范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?下面是小編幫大家整理的優(yōu)質(zhì)范文,僅供參考,大家一起來看看吧。
圓柱的體積教學(xué)反思簡短篇一
《課程標(biāo)準(zhǔn)》指出:要創(chuàng)設(shè)與學(xué)生生活環(huán)境、知識背景密切相關(guān)的、又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測、交流、反思等活動中體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗,感受數(shù)學(xué)的力量,同時掌握必要的基礎(chǔ)知識與基本技能。在本節(jié)課中,我給學(xué)生創(chuàng)設(shè)了生活情景(裝在杯子中的水的體積你會求嗎?圓柱形橡皮泥的體積你會求嗎?)學(xué)生聽到教師提的問題訓(xùn)在身邊的生活中,頗感興趣。學(xué)生經(jīng)過思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱體(新問題)和長方體(已知)的知識聯(lián)系。在此基礎(chǔ)上教師又進一步從實際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,或是求壓路機滾筒的體積,能用剛才同學(xué)們想出來的辦法嗎?這一問題情境的創(chuàng)設(shè),激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體體積的欲望。
數(shù)學(xué)學(xué)習(xí)過程充滿著觀察、實驗、模擬、推斷等探索性與挑戰(zhàn)性活動,因此,動手實踐、自主探究、合作交流是《課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨立思考要解決圓柱的體積問題,可以怎么辦?學(xué)生通過思考很快確定打算把圓柱轉(zhuǎn)化成長方體。那么怎樣來切割呢?此時采用小組討論交流的形式。同愛們有了圓面積計算公式推導(dǎo)的經(jīng)驗,經(jīng)過討論得出:把圓柱的底面沿直徑分成若干等份。在此基礎(chǔ)上,小組拿出學(xué)具進行了動手操作,拼成了一個近似的長方體。同學(xué)們在操作、比較中,圍繞圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學(xué)生從形象具體的知識形成過程(想象、操作、演示)中,認識得以升華(較抽象的認識——公式)。
在探究的過程中,我不是安排了一整套指令讓學(xué)生進行程序操作,獲得一點基本技能,而是提供了相關(guān)知識背景、實驗素材,使用“對我們有幫助嗎?”“你有什么發(fā)現(xiàn)?”“你是怎么想的?”等這樣一些指向探索的話語鼓勵學(xué)生獨立思考、動手操作、合作探究,讓學(xué)生根據(jù)已有的知識經(jīng)驗創(chuàng)造性地建構(gòu)自己的數(shù)學(xué)。通過實驗、操作、自主探究,實現(xiàn)學(xué)生主體地位、學(xué)習(xí)方式的轉(zhuǎn)變,有效地培養(yǎng)學(xué)生的創(chuàng)新意識。教學(xué)中通過等分、切、拼將圓柱體拼成一個近似的長方體,再運用多媒體顯示由圓柱體到近似的長方體的變換過程,讓學(xué)生觀察、比較近似長方體與圓柱的關(guān)系,使圓柱體體積的計算公式推導(dǎo)過程完全展示在學(xué)生面前。使學(xué)生感悟到轉(zhuǎn)化的思想在幾何學(xué)習(xí)中的妙用。從而產(chǎn)生一種自我嘗試、主動探究、樂于發(fā)現(xiàn)的需要、動機和能力。
學(xué)生進行數(shù)學(xué)探究時,由于條件的限制,沒有更多的學(xué)具提供給學(xué)生,只一個教具。為了讓學(xué)生充分體會,我把操作的機會給了學(xué)生。接著再結(jié)合多媒體演示讓學(xué)生感受“把圓柱的底面分的份數(shù)越多,切開后,拼起來的圖形就越接近長方體;接著教師指導(dǎo)學(xué)生悟出這個長方體的長相當(dāng)于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。學(xué)生基本沒有親身參與操作,非常遺憾。
本節(jié)課我采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實踐和思考的時間較多,練習(xí)的時間較少。
圓柱的體積教學(xué)反思簡短篇二
