列中,求.
若學(xué)生的題目只有這兩種類(lèi)型,教師可以小結(jié)(請(qǐng)出題者、解題者概括):因?yàn)橐阎獥l件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫(xiě)出通項(xiàng)公式,便可歸結(jié)為前一類(lèi)問(wèn)題.解決這類(lèi)問(wèn)題只需把兩個(gè)條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱(chēng)作基本量.
教師提出新的問(wèn)題,已知等差數(shù)列的一個(gè)條件(等式),能否確定一個(gè)等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個(gè)條件可得到關(guān)于和的二元方程,這是一個(gè)和的`制約關(guān)系,從這個(gè)關(guān)系可以得到什么結(jié)論?舉例說(shuō)明(例題可由學(xué)生或教師給出,視具體情況而定).
如:已知等差數(shù)列中,…
由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項(xiàng)的值么?能否與兩項(xiàng)有關(guān)?多項(xiàng)有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問(wèn)題(3)已知等差數(shù)列中,求;;;;….
類(lèi)似的還有
(4)已知等差數(shù)列中,求的值.
以上屬于對(duì)數(shù)列的項(xiàng)進(jìn)行定量的研究,有無(wú)定性的判定?引出
3.研究等差數(shù)列的單調(diào)性
4.研究項(xiàng)的符號(hào)
這是為研究等差數(shù)列前項(xiàng)和的最值所做的預(yù)備工作.可配備的題目如
(1)已知數(shù)列的通項(xiàng)公式為,問(wèn)數(shù)列從第幾項(xiàng)開(kāi)始小于0?
(2)等差數(shù)列從第x項(xiàng)起以后每項(xiàng)均為負(fù)數(shù).
三.小結(jié)
1.用方程思想熟悉等差數(shù)列通項(xiàng)公式;
2.用函數(shù)思想解決等差數(shù)列問(wèn)題.
四.板書(shū)設(shè)計(jì)
等差數(shù)列通項(xiàng)公式1.方程思想的運(yùn)用
2.基本量方法的使用
3.研究等差數(shù)列的單調(diào)性
4.研究項(xiàng)的符號(hào)
高一數(shù)學(xué)必修教案全冊(cè)篇九
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問(wèn)題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型·。
·利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型·。
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
(精確到0·001)·。
米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的`進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問(wèn)題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁(yè)的“思考”問(wèn)題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動(dòng)螺旋槳。
練習(xí):教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問(wèn)題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型·。
2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型·。
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
高一數(shù)學(xué)必修教案全冊(cè)篇十
教學(xué)目標(biāo)。
理解以?xún)山遣畹挠嘞夜綖榛A(chǔ),推導(dǎo)兩角和、差正弦和正切公式的方法,體會(huì)三角恒等變換特點(diǎn)的過(guò)程,理解推導(dǎo)過(guò)程,掌握其應(yīng)用.
教學(xué)重難點(diǎn)。
1.教學(xué)重點(diǎn):兩角和、差正弦和正切公式的推導(dǎo)過(guò)程及運(yùn)用;。
2.教學(xué)難點(diǎn):兩角和與差正弦、余弦和正切公式的靈活運(yùn)用.
