教案是教師在備課階段制定的教學計劃,有助于指導教師的教學行為。如何編寫一份高效的教案?這是值得每位教師思考的問題。下面是一些優(yōu)秀教案范例,供教師們參考借鑒。
高一數(shù)學必修一第一章教案篇一
一、教學目標:
1、識記消費的不同類型,消費結構的含義以及恩格爾系數(shù)的含義。
2、理解影響消費水平的因素,最主要的是收入水平和物價水平;理解錢貨兩清的消費,貸款消費以及租賃消費時商品所有權和使用權的變化。
教學重難點。
教學重點、難點:
影響消費水平的因素。
恩格爾系數(shù)的變化的含義。
教學過程。
教學內容:
(一)情景導入:
學生活動:就日常生活的體驗得出相應的回應,例如:買文具、食堂吃飯、買零食、買衣服、電話費等日常消費活動。
教師活動:多媒體課件展示豐富多彩的消費活動,其中主要集中于學生可能并有實際經(jīng)驗的消費內容。
所以我們這節(jié)課就影響消費的因素及消費的類型相關討論。
(二)情景分析:
探究活動一:如何安排生活費?
學生活動:互相安排并討論各自的消費活動或消費內容,發(fā)現(xiàn)其中的區(qū)別。
(1)收入。
教師活動:設問解疑。
同學們是否發(fā)現(xiàn)各自的消費有什么不同?而造成這個區(qū)別的原因在此主要是什么?
教師講解:收入是消費的前提與基礎。在其他條件不變的情況下,人們的可支配收入越多,對各種商品和服務的消費量就越大。收入增長較快的時期,消費增長也較快;反之,當收入增長速度下降時,消費增幅也下降。當前收入直接影響消費,預期消費則影響消費信心,當預期消費樂觀時,消費信心就強;預期消費較低時,消費信心就弱。所以,要提高居民的生活水平,必須保持經(jīng)濟的穩(wěn)定增長,增加居民收入。
(2)物價水平。
教師活動:影響消費的因素除了收入水平還有沒有其他了呢?
學生活動:就材料進行相應的討論,得出初步的結論,消費活動還受到物價水平的影響。
教師講解:消費品價格的變化會影響人們的購買能力。人們在一定時期的總收入是有限的,如果消費品價格上漲,會引起購買力下降,因而消費需求就降低。反之,則購買力提高,消費需求就增加。因此,物價的穩(wěn)定對保持人們的消費水平,安定生活和穩(wěn)定社會具有重要意義。正是由于這個原因,穩(wěn)定物價才成為國家宏觀調控的重要目標。
教師:雖然我們是用同學們的消費活動做的說明,但要明白家庭消費的影響因素也是同樣的道理。我們在考察了總體消費狀況的前提下,接著來討論一個具體的消費案例:
探究活動二:小君的苦惱。
(1)按交易方式不同,可分錢貨兩清的消費、貸款消費和租賃消費。
教師活動:按交易方式不同,可分錢貨兩清的消費、貸款消費和租賃消費。
租賃消費也是一種比較常見的消費方式,我們可以通過租賃的方式使商品的所有權不發(fā)生變更,而獲得該商品在一定期限的使用權。
貸款消費是一種新興的消費方式,主要用于購買大宗耐用消費品及服務。因為這些消費品超出消費者當前的支付能力,因而預支自己未來的收入,來滿足當前的需要。也就是我們常說的“花明天的錢,園今天的夢”。貸款消費的交易方式,其消費品的所有權與使用權沒有完全轉移。在消費者按照約定按時還貸的前提下,消費品的所有權與使用權逐漸發(fā)生轉移,直至還完貸款為止,其所有權與使用權才徹底轉移到消費者手里。
貸款消費不僅滿足了消費者的生活需要,提高了消費者的生活質量,而且促進了經(jīng)濟的發(fā)展,特別是我國經(jīng)濟發(fā)展進入買方市場后,貸款消費對擴大內需,拉動經(jīng)濟的增長起來重要的作用。所以,我們要轉變傳統(tǒng)的消費觀念,以積極的態(tài)度來對待貸款消費,通過貸款消費滿足來滿足當前的需要,通過生活質量。當然,在貸款消費是也要考慮自己的償還能力,還要講究信用,按時還貸。
學生活動:就相關情境進行討論,做出自己的選擇并給出相應的解釋理由。
(2)按消費對象分,消費分為有形商品消費和勞務消費。
教師活動:按消費對象分,消費分為有形商品消費和勞務消費,有形商品消費消費的是有形的商品,而勞務消費消費的是無形的服務。
萬事大吉了!大家知道小君已經(jīng)達到哪種消費層次了嗎?
生存資料消費?發(fā)展資料消費?享受資料消費?