本課主要內(nèi)容是圓柱的體積公式的推導(dǎo)及其應(yīng)用。因為公式的推導(dǎo)過程是個難點,因此在教學(xué)設(shè)計時,我采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,幫助學(xué)生理解公式的來源,從而獲得知識。下面我從教學(xué)過程、教學(xué)策略、教學(xué)技能等方面談?wù)勛约旱囊恍┓此肌?/p>
1、導(dǎo)入時,力求突破教材,有所創(chuàng)新
圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強,不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設(shè)計時不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、
流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。不過應(yīng)該注意時間的控制,不能花費太多的時間。
2、新課時,要實現(xiàn)人人參與,主動學(xué)習(xí)
學(xué)生進行數(shù)學(xué)探究時,應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時,我讓學(xué)生經(jīng)歷先想—觀察—動手操作的過程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著讓學(xué)生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。這樣學(xué)生親身參與操作,有了空間感覺的體驗,,也有了充分的思考空間。這樣設(shè)計我覺得能突破難點,課堂效果很好。
3、練習(xí)時,形式多樣,層層遞進
例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,我在設(shè)計練習(xí)時動了一番腦,花心思去考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。通過反思,我概括出五種類型。
a.已知圓柱底面積(s)和高(h),計算圓柱體積可以應(yīng)用這一公式:v=sh。
b.已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應(yīng)用這一公式:v=πr2h。
c.已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應(yīng)用這一公式:v=π(d/2)2h。
d.已知圓柱底面周長(c)和高(h),計算圓柱體積可以應(yīng)用這一公式:v=π(c÷π÷2)2h。
e.已知圓柱側(cè)面積(s側(cè))和高(h),計算圓柱體積可以應(yīng)用這一公式:v=π(s側(cè)÷h÷π÷2)2h。
因為是第一課時所以在鞏固練習(xí)中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學(xué)生真正掌握好計算圓柱體積的方法另外,還設(shè)計了解決生活中的問題,讓學(xué)生能學(xué)以致用解決生活中的問題。
我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。而在鞏固練習(xí)這一環(huán)節(jié),我用多媒體發(fā)揮它大容量、節(jié)省時間的優(yōu)點。
學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是學(xué)生在自己艱苦的學(xué)習(xí)過程中發(fā)現(xiàn)并從學(xué)生的口里說出來的,這樣的知識具有個人意義,理解更深刻。但是我覺得這個引導(dǎo)的過程需要教師有認真準(zhǔn)備,隨時能解決課堂上可能出現(xiàn)的一些問題。傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設(shè)了豐富的教學(xué)情景。
不足之處是:由于這節(jié)課的設(shè)計是以學(xué)生為主、發(fā)揮學(xué)生的主體作用,要充分展示學(xué)生的思維過程,所以在學(xué)生動手實踐、交流討論和思考的時間上教師應(yīng)合理把握,不能時間較多,否則會導(dǎo)致練習(xí)的時間較少。
另外,在練習(xí)設(shè)計上,題形雖然全,但覺得題量偏多,因為這部分練習(xí)涉及的計算多、難,這樣練習(xí)題還需精心設(shè)計。
圓柱的體積教學(xué)反思簡短篇三
本節(jié)課主要是引導(dǎo)學(xué)生探索并掌握圓柱的體積公式,主要重視了以下幾方面:
