函數(shù)的定義教案大全(22篇)

格式:DOC 上傳日期:2023-11-07 10:20:20
函數(shù)的定義教案大全(22篇)
時間:2023-11-07 10:20:20     小編:GZ才子

教案是教師在備課過程中對于教學內(nèi)容、教學方法、教學順序等進行系統(tǒng)規(guī)劃的一種書面指導材料,它能夠幫助教師有條不紊地組織教學活動,提高教學效果。那么我們該如何撰寫一份高質(zhì)量的教案呢?教案的編寫需要注意哪些要點呢?讓我們一起來探討一下吧。教案應注重培養(yǎng)學生的自主學習和合作學習能力,激發(fā)學生的學習興趣和動力。以下是一些經(jīng)典的教案范文,希望對大家的教學工作有所幫助。

函數(shù)的定義教案篇一

即:一角的正弦大于另一個角的余弦。

2、若,則,。

3、的圖象的對稱中心為(),對稱軸方程為。

4、的圖象的對稱中心為(),對稱軸方程為。

5、及的圖象的對稱中心為()。

6、常用三角公式:。

有理公式:;。

降次公式:,;。

萬能公式:,,(其中)。

7、輔助角公式:,其中。輔助角的位置由坐標決定,即角的終邊過點。

8、時,。

9、。

其中為內(nèi)切圓半徑,為外接圓半徑。

特別地:直角中,設(shè)c為斜邊,則內(nèi)切圓半徑,外接圓半徑。

10、的圖象的圖象(時,向左平移個單位,時,向右平移個單位)。

11、解題時,條件中若有出現(xiàn),則可設(shè),。

則。

12、等腰三角形中,若且,則。

13、若等邊三角形的邊長為,則其中線長為,面積為。

14、;。

函數(shù)的定義教案篇二

1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進行初步的應用。

(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象。

(2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題。

2.通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學習,滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力。

3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學生進行對稱美,簡潔美等審美教育,調(diào)動學生學習數(shù)學的積極性。

(1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解。對數(shù)函數(shù)的概念,圖象與性質(zhì)的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關(guān)自然科學領(lǐng)域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎(chǔ)。

(2)本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì)。難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì)。由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應成為教學的重點。

(3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應圍繞著這條主線展開。而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學生不適應,把握不住關(guān)鍵,所以應是本節(jié)課的難點。

(1)對數(shù)函數(shù)在引入時,就應從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。

(2)在本節(jié)課中結(jié)合對數(shù)函數(shù)教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數(shù)這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。

函數(shù)的定義教案篇三

難點:其一般的性質(zhì)分析,再由性質(zhì)得到一般圖像。

三.教學方法和用具。

方法:歸納總結(jié),數(shù)形結(jié)合,分析驗證。

用具:幻燈片,幾何畫板,黑板。

四.教學過程。

(幻燈片見附件)。

1.設(shè)置問題情境,找出所得函數(shù)的共同形式,由形式給出冪函數(shù)的定義(幻燈片1?幻燈片2)(板書)。

2.從形式上比較指數(shù)函數(shù)和冪函數(shù)的異同(幻燈片3)。

3.利用定義的形式,判斷所給函數(shù)是否是冪函數(shù),并得出判斷依據(jù)(幻燈片4)。

4.畫常見的三種冪函數(shù)的圖像,再讓學生用描點法畫另兩種,并用幾何畫板驗證(幻燈片5)(幾何畫板)。

5.用幾何畫板畫出這五個冪函數(shù)的圖像,觀察圖像完成書中冪函數(shù)的函數(shù)性質(zhì)的表格,并分析得出更一般的結(jié)論(板書)(幾何畫板)。

函數(shù)的定義教案篇四

當x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:

1.在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

2.在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

而只有a為正數(shù),0才進入函數(shù)的值域。

定義域。

當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:

1.如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);2.如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

函數(shù)的定義教案篇五

3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系.

利用誘導公式(二),口答下列三角函數(shù)值.

(1). ;(2). ;(3). .

喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.

由sin300= 出發(fā),用三角的定義引導學生求出 sin(-300),sin1500值,讓學生聯(lián)想若已知sin = ,能否求出sin( ),sin( )的值.

1.探究任意角 與 的三角函數(shù)又有什么關(guān)系;

2.探究任意角 與 的三角函數(shù)之間又有什么關(guān)系.

遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學生無形中鼓舞了氣勢,增強了自信,加大了挑戰(zhàn).而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進步.