學生活動:討論并回答相應問題,得出享受資料消費的結論。
(3)按消費的目的不同,可分為生存資料消費、發(fā)展資料消費和享受資料消費。
教師活動:按消費的目的不同,可分為生存資料消費、發(fā)展資料消費和享受資料消費。其中生存資料消費是最基本的消費,滿足較低層次的衣食住用行的需要;發(fā)展資料消費主要指滿足人們發(fā)展德育、智育等方面需要的消費;享受資料消費滿足人們享受的需要。隨著經(jīng)濟水平的提高,發(fā)展資料和享受資料消費將逐漸增加。
探究活動三:考查自己家里的消費結構。
學生活動:認真閱讀并討論得出結論家庭消費的不同內容體現(xiàn)了不同的消費水平。
(1)消費結構。
教師活動:多媒體展示近幾年社會的消費現(xiàn)狀,例:假日旅游、電子產(chǎn)品、汽車等。引導學生通過不同層面的直觀感受來了解消費結構的變化。
要了解家庭消費水平先要知道一個概念就是消費結構,是指人們各類消費支出在消費總支出中所占的比重。消費結構會隨著經(jīng)濟的發(fā)展、收入的變化而不斷變化,變化的方向遵循由生存需要到發(fā)展需要再到享受需要的順序。
(2)恩格爾系數(shù)。
教師活動:恩格爾系數(shù)指食品支出占家庭總支出的比重,用公式表示:恩格爾系數(shù)=食品支出費用/各項消費總支出費用×100%。一般恩格爾系數(shù)越大,越影響其他消費支出,特別是影響發(fā)展資料和享受資料的增加,限制消費層次和消費質量的提高,因此生活水平就越低,相反恩格爾系數(shù)減小,生活水平就提高,消費結構會逐步改善。恩格爾系數(shù)是消費結構研究中的重要概念,在國際上受到普遍承認和重視。
國際上甚至用它作為區(qū)分國際間消費結構層次高低的最一般標準。聯(lián)合國糧農組織在20世紀70年代中期提出劃分窮國富國的標準:恩格爾系數(shù)在60%以上為絕對貧困國家;50%~59%的國家為勉強度日(我們稱之為溫飽型);在40%~49%為小康水平;在20%~39%為富裕水平;20%以下為極富裕國家。
我國這幾年經(jīng)濟結構有了很大改善,消費水平不斷提高。
(三)情景回歸:
教師組織學生反思總結本節(jié)課的主要內容,并進行當堂檢測,了解教學反饋。
將本文的word文檔下載到電腦,方便收藏和打印。
高一數(shù)學必修一第一章教案篇二
(2)利用平面直角坐標系解決直線與圓的位置關系;
(3)會用“數(shù)形結合”的數(shù)學思想解決問題、
用坐標法解決幾何問題的步驟:
第二步:通過代數(shù)運算,解決代數(shù)問題;
第三步:將代數(shù)運算結果“翻譯”成幾何結論、
重點與難點:直線與圓的方程的應用、
問 題設計意圖師生活動
生:回顧,說出自己的看法、
2、解決直線與圓的位置關系,你將采用什么方法?
生:回顧、思考、討論、交流,得到解決問題的方法、
問 題設計意圖師生活動
3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題
生:自 學例4,并完成練習題1、2、
生:建立適當?shù)闹苯亲鴺讼担?探求解決問題的方法、
8、小結:
(1)利用“坐標法”解決問對知識進行歸納概括,體會利 師:指導 學生完成練習題、
生:閱讀教科書的例3,并完成第
問 題設計意圖師生活動
題的需要準備什么工作?
(2)如何建立直角坐標系,才能易于解決平面幾何問題?
(3)你認為學好“坐標法”解決問題的關鍵是什么?