新課伊始,課件出示三個幾何體的底面和高,引導(dǎo)學(xué)生來觀察這三個幾何體,發(fā)現(xiàn)它們的底面積都相等,高也都相等。進一步引導(dǎo)思考:想一想,長方體和正方體的體積相等嗎?為什么?猜一猜,圓柱的體積與長方體和正方體的體積相等嗎?學(xué)生認同,并提出等于底面積乘高。教師再次拋出問題:這僅僅是猜想,那用什么辦法驗證呢?今天這節(jié)課就來研究這個問題。
本課的例題探索,有一個目標(biāo)就是使學(xué)生在活動中進一步體會“轉(zhuǎn)化”方法的價值,培養(yǎng)應(yīng)用已有知識解決新問題的能力,發(fā)展空間觀念和初步的推理能力。因此,筆者在執(zhí)教時,根據(jù)陳星月的回答順勢復(fù)習(xí)了圓面積的推導(dǎo):把一個圓平均分成16份、32份、64份或更多,剪開后可以拼成近似的長方形,圓的面積就可以轉(zhuǎn)化成長方形的面積進行計算。接著提問:那么,受這個啟發(fā),那我們能不能將圓柱轉(zhuǎn)化成長方體來計算體積呢?首先實物演示圓柱切拼的過程。把圓柱的底面平均分成16份,切開后可以拼成一個近似的長方體。然后進行課件演示,發(fā)現(xiàn):把圓柱的底面平均分的份數(shù)越多,拼成的幾何體會越來越接近長方體。這樣有利于激活學(xué)生已有的知識和經(jīng)驗,使學(xué)生充分體會圓柱體積公式推導(dǎo)過程的合理性,并不斷豐富對圖形轉(zhuǎn)化方法的感受。
核心問題即指中心問題,是諸多問題中相對最具思維價值、最利于學(xué)生思考及最能揭示事物本質(zhì)的問題。它是在教學(xué)過程中,為學(xué)生更好地理解和掌握新知、更好地積累學(xué)習(xí)經(jīng)驗和方法,針對具體教學(xué)內(nèi)容,提煉而成的教學(xué)中心問題。就如圓柱體積的計算而言,在這節(jié)課的教學(xué)過程中,教師抓住“圓柱的體積可能跟圓柱的哪些條件有關(guān)呢?”“拼成的長方體與原來的圓柱有什么關(guān)系?”“要計算圓柱的體積一般要知道哪些條件?”這三個問題,使學(xué)生在獲取圓柱體積公式的同時又了解了體積公式的由來,并及時總結(jié)了思考問題的方法。核心問題也可以指為了探究知識的來龍去脈而在關(guān)鍵環(huán)節(jié)提出的指向性問題。
當(dāng)然,需要注意和改進的地方是:書寫格式的規(guī)范。
圓柱的體積教學(xué)反思簡短篇四
由于我課前認真研讀教材,把握教學(xué)的重點和難點,精心設(shè)制教學(xué)過程和教學(xué)活動,上課時我做到胸有成竹。通過這節(jié)課的教學(xué)我感到自身的教學(xué)水平和駕馭課堂的能力得到了提升,從同事評課反映,我認為這節(jié)課的教學(xué)是比較成功的。這節(jié)課教學(xué)方法主要體現(xiàn)在我采用新課程的教學(xué)理念,合理安排教學(xué)環(huán)節(jié),激發(fā)學(xué)生的思維,組織學(xué)生參與操作,通過觀察、交流,感悟知識間的聯(lián)系,從而獲取新知。我深知教學(xué)無止境,沒有最好只有更好,我要從成功中找不足。
在預(yù)習(xí)作業(yè)里我在備課時就設(shè)制了兩個知識點,讓學(xué)生課前完成,一個知識點是對舊知的回顧,要求學(xué)生寫出長方體和正方體的體積計算公式,另一個知識點是要求學(xué)生預(yù)習(xí)教材回答兩個問題,兩個問題是與這節(jié)課教學(xué)密切相關(guān)的內(nèi)容,在教材上都是能找到答案的。在對預(yù)習(xí)作業(yè)交流時我發(fā)現(xiàn)學(xué)生能比較順利和準(zhǔn)確的回答,這為新課的教學(xué)活動不僅起了良好的開端,更重要的是為學(xué)生在課堂上再進一步地、更深入地探索新知削弱了阻力,減輕了負擔(dān)。
我利用課件把等底等高的長方體、正方體和圓柱體圖形和問題呈現(xiàn)出來,讓學(xué)生觀察圖形思考問題并組織討論。在對如何驗證讓學(xué)生作為重點交流。意圖是先讓學(xué)生明確兩點。第一點圓可以轉(zhuǎn)化成長方形,圓柱可以轉(zhuǎn)化長方體;第二點把圓柱的底面經(jīng)過圓心16等份 ,切開后可以拼成一個近似的長方體。由于學(xué)生課前做了充分的預(yù)習(xí)和課堂開始階段預(yù)習(xí)作業(yè)的交流,學(xué)生對如何驗證的思維已經(jīng)初步形成。讓學(xué)生再次交流和匯報,我發(fā)現(xiàn)學(xué)生都了解和掌握。此時我指名學(xué)生到講臺前利用教具說出操作方法,并進行操作,讓全班同學(xué)觀察操作過程。通過學(xué)生的操作、觀察,學(xué)生得到體驗和感悟,發(fā)現(xiàn)圓柱可以轉(zhuǎn)化成一個近似的長方體。