教學(xué)過(guò)程。
高一數(shù)學(xué)必修教案全冊(cè)篇十一
1.要讀好課本。
有些“自我感覺(jué)良好”的學(xué)生,常輕視課本中基礎(chǔ)知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書(shū)寫(xiě),但對(duì)難題很感興趣,以顯示自己的“水平”,好高騖遠(yuǎn),重“量”輕“質(zhì)”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。因此,同學(xué)們應(yīng)從高一開(kāi)始,增強(qiáng)自己從課本入手進(jìn)行研究的意識(shí)。
2.要記好筆記。
首先,在課堂教學(xué)中培養(yǎng)好的聽(tīng)課習(xí)慣是很重要的。當(dāng)然聽(tīng)是主要的,聽(tīng)能使注意力集中,要把老師講的關(guān)鍵性部分聽(tīng)懂、聽(tīng)會(huì)。聽(tīng)的時(shí)候注意思考、分析問(wèn)題,但是光聽(tīng)不記,或光記不聽(tīng)必然顧此失彼,課堂效益低下,因此應(yīng)適當(dāng)?shù)赜心康男缘挠浐霉P記,領(lǐng)會(huì)課上老師的主要精神與意圖??茖W(xué)的記筆記可以提高45分鐘課堂效益。
3.要做好作業(yè)。
在課堂、課外練習(xí)中培養(yǎng)良好的作業(yè)習(xí)慣也很有必要.在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨(dú)立完成。同時(shí)可以培養(yǎng)一種獨(dú)立思考和解題正確的責(zé)任感。在作業(yè)時(shí)要提倡效率,應(yīng)該十分鐘完成的作業(yè),不拖到半小時(shí)完成,疲疲憊憊的作業(yè)習(xí)慣使思維松散、精力不集中,這對(duì)培養(yǎng)數(shù)學(xué)能力是有害而無(wú)益的。
4.要寫(xiě)好總結(jié)。
一個(gè)人不斷接受新知識(shí),不斷遭遇挫折產(chǎn)生疑問(wèn),不斷地總結(jié),才有不斷地提高?!安粫?huì)總結(jié)的同學(xué),他的能力就不會(huì)提高,挫折經(jīng)驗(yàn)是成功的基石?!弊匀唤邕m者生存的生物進(jìn)化過(guò)程便是最好的例證。學(xué)習(xí)要經(jīng)??偨Y(jié)規(guī)律,目的就是為了更一步的發(fā)展。
通過(guò)與老師、同學(xué)平時(shí)的接觸交流,逐步總結(jié)出一般性的學(xué)習(xí)步驟,它包括:制定計(jì)劃、課前自學(xué)、專(zhuān)心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面,簡(jiǎn)單概括為四個(gè)環(huán)節(jié)(預(yù)習(xí)、上課、整理、作業(yè))和一個(gè)步驟(復(fù)習(xí)總結(jié))。每一個(gè)環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強(qiáng)的目的性、針對(duì)性,要落實(shí)到位。堅(jiān)持“兩先兩后一小結(jié)”(先預(yù)習(xí)后聽(tīng)課,先復(fù)習(xí)后做作業(yè),寫(xiě)好每個(gè)單元的總結(jié))的學(xué)習(xí)習(xí)慣。
1.課前預(yù)習(xí)教材。課前可以把教材上第二天老師要講的內(nèi)容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時(shí)候我們就能帶著問(wèn)題去聽(tīng),把自己沒(méi)看懂的問(wèn)題聽(tīng)懂。
2.上課專(zhuān)心聽(tīng)講。這是很重要的,很多同學(xué)以為自己什么都弄懂了,就自己做自己的題目。其實(shí)即使是自己看懂了的,也可以看看老師也沒(méi)有另外的理解方法,老師的方法是不是比自己好。聽(tīng)老師有時(shí)候講比自己看更好。
小編推薦:高一數(shù)學(xué)怎么學(xué)才能學(xué)好。
3.課后認(rèn)真復(fù)習(xí)。剛學(xué)的知識(shí),還沒(méi)完全被消化吸收成為自己的知識(shí),如果不及時(shí)復(fù)習(xí),就很容易忘記。所以,課后一定要抽出一些時(shí)間,及時(shí)對(duì)所學(xué)進(jìn)行鞏固。
4.通過(guò)習(xí)題鞏固。數(shù)學(xué)是理科,需要通過(guò)一定量的習(xí)題來(lái)鞏固,量變積累到了一定量才能質(zhì)變嘛。這個(gè)并非要各位打題海戰(zhàn)術(shù),只要求各位做到熟練為止。
5.錯(cuò)題反復(fù)研究。自己準(zhǔn)備一個(gè)錯(cuò)題本,把考試時(shí)候做錯(cuò)的題目記錄下來(lái),寫(xiě)上做錯(cuò)的原因,反復(fù)研究,避免再次出錯(cuò)。
高一數(shù)學(xué)必修教案全冊(cè)篇十二
(2)利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;
(3)會(huì)用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問(wèn)題、
用坐標(biāo)法解決幾何問(wèn)題的步驟:
第二步:通過(guò)代數(shù)運(yùn)算,解決代數(shù)問(wèn)題;
第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論、
重點(diǎn)與難點(diǎn):直線與圓的方程的應(yīng)用、
問(wèn) 題設(shè)計(jì)意圖師生活動(dòng)
生:回顧,說(shuō)出自己的看法、
2、解決直線與圓的位置關(guān)系,你將采用什么方法?