高一數(shù)學必修一第一章教案篇三
細胞膜、細胞壁、細胞核、細胞質均不是細胞器。
一、細胞器之間分工。
1.線粒體:細胞進行有氧呼吸的主要場所。雙層膜(內膜向內折疊形成脊),分布在動植物細胞體內。
2.葉綠體:進行光合作用,“能量轉換站”,雙層膜,分布在植物的葉肉細胞。
3.內質網(wǎng):蛋白質合成和加工,以及脂質合成的“車間”,單層膜,動植物都有。分為光面內質網(wǎng)和粗面內質網(wǎng)(上有核糖體附著)。
4.高爾基體:對來自內質網(wǎng)的蛋白質進行加工、分類和包裝,單層膜,動植物都有,植物細胞中參與了細胞壁的形成。
5.核糖體:無膜,合成蛋白質的主要場所。生產(chǎn)蛋白質的機器。
包括游離的核糖體(合成胞內蛋白)和附著在內質網(wǎng)上的核糖體(合成分泌蛋白)。
6.溶酶體:內含有多種水解酶,能分解衰老、損傷的細胞器,吞噬并殺死侵入細胞的病毒或病菌,單層膜。
溶酶體吞噬過程體現(xiàn)生物膜的流動性。溶酶體起源于高爾基體。
7.液泡:主要存在與植物細胞中,內有細胞液,含糖類、無機鹽、色素和蛋白質等物質,可以調節(jié)植物細胞內的環(huán)境,充盈的液泡還可以使植物細胞保持堅挺。與植物細胞的滲透吸水有關。
8.中心體:動物和某些低等植物的細胞,由兩個相互垂直排列的中心粒及周圍物質組成,與細胞的有絲分裂有關,無膜。一個中心體有兩個中心粒組成。
二、分類比較:
1.雙層膜:葉綠體、線粒體(細胞核膜)。
單層膜:內質網(wǎng)、高爾基體、液泡、溶酶體(細胞膜、類囊體薄膜)。
無膜:中心體、核糖體。
2.植物特有:葉綠體、液泡動物特有(低等植物):中心體。
3.含核酸的細胞器:線粒體、葉綠體(dna)線粒體、葉綠體、核糖體(rna)。
4.增大膜面積的細胞器:線粒體、內質網(wǎng)、葉綠體。
5.含色素:葉綠體、液泡。
6.能產(chǎn)生atp的:線粒體、葉綠體(細胞質基質)。
7.能自主復制的細胞器:線粒體、葉綠體、中心體。
8.與有絲分裂有關的細胞器:核糖體、線粒體、高爾基體(形成細胞壁)、中心體。
9.發(fā)生堿基互補配對:線粒體、葉綠體、核糖體。
10.與主動運輸有關:核糖體、線粒體。
高一數(shù)學必修一第一章教案篇四
一、除了高等植物成熟的篩管細胞和哺乳動物成熟的紅細胞等極少數(shù)細胞外,真核細胞都有細胞核。植物的導管細胞是死細胞(主要運輸水分、無機鹽),篩管主要運輸有機物。
二、細胞核控制著細胞的代謝和遺傳。
三、細胞核的結構。
2.染色質(主要由dna和蛋白質組成,dna是遺傳信息的載體。
4.核孔(實現(xiàn)核質之間頻繁的物質交換和信息交流)核孔有選擇透過性,上面有載體,大分子物質(蛋白質和mrna)出入細胞需要能量和載體,細胞代謝越旺盛,核孔越多,核仁體積越大。
四、細胞分裂時,細胞核解體,染色質高度螺旋化,縮短變粗,成為光學顯微鏡下清晰可見的圓柱狀或桿狀的染色體。分裂結束時,染色體解螺旋,重新成為細絲狀的染色質。染色質(分裂間期)和染色體(分裂時)是同樣的物質在細胞不同時期的兩種存在狀態(tài)。
五、細胞既是生物體結構的基本單位,又是生物體代謝和遺傳的基本單位。
高一數(shù)學必修一第一章教案篇五
1. 閱讀課本 練習止.
2. 回答問題
(1)課本內容分成幾個層次?每個層次的中心內容是什么?
(2)層次間的聯(lián)系是什么?
(3)對數(shù)函數(shù)的定義是什么?
(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關系?
3. 完成 練習
4. 小結.
二、方法指導
1. 在學習對數(shù)函數(shù)時,同學們應從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
一、提問題
1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關系?
3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.
二、變題目
1. 試求下列函數(shù)的反函數(shù):
(1) ; (2) ;
(3) ; (4) .
2. 求下列函數(shù)的定義域:
(1) ; (2) ; (3) .
3. 已知 則 = ; 的定義域為 .
1.對數(shù)函數(shù)的'有關概念
(1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);
(2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);
(3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).
2. 反函數(shù)的概念
在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個函數(shù)叫做互為反函數(shù).
3. 與對數(shù)函數(shù)有關的定義域的求法:
4. 舉例說明如何求反函數(shù).
一、課外作業(yè): 習題3-5 a組 1,2,3, b組1,
二、課外思考:
1. 求定義域: .
2. 求使函數(shù) 的函數(shù)值恒為負值的 的取值范圍.
高一數(shù)學必修一第一章教案篇六
(1)理解函數(shù)的概念;。
(2)了解區(qū)間的概念;。
2、目標解析。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學中,學生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學生的抽象概況能力,其中關鍵是理論聯(lián)系實際,把抽象轉化為具體。
【教學過程】。
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應關系是否為函數(shù)?若是,其自變量是什么?