讓學(xué)生觀看課件:課件2是把剛才實際操作的過程再次演示和呈現(xiàn),課件3和課件4是把圓柱的底面平均分成32份、64份切開后拼成的長方體。我抓住時機問學(xué)生:如果把圓柱的底面平均分的份數(shù)越多,切開后拼成的物體的形狀就有什么變化?學(xué)生明確回答拼成的物體越來越接近長方體。接著我把圓柱體和轉(zhuǎn)化后的長方體圖象同時顯示出來,要求學(xué)生說出長方體的底面積和高與圓柱的底面積和高有什么關(guān)系,學(xué)生能清楚地表達出來。為了拓展學(xué)生的知識面,我此時還提出了轉(zhuǎn)化后的長方體底面的長和寬分別與圓柱體的底面周長和半徑有什么關(guān)系,這在教材和參考教案都沒有的知識點。學(xué)生的思維得到激發(fā),學(xué)生勇于回答,學(xué)生回答錯了,我既沒有批評學(xué)生,也沒有急不可耐給出答案,而是讓學(xué)生再想,后來還是有學(xué)生能正確回答出來了。我想如果不給學(xué)生思考的時機直接給出答案,這樣與學(xué)生發(fā)現(xiàn)問題的答案所產(chǎn)生的效果就截然不同了。
推導(dǎo)圓柱的體積計算公式的過程分為猜想、操作、發(fā)現(xiàn)、結(jié)論四個階段,學(xué)生經(jīng)歷這些教學(xué)活動,體驗和感悟了轉(zhuǎn)化的作用和價值,弄懂得了圓柱的體積計算公式的來龍去脈。
在獲得圓柱的體積計算公式的成果之后,為了培養(yǎng)學(xué)生解題的靈活性,拓展知識,培養(yǎng)學(xué)生發(fā)散思維的能力,注意分層練習(xí),我安排了三道練習(xí)題。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積。在練習(xí)時我不斷巡視關(guān)注學(xué)生練習(xí)情況,對出現(xiàn)的錯誤解答方法我不回避,在展示學(xué)生練習(xí)時既展示成功的也展示錯誤的。學(xué)生練習(xí)出現(xiàn)錯誤是正常現(xiàn)象,在討論和評講練習(xí)時是很好的資源,要充分的利用。
整個課堂教學(xué)過程中,師生的有效、良性互動還達不到預(yù)期目標(biāo),有一部分學(xué)生沒有具備良好作業(yè)習(xí)慣,靈活運用知識解決問題的能力還欠缺。
通過這節(jié)課,我思量交流預(yù)習(xí)作業(yè)能不能與全課的教學(xué)活動整合在一起,在課堂上如何更好地關(guān)注中等偏下的學(xué)生,我時常為此感到糾結(jié)。建構(gòu)高效的課堂教學(xué)范式在我校已經(jīng)試驗一個月了,難免有困惑和疑問,今后我還要一如繼往地與集體備課成員溝通、交流,共同探討教改新路,讓課堂教學(xué)更高效、更優(yōu)質(zhì)。
圓柱的體積教學(xué)反思簡短篇五
《圓柱的體積》不僅要讓學(xué)生掌握圓柱體積的計算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長方體正方體的體積計算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示課件:等底等高的長方體、正方體、圓柱,學(xué)生通過觀察,作出猜測:(1)圓柱的體積等于長方體和正方體的體積。(2)圓柱的體積也等于底面積乘高。猜測是否準(zhǔn)確呢?點燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用教具驗證圓柱轉(zhuǎn)化成長方體過程,并討論思考:這個圓柱體與轉(zhuǎn)化后的長方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長方體的長是圓柱的底面周長的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長的一半×底面半徑×高。我沒有否定她的回答,接著又讓學(xué)生動手實踐操作,讓學(xué)生發(fā)現(xiàn)長方體與圓柱之間的聯(lián)系,利用圓的周長和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長方體的規(guī)律,掌握了一種重要的'學(xué)習(xí)方法,轉(zhuǎn)化。
為了培養(yǎng)學(xué)生解題的靈活性,進行分層練習(xí),拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。
在本節(jié)課的教學(xué)過程中還存在諸多的問題。
1、演示圓柱的體積的時候,因為學(xué)生手中沒有學(xué)具,教師教具的局限性,演示時后面的學(xué)生看不清楚。
2、在圓柱體經(jīng)過切割、拼接之后轉(zhuǎn)化為近似長方體
的時候,應(yīng)多給后進生留有觀察、討論的時間,他們的思維反應(yīng)能力比其他學(xué)生較慢,應(yīng)給于他們一定的空間和時間,讓后進生也積極參與到課堂的學(xué)習(xí)中,使全班同學(xué)共同進步。