生:回顧、思考、討論、交流,得到解決問(wèn)題的方法、
問(wèn) 題設(shè)計(jì)意圖師生活動(dòng)
3、閱讀并思考教科書(shū)上的例4,你將選擇什么方 法解決例4的'問(wèn)題
生:自 學(xué)例4,并完成練習(xí)題1、2、
生:建立適當(dāng)?shù)闹苯亲鴺?biāo)系, 探求解決問(wèn)題的方法、
8、小結(jié):
(1)利用“坐標(biāo)法”解決問(wèn)對(duì)知識(shí)進(jìn)行歸納概括,體會(huì)利 師:指導(dǎo) 學(xué)生完成練習(xí)題、
生:閱讀教科書(shū)的例3,并完成第
問(wèn) 題設(shè)計(jì)意圖師生活動(dòng)
題的需要準(zhǔn)備什么工作?
(2)如何建立直角坐標(biāo)系,才能易于解決平面幾何問(wèn)題?
(3)你認(rèn)為學(xué)好“坐標(biāo)法”解決問(wèn)題的關(guān)鍵是什么?
高一數(shù)學(xué)必修教案全冊(cè)篇十三
了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式).
了解數(shù)列是自變量為正整數(shù)的一類(lèi)函數(shù)。
(2)等差數(shù)列、等比數(shù)列。
理解等差數(shù)列、等比數(shù)列的概念。
掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式。
能在具體的問(wèn)題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題。
了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系。
高一數(shù)學(xué)必修教案全冊(cè)篇十四
一、除了高等植物成熟的篩管細(xì)胞和哺乳動(dòng)物成熟的紅細(xì)胞等極少數(shù)細(xì)胞外,真核細(xì)胞都有細(xì)胞核。植物的導(dǎo)管細(xì)胞是死細(xì)胞(主要運(yùn)輸水分、無(wú)機(jī)鹽),篩管主要運(yùn)輸有機(jī)物。
二、細(xì)胞核控制著細(xì)胞的代謝和遺傳。
三、細(xì)胞核的結(jié)構(gòu)。
2.染色質(zhì)(主要由dna和蛋白質(zhì)組成,dna是遺傳信息的載體。
4.核孔(實(shí)現(xiàn)核質(zhì)之間頻繁的物質(zhì)交換和信息交流)核孔有選擇透過(guò)性,上面有載體,大分子物質(zhì)(蛋白質(zhì)和mrna)出入細(xì)胞需要能量和載體,細(xì)胞代謝越旺盛,核孔越多,核仁體積越大。
四、細(xì)胞分裂時(shí),細(xì)胞核解體,染色質(zhì)高度螺旋化,縮短變粗,成為光學(xué)顯微鏡下清晰可見(jiàn)的圓柱狀或桿狀的染色體。分裂結(jié)束時(shí),染色體解螺旋,重新成為細(xì)絲狀的染色質(zhì)。染色質(zhì)(分裂間期)和染色體(分裂時(shí))是同樣的物質(zhì)在細(xì)胞不同時(shí)期的兩種存在狀態(tài)。
五、細(xì)胞既是生物體結(jié)構(gòu)的基本單位,又是生物體代謝和遺傳的基本單位。
高一數(shù)學(xué)必修教案全冊(cè)篇十五
>教學(xué)目標(biāo)
落實(shí)情況.
解?絕對(duì)值不等式注意不要丟掉?這部分解集.。
五、作業(yè)。
1.閱讀課本?含絕對(duì)值不等式解法.。
2.習(xí)題?2、3、4。
課堂教學(xué)設(shè)計(jì)說(shuō)明。
1.抓住解型絕對(duì)值不等式的關(guān)鍵是絕對(duì)值的意義,為此首先通過(guò)復(fù)習(xí)讓學(xué)生掌握好絕對(duì)值的意義,為解絕對(duì)值不等式打下牢固的基礎(chǔ).
2.在解與絕對(duì)值不等式中的關(guān)鍵處設(shè)問(wèn)、質(zhì)疑、點(diǎn)撥,讓學(xué)生融會(huì)貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達(dá)到提高學(xué)生解題能力的目的.