誘導公式(三)、(四)

給出本節(jié)課的課題

三角函數(shù)誘導公式

標題的后出,讓學生在經(jīng)歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經(jīng)輕松掌握,同時也是對本節(jié)課內(nèi)容的小結(jié).

的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個把 看成銳角時原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)

設(shè)計意圖

簡便記憶公式.

求下列三角函數(shù)的值:(1).sin( ); (2). co.

設(shè)計意圖

本練習的設(shè)置重點體現(xiàn)一題多解,讓學生不僅學會靈活運用應用三角函數(shù)的誘導公式,還能養(yǎng)成靈活處理問題的良好習慣.這里還要給學生指出課本中的“負角”化為“正角”是針對具體負角而言的.

學生練習

化簡: .

設(shè)計意圖

重點加強對三角函數(shù)的誘導公式的綜合應用.

1.小結(jié)使用誘導公式化簡任意角的三角函數(shù)為銳角的步驟.

2.體會數(shù)形結(jié)合、對稱、化歸的思想.

3.“學會”學習的習慣.

1.課本p-27,第1,2,3小題;

2.附加課外題 略.

設(shè)計意圖

加強學生對三角函數(shù)的誘導公式的記憶及靈活應用,附加題的設(shè)置有利于有能力的同學“更上一樓”.

八.課后反思

對本節(jié)內(nèi)容在進行教學設(shè)計之前,本人反復閱讀了課程標準和教材,針對教材的內(nèi)容,編排了一系列問題,讓學生親歷知識發(fā)生、發(fā)展的過程,積極投入到思維活動中來,通過與學生的互動交流,關(guān)注學生的思維發(fā)展,在逐漸展開中,引導學生用已學的知識、方法予以解決,并獲得知識體系的更新與拓展,收到了一定的預期效果,尤其是練習的處理,讓學生通過個人、小組、集體等多種解難釋疑的嘗試活動,感受“觀察——歸納——概括——應用”等環(huán)節(jié),在知識的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學生的主體作用,也提高了學生主體的合作意識,達到了設(shè)計中所預想的目標。

然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認為,教師的干預(講解)還是太多。

在以后的教學中,對于一些較簡單的內(nèi)容,應放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內(nèi)容等教學因素,都在不斷更新,作為數(shù)學教師要更新教學觀念,從學生的全面發(fā)展來設(shè)計課堂教學,關(guān)注學生個性和潛能的發(fā)展,使教學過程更加切合《課程標準》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。

函數(shù)的定義教案篇六

1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應地會求出另一個量的值。

3、會對一個具體實例進行概括抽象成為數(shù)學問題。

過程與方法。

1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。

2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。

情感與價值觀。

1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。

1、掌握函數(shù)概念。

2、判斷兩個變量之間的關(guān)系是否可看作函數(shù)。

3、能把實際問題抽象概括為函數(shù)問題。

1、理解函數(shù)的概念。

2、能把實際問題抽象概括為函數(shù)問題。

一、創(chuàng)設(shè)問題情境,導入新課。

『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?

函數(shù)的定義教案篇七

形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

當a取非零的有理數(shù)時是比較容易理解的,而對于a取無理數(shù)時,初學者則不大容易理解了。因此,在初等函數(shù)里,我們不要求掌握指數(shù)為無理數(shù)的問題,只需接受它作為一個已知事實即可,因為這涉及到實數(shù)連續(xù)性的極為深刻的知識。

函數(shù)的定義教案篇八

1.能從二倍角的正弦、余弦、正切公式導出半角公式,了解它們的內(nèi)在聯(lián)系;揭示知識背景,引發(fā)學生學習興趣,激發(fā)學生分析、探求的學習態(tài)度,強化學生的參與意識.并培養(yǎng)學生綜合分析能力.

2.掌握公式及其推導過程,會用公式進行化簡、求值和證明。

3.通過公式推導,掌握半角與倍角之間及半角公式與倍角公式之間的聯(lián)系,培養(yǎng)邏輯推理能力。

二、過程與方法。

2.通過例題講解,總結(jié)方法.通過做練習,鞏固所學知識.

三、情感、態(tài)度與價值觀。

1.通過公式的推導,了解半角公式和倍角公式之間的內(nèi)在聯(lián)系,從而培養(yǎng)邏輯推理能力和辯證唯物主義觀點。

2.培養(yǎng)用聯(lián)系的觀點看問題的觀點。

【教學重點與難點】:

重點:半角公式的推導與應用(求值、化簡、證明)。

難點:半角公式與倍角公式之間的內(nèi)在聯(lián)系,以及運用公式時正負號的選取。

【學法與教學用具】:

1.學法:

(1)自主+探究性學習:讓學生自己由和角公式導出倍角公式,領(lǐng)會從一般化歸為特殊的數(shù)學思想,體會公式所蘊涵的和諧美,激發(fā)學生學數(shù)學的興趣。

(2)反饋練習法:以練習來檢驗知識的應用情況,找出未掌握的內(nèi)容及其存在的差距.