設計意圖:通過以上問題,讓學生正確理解讓學生體會用解析式或圖象刻畫兩個變量之間的依賴關系,從問題的實際意義可知,在t的變化范圍內任給一個t,按照給定的對應關系,都有的一個高度h與之對應。
問題2:分析教科書中的實例(2),引導學生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個臭氧層空洞面積s與之相對應。
問題3:要求學生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關系。
設計意圖:通過這些問題,讓學生理解得到函數(shù)的定義,培養(yǎng)學生的歸納、概況的能力。
高一數(shù)學必修一第一章教案篇七
三、在細胞質中,除了細胞器外,還有呈膠質狀態(tài)的細胞質基質。
細胞質:包括細胞器和細胞質基質。
四、電子顯微鏡下看到的是亞顯微結構,普通顯微鏡下看到顯微結構。
光鏡能看到:細胞質,線粒體,葉綠體,液泡,細胞壁。
實驗:用高倍顯微鏡觀察葉綠體和線粒體。
健那綠染液是將活細胞中線粒體染色的專一性染料,可以使活細胞中的線粒體呈現(xiàn)藍綠色。
材料:新鮮的蘚類的葉(葉片薄,直接觀察)。
菠菜葉稍帶葉肉的下表皮(上表皮起保護作用,幾乎無葉綠體;下表皮海綿組織,有氣孔保衛(wèi)細胞,有葉綠體)。
五、分泌蛋白的合成和運輸。
有些蛋白質是在細胞內合成后,分泌到細胞外起作用,這類蛋白叫分泌蛋白。如消化酶(催化作用)、抗體(免疫)和一部分激素(信息傳遞)。
核糖體內質網(wǎng)高爾基體細胞膜。
(合成肽鏈)(加工成蛋白質)(進一步加工)(囊泡與細胞膜融合,蛋白質釋放)。
分泌蛋白從合成至分泌到細胞外利用到的細胞器?
答:核糖體、內質網(wǎng)、高爾基體、線粒體。
分泌蛋白從合成至分泌到細胞外利用到的結構?
核糖體、內質網(wǎng)、高爾基體、線粒體、細胞核、囊泡、細胞膜。
六、生物膜系統(tǒng)。
1、概念:細胞膜、核膜,各種細胞器的膜共同組成的生物膜系統(tǒng)。
2、作用:使細胞具有穩(wěn)定內部環(huán)境物質運輸、能量轉換、信息傳遞;為各種酶提供大量附著位點,是許多生化反應的場所;把各種細胞器分隔開,保證生命活動高效、有序進行。
3、內質網(wǎng)膜內連核膜外連細胞膜還和線粒體膜直接相連。
經(jīng)過囊泡與高爾基體膜間接相連。
高一數(shù)學必修一第一章教案篇八
(1)通過實物操作,增強學生的直觀感知。
(2)能根據(jù)幾何結構特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
(4)會表示有關于幾何體以及柱、錐、臺的分類。
2.過程與方法。
(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
3.情感態(tài)度與價值觀。
(1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養(yǎng)學生的空間想象能力和抽象括能力。
二、教學重點、難點。
重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。
難點:柱、錐、臺、球的結構特征的概括。
三、教學用具。
(1)學法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀。
四、教學思路。
(一)創(chuàng)設情景,揭示課題。
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學習的內容。
(二)、研探新知。
1.引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
3.組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。
6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。
7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。
8.引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
(三)質疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。
1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。
2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
3.課本p8,習題1.1a組第1題。
5.棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?
四、鞏固深化。
練習:課本p7練習1、2(1)(2)。
課本p8習題1.1第2、3、4題。
五、歸納整理。
由學生整理學習了哪些內容。
六、布置作業(yè)。
課本p8練習題1.1b組第1題。
課外練習課本p8習題1.1b組第2題。
1.2.1空間幾何體的三視圖(1課時)。
高一數(shù)學必修一第一章教案篇九
課型
新課
教學目標
1.了解中心投影和平行投影的概念;
3.簡單組合體與其三視圖之間的相互轉化.
教學過程
教學內容
備注
一、
自主學習
1.照相、繪畫之所以有空間視覺效果,主要處決于線條、明暗和色彩,其中對線條畫法的基本原理是一個幾何問題,我們需要學習這方面的知識.
二、
質疑提問
下圖中的手影游戲,你玩過嗎?
光是直線傳播的,一個不透明物體在光的照射下,在物體后面的屏幕上會留下這個物體的影子,這種現(xiàn)象叫做投影.其中的光線叫做投影線,留下物體影子的屏幕叫做投影面.
一、中心投影與平行投影
思考2:用燈泡照射物體和用手電筒照射物體形成的投影分別是哪種投影?
投影的分類:
把一個空間幾何體投影到一個平面上,可以獲得一個平面圖形.從多個角度進行投影就能較好地把握幾何體的形狀和大小,通常選擇三種正投影,即正面、側面和上面,并給出下列概念:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖.
側視圖:光線從幾何體的左面向右面正投影,得到的.投影圖.
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖.
幾何體的正視圖、側視圖和俯視圖,統(tǒng)稱為幾何體的三視圖.
三、
問題探究
思考2:如圖,設長方體的長、寬、高分別為a、b、c,那么其三視圖分別是什么?
思考3:圓柱、圓錐、圓臺的三視圖分別是什么?
思考5:球的三視圖是什么?下列三視圖表示一個什么幾何體?
例1:如圖是一個倒置的四棱柱的兩種擺放,試分別畫出其三視圖,并比較它們的異同.