3.針對(duì)學(xué)生解()絕對(duì)值不等式容易出現(xiàn)丟掉這部分解集的錯(cuò)誤,在教學(xué)中應(yīng)根據(jù)絕對(duì)值的意義從數(shù)軸進(jìn)行突破,并在練習(xí)中糾正這個(gè)錯(cuò)誤,以提高學(xué)生的運(yùn)算能力.
高一數(shù)學(xué)必修教案全冊(cè)篇十六
細(xì)胞膜、細(xì)胞壁、細(xì)胞核、細(xì)胞質(zhì)均不是細(xì)胞器。
一、細(xì)胞器之間分工。
1.線粒體:細(xì)胞進(jìn)行有氧呼吸的主要場(chǎng)所。雙層膜(內(nèi)膜向內(nèi)折疊形成脊),分布在動(dòng)植物細(xì)胞體內(nèi)。
2.葉綠體:進(jìn)行光合作用,“能量轉(zhuǎn)換站”,雙層膜,分布在植物的葉肉細(xì)胞。
3.內(nèi)質(zhì)網(wǎng):蛋白質(zhì)合成和加工,以及脂質(zhì)合成的“車(chē)間”,單層膜,動(dòng)植物都有。分為光面內(nèi)質(zhì)網(wǎng)和粗面內(nèi)質(zhì)網(wǎng)(上有核糖體附著)。
4.高爾基體:對(duì)來(lái)自?xún)?nèi)質(zhì)網(wǎng)的蛋白質(zhì)進(jìn)行加工、分類(lèi)和包裝,單層膜,動(dòng)植物都有,植物細(xì)胞中參與了細(xì)胞壁的形成。
5.核糖體:無(wú)膜,合成蛋白質(zhì)的主要場(chǎng)所。生產(chǎn)蛋白質(zhì)的機(jī)器。
包括游離的核糖體(合成胞內(nèi)蛋白)和附著在內(nèi)質(zhì)網(wǎng)上的核糖體(合成分泌蛋白)。
6.溶酶體:內(nèi)含有多種水解酶,能分解衰老、損傷的細(xì)胞器,吞噬并殺死侵入細(xì)胞的病毒或病菌,單層膜。
溶酶體吞噬過(guò)程體現(xiàn)生物膜的流動(dòng)性。溶酶體起源于高爾基體。
7.液泡:主要存在與植物細(xì)胞中,內(nèi)有細(xì)胞液,含糖類(lèi)、無(wú)機(jī)鹽、色素和蛋白質(zhì)等物質(zhì),可以調(diào)節(jié)植物細(xì)胞內(nèi)的環(huán)境,充盈的液泡還可以使植物細(xì)胞保持堅(jiān)挺。與植物細(xì)胞的滲透吸水有關(guān)。
8.中心體:動(dòng)物和某些低等植物的細(xì)胞,由兩個(gè)相互垂直排列的中心粒及周?chē)镔|(zhì)組成,與細(xì)胞的有絲分裂有關(guān),無(wú)膜。一個(gè)中心體有兩個(gè)中心粒組成。
二、分類(lèi)比較:
1.雙層膜:葉綠體、線粒體(細(xì)胞核膜)。
單層膜:內(nèi)質(zhì)網(wǎng)、高爾基體、液泡、溶酶體(細(xì)胞膜、類(lèi)囊體薄膜)。
無(wú)膜:中心體、核糖體。
2.植物特有:葉綠體、液泡動(dòng)物特有(低等植物):中心體。
3.含核酸的細(xì)胞器:線粒體、葉綠體(dna)線粒體、葉綠體、核糖體(rna)。
4.增大膜面積的細(xì)胞器:線粒體、內(nèi)質(zhì)網(wǎng)、葉綠體。
5.含色素:葉綠體、液泡。
6.能產(chǎn)生atp的:線粒體、葉綠體(細(xì)胞質(zhì)基質(zhì))。
7.能自主復(fù)制的細(xì)胞器:線粒體、葉綠體、中心體。
8.與有絲分裂有關(guān)的細(xì)胞器:核糖體、線粒體、高爾基體(形成細(xì)胞壁)、中心體。
9.發(fā)生堿基互補(bǔ)配對(duì):線粒體、葉綠體、核糖體。
10.與主動(dòng)運(yùn)輸有關(guān):核糖體、線粒體。
高一數(shù)學(xué)必修教案全冊(cè)篇十七
(1)理解函數(shù)的概念;
(2)了解區(qū)間的概念;
(2)了解區(qū)間的概念就是指能夠體會(huì)用區(qū)間表示數(shù)集的意義和作用;
【問(wèn)題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是函數(shù)的概念及符號(hào)的理解,產(chǎn)生這一問(wèn)題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對(duì)學(xué)生來(lái)說(shuō)一個(gè)難點(diǎn)。要解決這一問(wèn)題,就要在通過(guò)從實(shí)際問(wèn)題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。