2.教學方法:觀察、歸納、啟發(fā)、探究相結(jié)合的教學方法。

引導學生復習二倍角公式,按課本知識結(jié)構(gòu)設(shè)置提問引導學生動手推導出半角公式,課堂上在老師引導下,以學生為主體,分析公式的結(jié)構(gòu)特征,會根據(jù)公式特點得出公式的應用,用公式來進行化簡證明和求值,老師為學生創(chuàng)設(shè)問題情景,鼓勵學生積極探究。

3.教學用具:多媒體、實物投影儀.

【授課類型】:新授課。

【課時安排】:1課時。

【教學思路】:

一、創(chuàng)設(shè)情景,揭示課題。

二、研探新知。

四、鞏固深化,反饋矯正。

五、歸納整理,整體認識。

1.鞏固倍角公式,會推導半角公式、和差化積及積化和差公式。

2.熟悉"倍角"與"二次"的關(guān)系(升角--降次,降角--升次).

3.特別注意公式的三角表達形式,且要善于變形:

4.半角公式左邊是平方形式,只要知道角終邊所在象限,就可以開平方;公式的"本質(zhì)"是用?角的余弦表示角的正弦、余弦、正切.

5.注意公式的結(jié)構(gòu),尤其是符號.

六、承上啟下,留下懸念。

七、板書設(shè)計(略)。

八、課后記:略。

函數(shù)的定義教案篇九

通過對這節(jié)課的教學研究,我深刻地認識到新課程背景下的數(shù)學課堂教學應注意:

1、教師要“放得開”,做一個邊緣人。我們應該充分相信學生,給學生成長的機會和空間。不再搞“包辦代替”,不能急性子。凡是學生能做的,就應該讓他們自主去做;凡是學生之間能合作完成的,就應該讓他們自主探究。給學生一滴水的機會,也許他會收獲一片海洋。

2、要做到“問題引領(lǐng)”,用問題牽引學習。本節(jié)課的設(shè)計給予學生的基礎(chǔ),設(shè)計了多個學生容易解決的問題串,這樣,能夠在循序漸進中學到知識。

3、要創(chuàng)造性地使用教材。教學過程中,不應局限于教材,而應充分利用教材這個平臺,伸向與教材有關(guān)的領(lǐng)域。數(shù)學是思維的體操,因此,若能對數(shù)學教材科學安排,對問題妙引導,有意識地引導學生有意識地主動學習更多更全面的數(shù)學知識,變“傳授”為“探究”,充分暴露知識的發(fā)生發(fā)展過程,以探索者的身份去發(fā)現(xiàn)問題、總結(jié)規(guī)律。

4、注重探究,體驗知識的形成過程。數(shù)學教學從本質(zhì)上講,是教師和學生以課堂為主渠道的交流活動,是教師和學生在某種教學情境中的探究活動。這節(jié)課教師本著“讓學生充分經(jīng)歷知識的形成、發(fā)展和應用過程,充分體驗數(shù)學的發(fā)現(xiàn)和創(chuàng)造歷程”的教學理念,對教學過程和教學手段作了充分的準備。整節(jié)課學生在教師的引導下逐步探索、不斷發(fā)現(xiàn),品嘗到了數(shù)學學習的樂趣,教師的主導作用和學生的主體地位都得到了很好地體現(xiàn)。

總之,我們的教學工作是一項內(nèi)涵豐富的系統(tǒng)工程。教學中用問題引領(lǐng)學生,提升效率,不是一朝一夕就可以取得明顯成效的,它更是一個復雜的課題。“冰凍三尺,非一日之寒”,在教學中必須循序漸進,長期實踐,與時俱進,爭取做教學改革的有心人,只有這樣才能在教學研究工作中有所作為。因此,在實際教學中,我們應時刻以學生為中心,充分給予學生成長的時間,鼓勵學生自主探究,采用適時激勵與點撥的方法使學生的思維活躍起來,讓課堂真正成為學生學習、發(fā)現(xiàn)的樂園。