3、在解決實際問題的時候,不僅要注重公式的應(yīng)用,還要注意計算能力的培養(yǎng)。
圓柱的體積教學(xué)反思簡短篇六
《圓柱的體積》以前教學(xué)此內(nèi)容時,由于沒有相應(yīng)的教具,往往直接告訴學(xué)生:圓柱的體積=底面積×高,用字母表示公式:v=sh,讓學(xué)生套公式練習(xí);這學(xué)期我教本節(jié)課內(nèi)容時,課前作了充分準(zhǔn)備了教具,再加之網(wǎng)上收集整理出來相應(yīng)的教學(xué)課件,課堂教學(xué)我讓學(xué)生自己動手實踐、自主探索與合作交流,讓學(xué)生實踐中體驗,從而獲得知識。總之讓學(xué)生的手、腦、嘴、眼各種器官充分利用起來,讓學(xué)生不僅學(xué)到知識,而且讓學(xué)生體驗學(xué)習(xí)的過程,真正理解圓柱體積的推導(dǎo)過程,讓學(xué)生真正成為學(xué)習(xí)的主人。對此,我有以下的感想
學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是我告訴的,而是學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的,這樣的知識具有個人意義,理解更深刻。這樣學(xué)生不但嘗到了知識,更重要的是他們掌握了學(xué)習(xí)數(shù)學(xué)的方法,這樣有利于孩子將來的發(fā)展。
新課程改革明確提出要“強調(diào)讓學(xué)生通過實踐增強探究和創(chuàng)新意識,學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。本節(jié)課我讓學(xué)生聯(lián)系圓的面積推導(dǎo)的基礎(chǔ)上,讓學(xué)生自主探究圓柱的體積的推導(dǎo)過程。充分體現(xiàn)了這一理念。
傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。
圓柱的體積教學(xué)反思簡短篇七
本節(jié)可的教學(xué)內(nèi)容是九年義務(wù)教育六年級下冊的《圓柱的體積》,以前教學(xué)此內(nèi)容時,直接告訴學(xué)生:圓柱的體積=底面積×高,用字母表示公式:v=sh,讓學(xué)生套公式練習(xí);我教此內(nèi)容時,不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:
學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的這樣的知識具有個人意義,理解更深刻。
新課程改革明確提出要“強調(diào)讓學(xué)生通過實踐增強探究和創(chuàng)新意識,學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。
傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。
本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實踐和思考的時間較多,練習(xí)的時間較少。
圓柱的體積一課,重點是體積公式的推導(dǎo)。公式導(dǎo)出后,如何進行計算應(yīng)用。
1、學(xué)生對推導(dǎo)過程理解有困難,不深入;
2、在計算的過程中,單位名稱用錯,體積單位用面積單位。
3、對于書中所給的立體圖形,認識不到位,不能正確分辨直徑、半徑以及圓柱的高,做題出錯。圓柱的高也可以叫做圓柱的長(個別學(xué)生不清楚)
1、為了避免單位名稱的錯誤,可在課前復(fù)習(xí)中設(shè)計單位換算的填空題,辨析題等。例如:1平方米=()平方分米=()平方厘米100平方厘米=1立方分米。
2、在學(xué)生利用學(xué)具理解公式的推導(dǎo)過程時,應(yīng)放手讓學(xué)動手動腦自己解決,但動手之前一定要把任務(wù)布置清楚,讓孩子們自己發(fā)現(xiàn)圓柱與長方體各部分之間的關(guān)系,從而推導(dǎo)出圓柱的體積公式。
3、注意引導(dǎo)學(xué)生參與到探索知識的發(fā)生發(fā)展過程中,突破以往數(shù)學(xué)學(xué)習(xí)單一、被動的學(xué)習(xí)方式,關(guān)注學(xué)生的實踐活動和直接經(jīng)驗,“通過自己的活動”獲得情感、能力、智力的全面發(fā)展。小學(xué)階段,操作活動是數(shù)學(xué)活動的重要組成部分,也是學(xué)生學(xué)習(xí)活動的重要方式。
【本文地址:http://mlvmservice.com/zuowen/885569.html】