四、
課堂檢測
五、
小結評價
1.空間幾何體的三視圖:正視圖、側視圖、俯視圖;
3.三視圖的應用及與原實物圖的相互轉化.
高一數(shù)學必修一第一章教案篇十
3.通過參與編題解題,激發(fā)學生學習的愛好.
教學重點是通項公式的熟悉;教學難點是對公式的靈活運用.
實物投影儀,多媒體軟件,電腦.
研探式.
一.復習提問
等差數(shù)列的概念是從相鄰兩項的關系加以定義的,這個關系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應用.
二.主體設計
通項公式反映了項與項數(shù)之間的函數(shù)關系,當?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知求).找學生試舉一例如:“已知等差數(shù)列中,首項,公差,求.”這是通項公式的簡單應用,由學生解答后,要求每個學生出一些運用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.
1.方程思想的運用
(1)已知等差數(shù)列中,首項,公差,則-397是該數(shù)列的第x項.
(2)已知等差數(shù)列中,首項,則公差
(3)已知等差數(shù)列中,公差,則首項
這一類問題先由學生解決,之后教師點評,四個量,在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.
2.基本量方法的使用
(1)已知等差數(shù)列中,求的值.
(2)已知等差數(shù)列中,求.
若學生的題目只有這兩種類型,教師可以小結(請出題者、解題者概括):因為已知條件可以化為關于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項公式,便可歸結為前一類問題.解決這類問題只需把兩個條件(等式)化為關于和的二元方程組,以求得和,和稱作基本量.
教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學生回答后,教師再啟發(fā),由這一個條件可得到關于和的二元方程,這是一個和的`制約關系,從這個關系可以得到什么結論?舉例說明(例題可由學生或教師給出,視具體情況而定).
如:已知等差數(shù)列中,…
由條件可得即,可知,這是比較顯然的,與之相關的還能有什么結論?若學生答不出可提示,一定得某一項的值么?能否與兩項有關?多項有關?由學生發(fā)現(xiàn)規(guī)律,完善問題(3)已知等差數(shù)列中,求;;;;….
類似的還有
(4)已知等差數(shù)列中,求的值.
以上屬于對數(shù)列的項進行定量的研究,有無定性的判定?引出
3.研究等差數(shù)列的單調性
4.研究項的符號
這是為研究等差數(shù)列前項和的最值所做的預備工作.可配備的題目如
(1)已知數(shù)列的通項公式為,問數(shù)列從第幾項開始小于0?
(2)等差數(shù)列從第x項起以后每項均為負數(shù).
三.小結
1.用方程思想熟悉等差數(shù)列通項公式;
2.用函數(shù)思想解決等差數(shù)列問題.
四.板書設計
等差數(shù)列通項公式1.方程思想的運用
2.基本量方法的使用
3.研究等差數(shù)列的單調性
4.研究項的符號
高一數(shù)學必修一第一章教案篇十一
稅收——國家為實現(xiàn)其職能,憑借政治權力,依法無償取得財政收入的基本形式。
2、稅收的基本特征。
(1)稅收具有強制性、無償性、固定性三個基本特征。
稅收強制性——是指稅收是依靠國家的政治權力而強制征收的。
稅收的無償性——是指國家取得的稅收收入,既不需要返還給納稅人,也不需要對納稅人付出任何代價。
稅收的固定性——是指在征稅之前就通過法律形式,預先規(guī)定了征稅對象和征收數(shù)額之間的比例關系,不經(jīng)過國家批準不能隨意改變。
(2)稅收的三個基本特征是緊密相連的。
首先,稅收的無償性要求它具有強制性。
其次,稅收的強制性和無償性又決定了它必須具有固定性。
總之,稅收的強制性、固定性、無償性,三者缺一不可,統(tǒng)一于稅法。
(3)稅收的三個基本特征,是稅收區(qū)別于其他財政收入形式的主要標志。
3、違反稅法的表現(xiàn)和處理。
(1)偷稅:是納稅人有意違反稅法規(guī)定,用欺騙、隱瞞等方式逃避納稅的行為。
(2)欠稅:是納稅人超過稅務機關核定的期限,沒有按時繳納而拖欠稅款的行為。
(3)騙稅:是納稅人用欺騙手段獲得國家稅收優(yōu)惠的行為。
(4)抗稅:是納稅人抗拒稅法規(guī)定的違法行為。
高一數(shù)學必修一第一章教案篇十二
了解現(xiàn)實世界和日常生活中的不等關系,了解不等式(組)的實際背景.
(2)一元二次不等式。
會從實際情境中抽象出一元二次不等式模型.
通過函數(shù)圖象了解一元二次不等式與相應的二次函數(shù)、一元二次方程的聯(lián)系.