函數(shù)的定義教案篇十

學生能理解函數(shù)的概念,掌握常見的函數(shù)(sum,average,max,min等)。學生能夠根據(jù)所學函數(shù)知識判別計算得到的數(shù)據(jù)的正確性。

學生能夠使用函數(shù)(sum,average,max,min等)計算所給數(shù)據(jù)的和、平均值、最大最小值。學生通過自主探究學會新函數(shù)的使用。并且能夠根據(jù)實際工作生活中的需求選擇和正確使用函數(shù),并能夠?qū)τ嬎愕臄?shù)據(jù)結(jié)果合理利用。

學生自主學習意識得到提高,在任務的完成過程中體會到成功的喜悅,并在具體的任務中感受環(huán)境保護的重要性及艱巨性。

sum函數(shù)的插入和使用。

函數(shù)的格式、函數(shù)參數(shù)正確使用以及修改。

任務驅(qū)動,觀察分析,通過實踐掌握,發(fā)現(xiàn)問題,協(xié)作學習。

excel文件《2000年全國各省固體廢棄物情況》、統(tǒng)計表格一張。

1、展示投影片,創(chuàng)設(shè)數(shù)據(jù)處理環(huán)境。

2、以環(huán)境污染中的固體廢棄物數(shù)據(jù)為素材來進行教學。

3、展示《2000年全國各省固體廢棄物情況》工作簿中的《固體廢棄物數(shù)量狀況》工作表,要求根據(jù)已學知識計算各省各類廢棄物的總量。

函數(shù)名表示函數(shù)的計算關(guān)系。

=sum(起始單元格:結(jié)束單元格)。

4、問:求某一種廢棄物的全國總量用公式法和自動求和哪個方便?

注意參數(shù)的正確性。

1、簡單描述函數(shù):函數(shù)是一些預定義了的計算關(guān)系,可將參數(shù)按特定的順序或結(jié)構(gòu)進行計算。

在公式中計算關(guān)系是我們自己定義的,而函數(shù)給我們提供了大量的已定義好的計算關(guān)系,我們只需要根據(jù)不同的處理目的去選擇、提供參數(shù)去套用就可以了。

2、使用函數(shù)sum計算各廢棄物的全國總計。(強調(diào)計算范圍的正確性)。

3、通過介紹average函數(shù)學習函數(shù)的輸入。

函數(shù)的輸入與一般的公式?jīng)]有什么不同,用戶可以直接在“=”后鍵入函數(shù)及其參數(shù)。例如我們選定一個單元格后,直接鍵入“=average(d3:d13)”就可以在該單元格中創(chuàng)建一個統(tǒng)計函數(shù),統(tǒng)計出該表格中比去年同期增長%的平均數(shù)。

(參數(shù)的格式要嚴格;符號要用英文符號,以避免出錯。)。

有的同學開始瞪眼睛了,不大好用吧?

因為這種方法要求我們對函數(shù)的使用比較熟悉,如果我們對需要使用的函數(shù)名稱、參數(shù)格式等不是非常有把握,則建議使用“插入函數(shù)”對話框來輸入函數(shù)。

用相同任務演示操作過程。

4、引出max和min函數(shù)。

探索任務:利用提示應用max和min函數(shù)計算各廢棄物的最大和最小值。

5、引出countif函數(shù)。

探索任務:利用countif函數(shù)按要求計算并體會函數(shù)的不同格式。

1、教師小結(jié)比較。

2、根據(jù)得到的數(shù)據(jù)引發(fā)出怎樣的思考。

四、???????。

1、廢棄物數(shù)量大危害大,各個省都在想各種辦法進行處理,把對環(huán)境的污染降到最低。

2、研究任務:運用表格數(shù)據(jù),計算各省廢棄物處理率的最大,最小值,以及廢棄物處理率大于90%,小于70%的省份個數(shù),并對應計算各省處理的廢棄物量和剩余的廢棄物量及全國總數(shù)。

1、分析存在問題,表揚練習完成比較好的同學,強調(diào)鼓勵大家探究學習的精神。

2、把結(jié)果進行記錄,上繳或在課后進行分析比較,寫出一小論文。

1、讓學生體會到固體廢棄物數(shù)量的巨大。

2、處理真實數(shù)據(jù)引發(fā)學生興趣。

通過比較得到兩種方法的優(yōu)劣。

學生的計算結(jié)果在現(xiàn)實中的運用,真正體現(xiàn)信息技術(shù)課是收集,分析數(shù)據(jù),的工具。

通過類比學習,提高學生的自學能力和分析問題能力。

實際數(shù)據(jù),引發(fā)思考。

學生應用課堂所學知識。

學生帶著任務離開教室,課程之間整合,學生環(huán)境保護知識得到加強。

觀看投影。

學生用公式法和自動求和兩種方法計算各省廢棄物總量。

回答可用自動求和。

動手操作。

計算各類廢氣物的全國各省平均。

練習。

練習。

用自己計算所得數(shù)據(jù)對現(xiàn)實進行分析。

應用所學知識。

練習并記錄數(shù)據(jù)。

函數(shù)的定義教案篇十一

數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導、探索相結(jié)合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。