問(wèn)題1:一枚炮彈發(fā)射后,經(jīng)過(guò)26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時(shí)間變量t之間的對(duì)應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計(jì)意圖:通過(guò)以上問(wèn)題,讓學(xué)生正確理解讓學(xué)生體會(huì)用解析式或圖象刻畫(huà)兩個(gè)變量之間的依賴(lài)關(guān)系,從問(wèn)題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對(duì)應(yīng)關(guān)系,都有的一個(gè)高度h與之對(duì)應(yīng)。
問(wèn)題2:分析教科書(shū)中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個(gè)臭氧層空洞面積s與之相對(duì)應(yīng)。
問(wèn)題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。
設(shè)計(jì)意圖:通過(guò)這些問(wèn)題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
高一數(shù)學(xué)必修教案全冊(cè)篇十八
1、法國(guó)路易十四的改革;重商主義經(jīng)濟(jì)政策;俄國(guó)彼得一世的改革;普魯士腓特烈二世的改革;奧地利特蕾西亞女皇及其子約瑟夫二世的改革。
2、通過(guò)課下分組查閱各國(guó)改革的資料,使學(xué)生掌握各國(guó)改革的原因、目的、主要內(nèi)容及結(jié)果;通過(guò)課堂上對(duì)各國(guó)改革異同點(diǎn)的分析、比較,使學(xué)生認(rèn)識(shí)到,這些國(guó)家的改革反映了17-18世紀(jì)歐洲向在資本主義過(guò)渡的總趨勢(shì)。
3、通過(guò)學(xué)習(xí)歐洲主要國(guó)家的改革,使學(xué)生認(rèn)識(shí)到:17-18世紀(jì)歐洲主要封建國(guó)家的改革是在特定歷史時(shí)期出現(xiàn)的,它從另一個(gè)角度反映了歐洲向資本主義迅速過(guò)渡的歷史發(fā)展總趨勢(shì);而改革也是封建主義向資本主義過(guò)渡的一種途徑,一個(gè)人只有順應(yīng)歷史發(fā)展的潮流才會(huì)有所作為。
教學(xué)建議。
教材地位分析。
17、18世紀(jì)的歐洲封建國(guó)家的改革,發(fā)生在英國(guó)資本主義制度確立之時(shí),各國(guó)封建君主以富國(guó)強(qiáng)兵為己任,從而出現(xiàn)了法國(guó)的“路易十四時(shí)代”,以及歐洲的新興強(qiáng)國(guó)俄、普、奧。盡管各國(guó)的改革在很大程度上是被迫的,但在客觀上,它卻使一個(gè)渙散、紊亂、封建的歐洲煥發(fā)出勃勃生機(jī),它再一次從另外一個(gè)角度反映了當(dāng)時(shí)的階段特征。
重點(diǎn)分析。
路易十四統(tǒng)治下的法國(guó)改革以及對(duì)歐洲封建國(guó)家改革的評(píng)價(jià)。因?yàn)椋菏紫确▏?guó)是近代歐洲的一個(gè)主要國(guó)家;同時(shí),法國(guó)的改革具有代表意義。其次,在資產(chǎn)階級(jí)革命的時(shí)代,如何看待封建國(guó)家的改革,這對(duì)于了解那個(gè)時(shí)代,把握歐洲主要國(guó)家在資本主義發(fā)展中這一階段的特點(diǎn)和各國(guó)的聯(lián)系十分重要??偟膩?lái)看,18世紀(jì)的開(kāi)明君主的改革,是從改革道路向資本主義過(guò)渡的起點(diǎn)。盡管改革的道路不如革命道路來(lái)得猛烈快捷,也不可能在短時(shí)期內(nèi)實(shí)現(xiàn)過(guò)渡,但它卻是多數(shù)國(guó)家進(jìn)入資本主義階段的途徑,爆發(fā)革命的國(guó)家畢只占少數(shù)。改革道路一般都會(huì)保留較多的封建殘余,尤其是在政治方面。然而它也有相對(duì)平穩(wěn)、保持經(jīng)濟(jì)連續(xù)發(fā)展和破壞性極小的優(yōu)點(diǎn)。革命和改革都是推動(dòng)歷史前進(jìn)的有利杠桿。
重點(diǎn)、難點(diǎn)突破方案。