會解一元二次不等式,對給定的一元二次不等式,會設計求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題。
會從實際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
高一數(shù)學必修一第一章教案篇十三
2、初步運用力的平行四邊形法則求解共點力的合力;。
3、會用作圖法求解兩個共點力的合力;并能判斷其合力隨夾角的變化情況,掌握合力的變化范圍。
能力目標。
1、能夠通過實驗演示歸納出互成角度的兩個共點力的合成遵循平行四邊形定則;。
2、培養(yǎng)學生動手操作能力;。
情感目標。
培養(yǎng)學生的物理思維能力和科學研究的態(tài)度。
教學建議。
教學重點難點分析。
1、本課的重點是通過實驗歸納出力的平行四邊形法則,這同時也是本章的重點.
2、對物體進行簡單的受力分析、通過作圖法確定合力是本章的難點;。
教法建議。
一、共點力概念講解的教法建議。
關于共點力的概念講解時需要強調不僅作用在物體的同一點的力是共點力,力的作用線相交于一點的也叫共點力.注意平行力于共點力的區(qū)分(關于平行力的合成請參考擴展資料中的“平行力的合成與分解”),教師講解示例中要避開這例問題.
二、關于矢量合成講解的教法建議。
本課的重點是通過實驗歸納出力的平行四邊形法則,這同時也是本章的重點.由于學生剛開始接觸矢量的運算方法,在講解中需要從學生能夠感知和理解的日?,F(xiàn)象和規(guī)律出發(fā),理解合力的概念,從實驗現(xiàn)象總結出力的合成規(guī)律,由于矢量的運算法則是矢量概念的核心內容,又是學習物理學的基礎,對于初上高中的學生來說,是一個大的飛躍,因此教學時,教師需要注意規(guī)范性,但是不必操之過急,通過一定數(shù)量的題目強化學生對平行四邊形定則的認識.
由于力的合成與分解的基礎首先是對物體進行受力分析,在前面力的知識學習中,學生已經(jīng)對單個力的分析過程有了比較清晰的認識,在知識的整合過程中,教師可以通過練習做好規(guī)范演示.
三、關于作圖法求解幾個共點力合力的教法建議。
1、在講解用作圖法求解共點力合力時,可以在復習力的圖示法基礎上,讓學生加深矢量概念的理解,同時掌握矢量的計算法則.
2、注意圖示畫法的規(guī)范性,在本節(jié)可以配合學生自主實驗進行教學.
第四節(jié)力的合成與分解。
高一數(shù)學必修一第一章教案篇十四
教學目標。
熟悉兩角和與差的正、余公式的推導過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關問題。
教學重難點。
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
教學過程。
復習。
兩角差的余弦公式。
用-b代替b看看有什么結果?
高一數(shù)學必修一第一章教案篇十五
1、使學生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)確定的。
(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式。
(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的`前幾項。
2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力。
3、通過由求的過程,培養(yǎng)學生嚴謹?shù)目茖W態(tài)度及良好的思維習慣。
(1)為激發(fā)學生學習數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學生對所要研究的內容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等。
(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導思想,應及早引導學生發(fā)現(xiàn)數(shù)列與函數(shù)的關系。在教學中強調數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關系,從而數(shù)列就有其特殊的表示法——遞推公式法。
(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助。
(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結論,如正負相間用來調整等。如果學生一時不能寫出通項公式,可讓學生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關系。
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應補充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況。
(6)給出一些簡單數(shù)列的通項公式,可以求其項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學生應提出這一問題,學生運用函數(shù)知識是可以解決的。
高一數(shù)學必修一第一章教案篇十六
(1)函數(shù)單調性的概念。包括增函數(shù)、減函數(shù)的定義,單調區(qū)間的概念函數(shù)的單調性的判定方法,函數(shù)單調性與函數(shù)圖像的關系。
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。
二、重點難點分析。
(1)本節(jié)教學的重點是函數(shù)的單調性,奇偶性概念的形成與熟悉。教學的難點是領悟函數(shù)單調性,奇偶性的本質,把握單調性的證實。
(2)函數(shù)的單調性這一性質學生在初中所學函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準確的數(shù)學語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫。單調性的證實是學生在函數(shù)內容中首次接觸到的代數(shù)論證內容,學生在代數(shù)論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數(shù)證實,也沒有意識到它的重要性,所以單調性的證實自然就是教學中的難點。
三、教法建議。
(1)函數(shù)單調性概念引入時,可以先從學生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏。如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數(shù)值的關系的角度來解釋,引導學生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學語言表示出來。在這個過程中對一些關鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結合起來。