三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教a版)數(shù)學必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導公式中的公式(二)至公式(六).本節(jié)是第一課時,教學內(nèi)容為公式(二)、(三)、(四).教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角與終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關(guān)系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應用三角函數(shù)的誘導公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應該能輕松的完成本節(jié)課的教學內(nèi)容.

(1).基礎(chǔ)知識目標:理解誘導公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導公式;。

(4).個性品質(zhì)目標:通過誘導公式的學習和應用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學生的唯物史觀.

理解并掌握誘導公式.

正確運用誘導公式,求三角函數(shù)值,化簡三角函數(shù)式.

“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.

數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結(jié)果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì).

在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅.

“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題.

在本節(jié)課的教學過程中,本人引導學生的學法為思考問題共同探討解決問題簡單應用重現(xiàn)探索過程練習鞏固.讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉(zhuǎn)化為主動的自主學習.

1.復習銳角300,450,600的三角函數(shù)值;。

2.復習任意角的三角函數(shù)定義;。

3.問題:由,你能否知道sin2100的值嗎?引如新課.

自信的鼓勵是增強學生學習數(shù)學的自信,簡單易做的題加強了每個學生學習的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法.

1.讓學生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;。

2100與sin300之間有什么關(guān)系.

由特殊問題的引入,使學生容易了解,實現(xiàn)教學過程的平淡過度,為同學們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊.

函數(shù)的定義教案篇十二

值域。

名稱定義。

(1)化歸法;(2)圖象法(數(shù)形結(jié)合),

(3)函數(shù)單調(diào)性法,

關(guān)于函數(shù)值域誤區(qū)。

定義域、對應法則、值域是函數(shù)構(gòu)造的三個基本“元件”。平時數(shù)學中,實行“定義域優(yōu)先”的原則,無可置疑。然而事物均具有二重性,在強化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學生對函數(shù)的掌握時好時壞,事實上,定義域與值域二者的位置是相當?shù)?,絕不能厚此薄皮,何況它們二者隨時處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運算性質(zhì)有時并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的取值情況。才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實踐證明,如果加強了對值域求法的研究和討論,有利于對定義域內(nèi)函的理解,從而深化對函數(shù)本質(zhì)的認識。

“范圍”與“值域”相同嗎?

“范圍”與“值域”是我們在學習中經(jīng)常遇到的兩個概念,許多同學常常將它們混為一談,實際上這是兩個不同的概念?!爸涤颉笔撬泻瘮?shù)值的集合(即集合中每一個元素都是這個函數(shù)的取值),而“范圍”則只是滿足某個條件的一些值所在的集合(即集合中的元素不一定都滿足這個條件)。也就是說:“值域”是一個“范圍”,而“范圍”卻不一定是“值域”。