以法、俄、普、奧四國(guó)為例,讓學(xué)生思考“這些國(guó)家封建統(tǒng)治者為什么要改革,為什么說(shuō)這些改革是代表了這個(gè)時(shí)代的特征?”通過(guò)這些問(wèn)題的思維活動(dòng),使學(xué)生理解資本主義的發(fā)展已成為當(dāng)時(shí)歐洲歷史發(fā)展的主流,這個(gè)時(shí)代的主流面前,“適者生存,逆者亡”的歷史規(guī)律。又可讓學(xué)生比較中國(guó)的封建專(zhuān)制統(tǒng)治與歐洲17-18世紀(jì)的封建專(zhuān)制統(tǒng)治的區(qū)別,從中再次理解歐洲封建國(guó)家的改革對(duì)后來(lái)歷史發(fā)展的影響。
難點(diǎn)分析。
腓特烈二世改革與普魯士軍國(guó)主義擴(kuò)張政策的聯(lián)系及對(duì)歐洲封建國(guó)家改革的評(píng)價(jià)。這是因?yàn)椋旱谝?,普魯士的軍?guó)主義擴(kuò)張有著深刻的歷史淵源;同時(shí),它對(duì)近現(xiàn)代德國(guó)的對(duì)外政策,對(duì)兩次世界大戰(zhàn)的發(fā)生,以及世界格局的變化產(chǎn)生了重大的影響。第二,如何客觀、全面地看待17—18世紀(jì)歐洲封建國(guó)家的改革,直接影響到對(duì)這一歷史時(shí)期階段特征的總體把握。
課內(nèi)探究活動(dòng)。
在課前,安排學(xué)生分組查閱、整理17-18世紀(jì)法國(guó)、普魯士、奧地利、俄國(guó)等歐洲國(guó)家在政治、經(jīng)濟(jì)、社會(huì)生活等諸方面的資料。在課堂上,由學(xué)生以word文檔形式或porpont形式向其他學(xué)生展示、講解。
教學(xué)設(shè)計(jì)示例。
教學(xué)設(shè)計(jì)思想。
在多元智能理論、探究式學(xué)習(xí)理念的指導(dǎo)下,利用學(xué)生的自主合作、探究的的學(xué)習(xí)方式,有利于激發(fā)學(xué)生的各種潛能,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,進(jìn)一步了解歷史學(xué)習(xí)的基本方法,提高學(xué)習(xí)的功效。
三、對(duì)改革的評(píng)價(jià)。
1、反映了歐洲資本主義興起的時(shí)代特點(diǎn)。
2、改革是在形成中的資產(chǎn)階級(jí)和封建王權(quán)的暫時(shí)聯(lián)盟的條件下進(jìn)行的。
3、改革的怎樣內(nèi)容是加強(qiáng)王權(quán),推行重商主義。所以,改革在加強(qiáng)封建國(guó)家的國(guó)力的同時(shí),它有利于資本主義的發(fā)展,以及資本的原始積累。
4、改革沒(méi)有改變封建統(tǒng)治的基礎(chǔ)。
高一數(shù)學(xué)必修教案全冊(cè)篇十九
1、知識(shí)目標(biāo):使學(xué)生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質(zhì)。
2、能力目標(biāo):通過(guò)定義的引入,圖像特征的觀察、發(fā)現(xiàn)過(guò)程使學(xué)生懂得理論與實(shí)踐的辯證關(guān)系,適時(shí)滲透分類(lèi)討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和分析問(wèn)題、解決問(wèn)題的能力。
3、情感目標(biāo):通過(guò)學(xué)生的參與過(guò)程,培養(yǎng)他們手腦并用、多思勤練的良好學(xué)習(xí)習(xí)慣和勇于探索、鍥而不舍的治學(xué)精神。
高一數(shù)學(xué)必修教案全冊(cè)篇二十
掌握用向量方法建立兩角差的余弦公式。通過(guò)簡(jiǎn)單運(yùn)用,使學(xué)生初步理解公式的結(jié)構(gòu)及其功能,為建立其它和(差)公式打好基礎(chǔ)。
1.教學(xué)重點(diǎn):通過(guò)探索得到兩角差的余弦公式;
2.教學(xué)難點(diǎn):探索過(guò)程的組織和適當(dāng)引導(dǎo),這里不僅有學(xué)習(xí)積極性的問(wèn)題,還有探索過(guò)程必用的基礎(chǔ)知識(shí)是否已經(jīng)具備的問(wèn)題,運(yùn)用已學(xué)知識(shí)和方法的能力問(wèn)題,等等。
1.學(xué)法:?jiǎn)l(fā)式教學(xué)。
2.教學(xué)用具:多媒體。
(一)導(dǎo)入:我們?cè)诔踔袝r(shí)就知道?,,由此我們能否得到大家可以猜想,是不是等于呢?