(2)函數(shù)單調性證實的步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規(guī)律。
函數(shù)的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學生把看到的用數(shù)學表達式寫出來。經(jīng)歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數(shù)多個等式,是個恒等式。關于定義域關于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。
高一數(shù)學必修一第一章教案篇十七
1、使學生了解奇偶性的概念,回會利用定義判定簡單函數(shù)的奇偶性。
2、在奇偶性概念形成過程中,培養(yǎng)學生的觀察,歸納能力,同時滲透數(shù)形結合和非凡到一般的思想方法。
3、在學生感受數(shù)學美的同時,激發(fā)學習的愛好,培養(yǎng)學生樂于求索的精神。
重點是奇偶性概念的形成與函數(shù)奇偶性的判定。
難點是對概念的熟悉。
投影儀,計算機。
引導發(fā)現(xiàn)法。
一。引入新課。
前面我們已經(jīng)研究了函數(shù)的單調性,它是反映函數(shù)在某一個區(qū)間上函數(shù)值隨自變量變化而變化的性質,今天我們繼續(xù)研究函數(shù)的另一個性質。從什么角度呢?將從對稱的角度來研究函數(shù)的性質。
(學生可能會舉出一些數(shù)值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導學生把函數(shù)具體化,如和等。)。
學生經(jīng)過思考,能找出原因,由于函數(shù)是映射,一個只能對一個,而不能有兩個不同的,故函數(shù)的圖象不可能關于軸對稱。最終提出我們今天將重點研究圖象關于軸對稱和關于原點對稱的問題,從形的特征中找出它們在數(shù)值上的規(guī)律。
二。講解新課。
2、函數(shù)的奇偶性(板書)。
學生開始可能只會用語言去描述:自變量互為相反數(shù),函數(shù)值相等。教師可引導學生先把它們具體化,再用數(shù)學符號表示。(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進而再提出會不會在定義域內存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發(fā)現(xiàn)結論,這樣的是不存在的)從這個結論中就可以發(fā)現(xiàn)對定義域內任意一個,都有成立。最后讓學生用完整的語言給出定義,不準確的地方教師予以提示或調整。
(1)偶函數(shù)的定義:假如對于函數(shù)的定義域內任意一個,都有,那么就叫做偶函數(shù)。(板書)。
(給出定義后可讓學生舉幾個例子,如等以檢驗一下對概念的初步熟悉)。
提出新問題:函數(shù)圖象關于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時打出或的圖象讓學生觀察研究)。
學生可類比剛才的方法,很快得出結論,再讓學生給出奇函數(shù)的定義。
(2)奇函數(shù)的定義:假如對于函數(shù)的定義域內任意一個,都有,那么就叫做奇函數(shù)。(板書)。
(由于在定義形成時已經(jīng)有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)。
例1。判定下列函數(shù)的奇偶性(板書)。
(1);(2);
(3);;
(5);(6)。
(要求學生口答,選出12個題說過程)。
解:(1)是奇函數(shù)。(2)是偶函數(shù)。
(3),是偶函數(shù)。
學生經(jīng)過思考可以解決問題,指出只要舉出一個反例說明與不等。如即可說明它不是偶函數(shù)。(從這個問題的解決中讓學生再次熟悉到定義中任意性的重要)。
從(4)題開始,學生的答案會有不同,可以讓學生先討論,教師再做評述。即第(4)題中表面成立的=不能經(jīng)受任意性的考驗,當時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性。
可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結論。
(3)定義域關于原點對稱是函數(shù)具有奇偶性的必要但不充分條件。(板書)。
由學生小結判定奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說明。
例2。已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:。(板書)(試由學生來完成)。
(4)函數(shù)按其是否具有奇偶性可分為四類:(板書)。
例3。判定下列函數(shù)的奇偶性(板書)。
(1);(2);(3)。
由學生回答,不完整之處教師補充。
解:(1)當時,為奇函數(shù),當時,既不是奇函數(shù)也不是偶函數(shù)。
(2)當時,既是奇函數(shù)也是偶函數(shù),當時,是偶函數(shù)。
(3)當時,于是,
當時,,于是=,
綜上是奇函數(shù)。
教師小結(1)(2)注重分類討論的使用,(3)是分段函數(shù),當檢驗,并不能說明具備奇偶性,因為奇偶性是對函數(shù)整個定義域內性質的刻畫,因此必須均有成立,二者缺一不可。
三。小結。
1、奇偶性的概念。
2、判定中注重的問題。
四。作業(yè)略。
五。板書設計。
2、函數(shù)的奇偶性例1.例3.
(1)偶函數(shù)定義。
(2)奇函數(shù)定義。
(3)定義域關于原點對稱是函數(shù)例2。小結。
具備奇偶性的必要條件。
(4)函數(shù)按奇偶性分類分四類。
(1)定義域為的任意函數(shù)都可以表示成一個奇函數(shù)和一個偶函數(shù)的和,你能試證實之嗎?
(2)判定函數(shù)在上的單調性,并加以證實。
在此基礎上試利用這個函數(shù)的單調性解決下面的問題:
高一數(shù)學必修一第一章教案篇十八
掌握三角函數(shù)模型應用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型·。
·利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型·。
一、練習講解:《習案》作業(yè)十三的第3、4題。
(精確到0·001)·。
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的`進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習:教材p65面3題。
三、小結:1、三角函數(shù)模型應用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型·。
2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型·。
四、作業(yè)《習案》作業(yè)十四及十五。
高一數(shù)學必修一第一章教案篇十九
教學目標。
3.讓學生深刻理解向量在處理平面幾何問題中的優(yōu)越性.