二.數(shù)學的學習方法。

1.數(shù)學要求具備熟練的計算能力,所以課后還有做足一定量的練習題,只有通過做題練習才能擁有計算能力。

2.課前要做好預習,這樣上數(shù)學課時才能把不會的知識點更好的消化吸收掉。

3.數(shù)學公式一定要記熟,并且還要會推導,能舉一反三。

4.數(shù)學重在理解,在開始學習知識的時候,一定要弄懂。所以上課要認真聽講,看看老師是怎樣講解的。

5.數(shù)學80%的分數(shù)來源于基礎(chǔ)知識,20%的分數(shù)屬于難點,所以考120分并不難。

6.數(shù)學需要沉下心去做,浮躁的人很難學好數(shù)學,踏踏實實做題才是硬道理。

7.數(shù)學要想學好,不琢磨是行不通的,遇到難題不能躲,研究明白了才能罷休。

8.數(shù)學最主要的就是解題過程,懂得數(shù)學思維很關(guān)鍵,思路通了,數(shù)學自然就會了。

9.數(shù)學不是用來看的,而是用來算的,或許這一秒沒思路,當你拿起筆開始計算的那一秒,就豁然開朗了。

10.數(shù)學題目不會做,原因之一就是例題沒研究明白,所以數(shù)學書上的例題絕對不要放過。

點擊。

將本文的word文檔下載到電腦,方便收藏和打印。

函數(shù)的定義教案篇十三

1、分式時:分母不為0。

2、根號時:開奇次方,根號下為任意實數(shù),開偶次方,根號下大于或等于0。

3、指數(shù)時:當指數(shù)為0時,底數(shù)一定不能為0。

4、根號與分式結(jié)合,根號開偶次方在分母上時:根號下大于0。

5、指數(shù)函數(shù)形式時:底數(shù)和指數(shù)都含有x,指數(shù)底數(shù)大于0且不等于1。

6、對數(shù)函數(shù)形式,自變量只出現(xiàn)在真數(shù)上時,只需滿足真數(shù)上所有式子大于0,自變量同時出現(xiàn)在底數(shù)和真數(shù)上時,要同時滿足真數(shù)大于0,底數(shù)要大0且不等于1。

1、給出了定義域就是給出了所給式子中x的取值范圍。

2、在同在同一個題中x不是同一個x。

3、只要對應關(guān)系不變,括號的取值范圍不變。

4、求抽象函數(shù)的定義域,關(guān)鍵在于求函數(shù)的取值范圍,及括號的取值范圍。

復合函數(shù)定義域:理解復合函數(shù)就是可以看作由幾個我們熟悉的函數(shù)組成的函數(shù),或是可以看作幾個函數(shù)組成一個新的函數(shù)形式。

函數(shù)的定義教案篇十四

自定義函數(shù)是編程中的重要組成部分,也是實現(xiàn)代碼重用的機制。在學習自定義函數(shù)的過程中,我們需要深入了解它的實現(xiàn)原理以及如何在實際編程中靈活運用。在本篇文章中,我將分享我學習自定義函數(shù)的心得和體會。

第二段:自定義函數(shù)的基本概念

自定義函數(shù)是一段封裝好的可重復使用的代碼塊,它被封裝在一個名稱下,來實現(xiàn)某種特定的功能。自定義函數(shù)可以被多次調(diào)用,重復使用,從而節(jié)省代碼量,提高代碼復用性和可維護性。自定義函數(shù)的基本語法包括函數(shù)名、參數(shù)列表、函數(shù)體和返回語句等。

第三段:實驗過程中的收獲

在實驗中,我通過編寫多個自定義函數(shù),加深了對函數(shù)的理解。在實踐中,我學會了如何創(chuàng)建和調(diào)用自定義函數(shù),以及如何在定義函數(shù)時設(shè)置參數(shù)和返回值。這使我更好地掌握了函數(shù)的使用方法和意義,并能夠更好地運用自定義函數(shù)解決實際問題。

第四段:應用實例

在應用自定義函數(shù)時,我們可以結(jié)合其他程序語言特性來實現(xiàn)更加復雜的操作。例如,我們可以結(jié)合條件判斷語句、循環(huán)語句等實現(xiàn)更復雜的功能。自定義函數(shù)可以作為其他程序塊的模塊進行調(diào)用,是提高代碼重用率和可維護性的不二選擇。

第五段:總結(jié)

總的來說,自定義函數(shù)是學習編程必須掌握的重要技能。在學習的過程中,要深入理解函數(shù)的基本概念,多寫、多試、多調(diào),才能帶來更多的收獲。在應用自定義函數(shù)的時候,我們要靈活運用各種語言特性,提高代碼的重用和可維護性。自定義函數(shù)的使用不僅是一種工具,更體現(xiàn)了編程思維的核心精髓。

函數(shù)的定義教案篇十五

(二)能畫出簡單函數(shù)的圖象,會列表、描點、連線;。

(三)能從圖象上由自變量的值求出對應的函數(shù)的近似值。

重點:認識函數(shù)圖象的意義,會對簡單的函數(shù)列表、描點、連線畫出函數(shù)圖象。

難點:對已恬圖象能讀圖、識圖,從圖象解釋函數(shù)變化關(guān)系。

1.什么叫函數(shù)?

2.什么叫平面直角坐標系?

3.在坐標平面內(nèi),什么叫點的橫坐標?什么叫點的.縱坐標?

4.如果點a的橫坐標為3,縱坐標為5,請用記號表示a(3,5).