(二)探討過(guò)程:
在第一章三角函數(shù)的學(xué)習(xí)當(dāng)中我們知道,在設(shè)角的終邊與單位圓的交點(diǎn)為,等于角與單位圓交點(diǎn)的橫坐標(biāo),也可以用角的余弦線來(lái)表示,大家思考:怎樣構(gòu)造角和角?(注意:要與它們的正弦線、余弦線聯(lián)系起來(lái)。)。
展示多媒體動(dòng)畫(huà)課件,通過(guò)正、余弦線及它們之間的幾何關(guān)系探索與xx之間的關(guān)系,由此得到,認(rèn)識(shí)兩角差余弦公式的結(jié)構(gòu)。
提示:
1、結(jié)合圖形,明確應(yīng)該選擇哪幾個(gè)向量,它們是怎樣表示的?
2、怎樣利用向量的數(shù)量積的概念的計(jì)算公式得到探索結(jié)果?
展示多媒體課件。
比較用幾何知識(shí)和向量知識(shí)解決問(wèn)題的不同之處,體會(huì)向量方法的作用與便利之處。
思考:再利用兩角差的余弦公式得出。
(三)例題講解。
例1、利用和、差角余弦公式求、的值。
解:分析:把、構(gòu)造成兩個(gè)特殊角的和、差。
點(diǎn)評(píng):把一個(gè)具體角構(gòu)造成兩個(gè)角的和、差形式,有很多種構(gòu)造方法,例如:,要學(xué)會(huì)靈活運(yùn)用。
例2、已知,是第三象限角,求的值。
解:因?yàn)?,由此得?/p>
又因?yàn)槭堑谌笙藿?,所以?/p>
所以。
點(diǎn)評(píng):注意角、的象限,也就是符號(hào)問(wèn)題。
(四)小結(jié):本節(jié)我們學(xué)習(xí)了兩角差的余弦公式,首先要認(rèn)識(shí)公式結(jié)構(gòu)的特征,了解公式的推導(dǎo)過(guò)程,熟知由此衍變的兩角和的余弦公式。在解題過(guò)程中注意角、的象限,也就是符號(hào)問(wèn)題,學(xué)會(huì)靈活運(yùn)用。
高一數(shù)學(xué)必修教案全冊(cè)篇二十一
本節(jié)課是“空間幾何體的三視圖和直觀圖”的第一課時(shí),主要內(nèi)容是投影和三視圖,這部分知識(shí)是立體幾何的基礎(chǔ)之一,一方面它是對(duì)上一節(jié)空間幾何體結(jié)構(gòu)特征的再一次強(qiáng)化,畫(huà)出空間幾何體的三視圖并能將三視圖還原為直觀圖,是建立空間概念的基礎(chǔ)和訓(xùn)練學(xué)生幾何直觀能力的有效手段。另外,三視圖部分也是新課程高考的重要內(nèi)容之一,常常結(jié)合給出的三視圖求給定幾何體的表面積或體積設(shè)置在選擇或填空中。同時(shí),三視圖在工程建設(shè)、機(jī)械制造中有著廣泛應(yīng)用,同時(shí)也為學(xué)生進(jìn)入高一層學(xué)府學(xué)習(xí)有很大的幫助。所以在人們的日常生活中有著重要意義。
二、教學(xué)目標(biāo)。
(1)知識(shí)與技能:能畫(huà)出簡(jiǎn)單空間圖形(長(zhǎng)方體,球,圓柱,圓錐,棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述三視圖表示的立體模型,從而進(jìn)一步熟悉簡(jiǎn)單幾何體的結(jié)構(gòu)特征。
(2)過(guò)程與方法:通過(guò)直觀感知,操作確認(rèn),提高學(xué)生的空間想象能力、幾何直觀能力,培養(yǎng)學(xué)生的應(yīng)用意識(shí)。