教學重難點。
教學重點:用向量方法解決實際問題的基本方法:向量法解決幾何問題的“三步曲”.
教學難點:如何將幾何等實際問題化歸為向量問題.
教學過程。
由于向量的線性運算和數(shù)量積運算具有鮮明的幾何背景,平面幾何圖形的許多性質,如平移、全等、相似、長度、夾角等都可以由向量的線性運算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實例,說明向量方法在平面幾何中的運用。
思考:
運用向量方法解決平面幾何問題可以分哪幾個步驟?
運用向量方法解決平面幾何問題可以分哪幾個步驟?
“三步曲”:
(2)通過向量運算,研究幾何元素之間的關系,如距離、夾角等問題;。
(3)把運算結果“翻譯”成幾何關系.
高一數(shù)學必修一第一章教案篇二十
1.閱讀課本練習止。
2.回答問題:
(1)課本內容分成幾個層次?每個層次的中心內容是什么?
(2)層次間的聯(lián)系是什么?
(3)對數(shù)函數(shù)的定義是什么?
(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關系?
3.完成練習。
4.小結。
二、方法指導。
1.在學習對數(shù)函數(shù)時,同學們應從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。
2.本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應圍繞著這條主線展開,同學們在學習時應該把兩個函數(shù)進行類比,通過互為反函數(shù)的兩個函數(shù)的關系由已知函數(shù)研究未知函數(shù)的性質。
一、提問題。
1.對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關系?
3.是否所有的函數(shù)都有反函數(shù)?試舉例說明。
二、變題目。
1.試求下列函數(shù)的反函數(shù):
(1);(2);(3);(4)。
2.求下列函數(shù)的定義域:。
(1);(2);(3)。
3.已知則=;的定義域為。
1.對數(shù)函數(shù)的有關概念。
(1)把函數(shù)叫做對數(shù)函數(shù),叫做對數(shù)函數(shù)的底數(shù)。
(2)以10為底數(shù)的對數(shù)函數(shù)為常用對數(shù)函數(shù)。
(3)以無理數(shù)為底數(shù)的對數(shù)函數(shù)為自然對數(shù)函數(shù)。
2.反函數(shù)的概念。
在指數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是;在對數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是,像這樣的兩個函數(shù)叫做互為反函數(shù)。
3.與對數(shù)函數(shù)有關的定義域的求法:
4.舉例說明如何求反函數(shù)。
一、課外作業(yè):習題3-5a組1,2,3,b組1,
二、課外思考:
1.求定義域:
2.求使函數(shù)的函數(shù)值恒為負值的的取值范圍。
高一數(shù)學必修一第一章教案篇二十一
教學目標。
o了解向量的實際背景,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量等概念;并會區(qū)分平行向量、相等向量和共線向量。
o通過對向量的學習,使學生初步認識現(xiàn)實生活中的向量和數(shù)量的本質區(qū)別。
o通過學生對向量與數(shù)量的識別能力的訓練,培養(yǎng)學生認識客觀事物的數(shù)學本質的能力。
教學重難點。
教學重點:理解并掌握向量、零向量、單位向量、相等向量、共線向量的概念,會表示向量。
教學難點:平行向量、相等向量和共線向量的區(qū)別和聯(lián)系。
教學過程。
(一)向量的概念:我們把既有大小又有方向的量叫向量。
(二)(教材p74面的四個圖制作成幻燈片)請同學閱讀課本后回答:(7個問題一次出現(xiàn))。
1、數(shù)量與向量有何區(qū)別?(數(shù)量沒有方向而向量有方向)。
2、如何表示向量?
3、有向線段和線段有何區(qū)別和聯(lián)系?分別可以表示向量的什么?
4、長度為零的向量叫什么向量?長度為1的向量叫什么向量?
5、滿足什么條件的兩個向量是相等向量?單位向量是相等向量嗎?
6、有一組向量,它們的方向相同或相反,這組向量有什么關系?
7、如果把一組平行向量的起點全部移到一點o,這是它們是不是平行向量?
這時各向量的終點之間有什么關系?
課后小結。
1、描述向量的兩個指標:模和方向。
2、平面向量的概念和向量的幾何表示;
3、向量的模、零向量、單位向量、平行向量等概念。
高一數(shù)學必修一第一章教案篇二十二
1、知識目標:使學生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質。
2、能力目標:通過定義的引入,圖像特征的觀察、發(fā)現(xiàn)過程使學生懂得理論與實踐的辯證關系,適時滲透分類討論的數(shù)學思想,培養(yǎng)學生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。
3、情感目標:通過學生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學習習慣和勇于探索、鍥而不舍的治學精神。
【本文地址:http://mlvmservice.com/zuowen/8853009.html】