5.請在坐標平面內(nèi)畫出a點。

6.如果已知一個點的坐標,可在坐標平面內(nèi)畫出幾個點?反過來,如果坐標平面內(nèi)的一個點確定,這個點的坐標有幾個?這樣的點和坐標的對應關(guān)系,叫做什么對應?(答:叫做坐標平面內(nèi)的點與有序?qū)崝?shù)對一一對應)。

我們在前幾節(jié)課已經(jīng)知道,函數(shù)關(guān)系可以用解析式表示,像y=2x+1就表示以x為自變量時,y是x的函數(shù)。

這個函數(shù)關(guān)系中,y與x的函數(shù)。

這個函數(shù)關(guān)系中,y與x的對應關(guān)系,我們還可通知在坐標平面內(nèi)畫出圖象的方法來表示。

函數(shù)的定義教案篇十六

1、變量:在一個變化過程中可以取不同數(shù)值的量。

常量:在一個變化過程中只能取同一數(shù)值的量。

2、函數(shù):一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。

判斷y是否為x的函數(shù),只要看x取值確定的時候,y是否有唯一確定的值與之對應。

3、定義域:一般的,一個函數(shù)的自變量允許取值的范圍,叫做這個函數(shù)的定義域。

(2)關(guān)系式含有分式時,分式的分母不等于零;。

(3)關(guān)系式含有二次根式時,被開放方數(shù)大于等于零;。

(4)關(guān)系式中含有指數(shù)為零的式子時,底數(shù)不等于零;。

(5)實際問題中,函數(shù)定義域還要和實際情況相符合,使之有意義。

5、函數(shù)的解析式:用含有表示自變量的字母的代數(shù)式表示因變量的式子叫做函數(shù)的解析式。

一般來說,對于一個函數(shù),如果把自變量與函數(shù)的每對對應值分別作為點的橫、縱坐標,那么坐標平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖象.

7、描點法畫函數(shù)圖形的一般步驟。

第一步:列表(表中給出一些自變量的值及其對應的函數(shù)值);。

第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。

8、函數(shù)的表示方法。

列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數(shù)之間的對應規(guī)律。

解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數(shù)之間的相依關(guān)系,但有些實際問題中的函數(shù)關(guān)系,不能用解析式表示。

圖象法:形象直觀,但只能近似地表達兩個變量之間的函數(shù)關(guān)系。

函數(shù)的定義教案篇十七

(1)是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應用,也是今后學習對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應用,所以應重點研究.

(2)本節(jié)的教學重點是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì).難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.

(3)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.

教法建議。

(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是.

(2)對底數(shù)的限制條件的理解與認識也是認識的重要內(nèi)容.如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對的認識及性質(zhì)的分類討論,還關(guān)系到后面學習對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來.

關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象.

函數(shù)的定義教案篇十八

(二)解析:本節(jié)課要學的內(nèi)容指的是會判定函數(shù)在某個區(qū)間上的單調(diào)性、會確定函數(shù)的單調(diào)區(qū)間、能證明函數(shù)的單調(diào)性,其關(guān)鍵是利用形式化的定義處理有關(guān)的單調(diào)性問題,理解它關(guān)鍵就是要學會轉(zhuǎn)換式子。學生已經(jīng)掌握了函數(shù)單調(diào)性的定義、代數(shù)式的變換、函數(shù)的概念等知識,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的應用。教學的重點是應用定義證明函數(shù)在某個區(qū)間上的單調(diào)性,解決重點的關(guān)鍵是嚴格按過程進行證明。

二、教學目標及解析。

(一)教學目標:

掌握用定義證明函數(shù)單調(diào)性的步驟,會求函數(shù)的單調(diào)區(qū)間,提高應用知識解決問題的能力。

(二)解析:

會證明就是指會利用三步曲證明函數(shù)的單調(diào)性;會求函數(shù)的單調(diào)區(qū)間就是指會利用函數(shù)的圖象寫出單調(diào)增區(qū)間或減區(qū)間;應用知識解決問題就是指能利用函數(shù)單調(diào)性的意義去求參變量的取值情況或轉(zhuǎn)化成熟悉的問題。

三、問題診斷分析。

在本節(jié)課的教學中,學生可能遇到的問題是如何才能準確確定的符號,產(chǎn)生這一問題的原因是學生對代數(shù)式的恒等變換不熟練。要解決這一問題,就是要根據(jù)學生的實際情況進行知識補習,特別是因式分解、二次根式中的分母有理化的補習。

在本節(jié)課的教學中,準備使用(),因為使用(),有利于()。

函數(shù)的定義教案篇十九

1.使學生掌握的概念,圖象和性質(zhì).

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域.

(2)能在基本性質(zhì)的指導下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質(zhì).