(3)情感、態(tài)度與價(jià)值觀:讓感受數(shù)學(xué)就在身邊,提高學(xué)生學(xué)習(xí)立體幾何的興趣,培養(yǎng)學(xué)生相互交流、相互合作的精神。
三、設(shè)計(jì)思路。
本節(jié)課的主要任務(wù)是引導(dǎo)學(xué)生完成由立體圖形到三視圖,再由三視圖想象立體圖形的復(fù)雜過(guò)程。直觀感知操作確認(rèn)是新課程幾何課堂的一個(gè)突出特點(diǎn),也是這節(jié)課的設(shè)計(jì)思路。通過(guò)大量的多媒體直觀,實(shí)物直觀使學(xué)生獲得了對(duì)三視圖的感性認(rèn)識(shí),通過(guò)學(xué)生的觀察思考,動(dòng)手實(shí)踐,操作練習(xí),實(shí)現(xiàn)認(rèn)知從感性認(rèn)識(shí)上升為理性認(rèn)識(shí)。培養(yǎng)學(xué)生的空間想象能力,幾何直觀能力為學(xué)習(xí)立體幾何打下基礎(chǔ)。
教學(xué)的重點(diǎn)、難點(diǎn)。
(一)重點(diǎn):畫(huà)出空間幾何體及簡(jiǎn)單組合體的三視圖,體會(huì)在作三視圖時(shí)應(yīng)遵循的“長(zhǎng)對(duì)正、高平齊、寬相等”的原則。
(二)難點(diǎn):識(shí)別三視圖所表示的空間幾何體,即:將三視圖還原為直觀圖。
四、學(xué)生現(xiàn)實(shí)分析。
本節(jié)首先簡(jiǎn)單介紹了中心投影和平行投影,中心投影和平行投影是日常生活中最常見(jiàn)的兩種投影形式,學(xué)生具有這方面的直接經(jīng)驗(yàn)和基礎(chǔ)。投影和三視圖雖為高中新增內(nèi)容,但學(xué)生在初中有一定基礎(chǔ),在七年級(jí)上冊(cè)“從不同方向看”的基礎(chǔ)上給出了三視圖的概念。到了九年級(jí)下冊(cè)則是在介紹了投影后,用投影的方法給出了三視圖的概念,這一概念已基本接近了高中的三視圖定義,只是在名字上略有差異。初中叫做主視圖、左視圖、俯視圖。進(jìn)入高中后特別是再次學(xué)習(xí)和認(rèn)識(shí)了柱、錐、臺(tái)等幾何體的概念后,學(xué)生在空間想象能力方面有了一定的提高,所以,給出了正視圖、側(cè)視圖、俯視圖的概念。這些概念的變化也說(shuō)明了學(xué)生年齡特點(diǎn)和思維差異。
五、教學(xué)方法。
(1)教學(xué)方法及教學(xué)手段。
針對(duì)本節(jié)課知識(shí)是由抽象到具體再到抽象、空間思維難度較大的特點(diǎn),我采用的教法是直觀教學(xué)法、啟導(dǎo)發(fā)現(xiàn)法。
在教學(xué)中,通過(guò)創(chuàng)設(shè)問(wèn)題情境,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,并引導(dǎo)啟發(fā)學(xué)生動(dòng)眼、動(dòng)腦、動(dòng)手、同時(shí)采用多媒體的教學(xué)手段,加強(qiáng)直觀性和啟發(fā)性,解決了教師“口說(shuō)無(wú)憑”的尷尬境地,增大了課堂容量,提高了課堂效率。
(2)學(xué)法指導(dǎo)。
力爭(zhēng)在新課程要求的大背景下組織教學(xué),為學(xué)生創(chuàng)設(shè)良好的問(wèn)題情境,留給學(xué)生充分的思考空間,在學(xué)生的辯證和討論前提下,發(fā)揮教師的概括和引領(lǐng)的作用。
【本文地址:http://mlvmservice.com/zuowen/9720595.html】