(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象.

2.通過對的概念圖象性質(zhì)的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.

3.通過對的研究,讓學生認識到數(shù)學的應用價值,激發(fā)學生學習數(shù)學的興趣.使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題.

函數(shù)的定義教案篇二十

值域。

名稱定義。

(1)化歸法;(2)圖象法(數(shù)形結(jié)合),

(3)函數(shù)單調(diào)性法,

關(guān)于函數(shù)值域誤區(qū)。

定義域、對應法則、值域是函數(shù)構(gòu)造的三個基本“元件”。平時數(shù)學中,實行“定義域優(yōu)先”的原則,無可置疑。然而事物均具有二重性,在強化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學生對函數(shù)的掌握時好時壞,事實上,定義域與值域二者的位置是相當?shù)模^不能厚此薄皮,何況它們二者隨時處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運算性質(zhì)有時并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的取值情況。才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實踐證明,如果加強了對值域求法的研究和討論,有利于對定義域內(nèi)函的理解,從而深化對函數(shù)本質(zhì)的認識。

“范圍”與“值域”相同嗎?

“范圍”與“值域”是我們在學習中經(jīng)常遇到的兩個概念,許多同學常常將它們混為一談,實際上這是兩個不同的概念?!爸涤颉笔撬泻瘮?shù)值的集合(即集合中每一個元素都是這個函數(shù)的取值),而“范圍”則只是滿足某個條件的一些值所在的集合(即集合中的元素不一定都滿足這個條件)。也就是說:“值域”是一個“范圍”,而“范圍”卻不一定是“值域”。

二.數(shù)學的學習方法。

1.數(shù)學要求具備熟練的計算能力,所以課后還有做足一定量的練習題,只有通過做題練習才能擁有計算能力。

2.課前要做好預習,這樣上數(shù)學課時才能把不會的知識點更好的消化吸收掉。

3.數(shù)學公式一定要記熟,并且還要會推導,能舉一反三。

4.數(shù)學重在理解,在開始學習知識的時候,一定要弄懂。所以上課要認真聽講,看看老師是怎樣講解的。

5.數(shù)學80%的分數(shù)來源于基礎(chǔ)知識,20%的分數(shù)屬于難點,所以考120分并不難。

6.數(shù)學需要沉下心去做,浮躁的人很難學好數(shù)學,踏踏實實做題才是硬道理。

7.數(shù)學要想學好,不琢磨是行不通的,遇到難題不能躲,研究明白了才能罷休。

8.數(shù)學最主要的就是解題過程,懂得數(shù)學思維很關(guān)鍵,思路通了,數(shù)學自然就會了。

9.數(shù)學不是用來看的,而是用來算的,或許這一秒沒思路,當你拿起筆開始計算的那一秒,就豁然開朗了。

10.數(shù)學題目不會做,原因之一就是例題沒研究明白,所以數(shù)學書上的例題絕對不要放過。

點擊。

函數(shù)的定義教案篇二十一

f(x)是函數(shù)的符號,它代表函數(shù)圖象上每一個點的縱坐標的數(shù)值,因此函數(shù)圖像上所有點的縱坐標構(gòu)成一個集合,這個集合就是函數(shù)的值域。x是自變量,它代表著函數(shù)圖象上每一點的橫坐標,自變量的取值范圍就是函數(shù)的定義域。f是對應法則的代表,它可以由f(x)的解析式?jīng)Q定。例如:f(x)=x^2+1,f代表的是把自變量x先平方再加1。x2+1的取值范圍(x2+1≥1)就是f(x)=x2+1的值域。如果說你弄清了上述問題,僅僅是對函數(shù)f(x)有了一個初步的認識,我們還需要對f(x)有更深刻的了解。

函數(shù)的定義教案篇二十二

函數(shù)定義域?qū)瘮?shù)圖象、解析式等都起著決定性的作用,要使得函數(shù)解析式中的所有式子有意義,需要找出所有對函數(shù)自變量有限制的條件,進而求出函數(shù)的定義域。以下幾種情況需要同學們格外注意:

1、關(guān)系式為整式時,函數(shù)定義域為全體實數(shù);

2、關(guān)系式含有分式時,分式的分母不等于零;

3、關(guān)系式含有二次根式時,被開放方數(shù)大于等于零;

4、關(guān)系式中含有指數(shù)為零的式子時,底數(shù)不等于零;

5、實際問題中,函數(shù)定義域還要和實際情況相符合,使之有意義。

【本文地址:http://mlvmservice.com/zuowen/8782877.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