高一數(shù)學(xué)課教案(模板19篇)

格式:DOC 上傳日期:2023-11-05 14:31:15
高一數(shù)學(xué)課教案(模板19篇)
時間:2023-11-05 14:31:15     小編:字海

教案應(yīng)該符合學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)特點,有利于激發(fā)學(xué)生的學(xué)習(xí)興趣和提高學(xué)習(xí)效果。編寫教案時,要結(jié)合學(xué)科特點和學(xué)生的實際情況。教案范文的分享,希望能夠為你的備課工作提供一些參考和思路。

高一數(shù)學(xué)課教案篇一

(2)理解任意角的三角函數(shù)不同的定義方法;。

(4)掌握并能初步運用公式一;。

(5)樹立映射觀點,正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù).

初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號.最后主要是借助有向線段進(jìn)一步認(rèn)識三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).

任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點.過去習(xí)慣于用角的終邊上點的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運算才能得到,這與函數(shù)值是一個確定的實數(shù)也有不同,這些都會影響學(xué)生對三角函數(shù)概念的理解.

本節(jié)利用單位圓上點的`坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù).這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應(yīng)關(guān)系,也表明了這兩個函數(shù)之間的關(guān)系.

教學(xué)重難點。

重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).

難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解.

高一數(shù)學(xué)課教案篇二

設(shè)計

突出重點.培養(yǎng)能力.

三、課堂練習(xí)

教材第13頁練習(xí)1、2、3、4.

【助練習(xí)】第13頁練習(xí)4(1)中用一個方向的斜平行線段表示,用另一方向的平行線段表示如圖:

凡有陰影部分即為所求.

四、小結(jié)

提綱式(略).再一次突出交集和并集兩個概念中“且”,“或”的含義的不同.

五、作業(yè)

習(xí)題1至8.

筆練結(jié)合板書.

傾聽.修改練習(xí).掌握方法.

觀察.思考.傾聽.理解.記憶.

傾聽.理解.記憶.

回憶、再現(xiàn)內(nèi)容.

落實

介紹解題技能技巧.

內(nèi)容條理化.

課堂教學(xué)設(shè)計說明

2.反演律可根據(jù)學(xué)生實際酌情使用.

高一數(shù)學(xué)課教案篇三

1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。

(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)確定的。

(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式。

(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的`前幾項。

2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。

3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。

(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等。

(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強(qiáng)調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。

(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應(yīng)精心設(shè)計例題,使這一例題為寫通項公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助。

(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學(xué)生學(xué)習(xí)中的一個難點,要幫助學(xué)生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等。如果學(xué)生一時不能寫出通項公式,可讓學(xué)生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系。

(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況。

(6)給出一些簡單數(shù)列的通項公式,可以求其項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運用函數(shù)知識是可以解決的。

高一數(shù)學(xué)課教案篇四

使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進(jìn)步的需要。具體目標(biāo)如下。

1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。

3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。

4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。

5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。 6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)(a版)》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時代性,典型性和可接受性等到,具有如下特點:

1.親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。

2.問題性:以恰時恰點的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。

3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。

4.時代性與應(yīng)用性:以具有時代性和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動,發(fā)展應(yīng)用意識。

1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個究竟的沖動,以達(dá)到培養(yǎng)其興趣的目的。

2. 通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進(jìn)學(xué)生的學(xué)習(xí)方式。

3. 在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。

兩個班一個普高一個職高,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時時提醒學(xué)生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點在于培養(yǎng)學(xué)生的計算能力,同時要進(jìn)一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機(jī)補(bǔ)充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學(xué)時只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實一個知識點,掌握一個知識點。

1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。

2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的`知識出發(fā),啟發(fā)學(xué)生思考。

3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。

6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。

俗話說的好,好的教學(xué)計劃是教學(xué)成功的一半,作為一名優(yōu)異的教師,做好一定的教學(xué)計劃很有必要。

總結(jié):制定教學(xué)計劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。希望上面的,能受到大家的歡迎!

高一數(shù)學(xué)課教案篇五

1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號及它們之間的關(guān)系

2、了解集合的運算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的一般思想

3、了解集合元素個數(shù)問題的討論說明

通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法

培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維

[教學(xué)重點、難點]:會正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實物投影儀

[教學(xué)方法]:講練結(jié)合法

[授課類型]:復(fù)習(xí)課

[課時安排]:1課時

[教學(xué)過程]:集合部分匯總

本單元主要介紹了以下三個問題:

1,集合的含義與特征

2,集合的表示與轉(zhuǎn)化

3,集合的基本運算

一,集合的含義與表示(含分類)

1,具有共同特征的對象的全體,稱一個集合

2,集合按元素的個數(shù)分為:有限集和無窮集兩類

高一數(shù)學(xué)課教案篇六

探究研究型

通過一系列的猜想得出德.摩根律,但是這個結(jié)論僅僅是猜想,數(shù)學(xué)是一門科學(xué),所以需要論證它的正確性,因此本節(jié)通過剖析維恩圖的四部分來驗證猜想的正確性,并對德摩根律進(jìn)行簡單的應(yīng)用,因此我們制作了本微課.

一、片頭

內(nèi)容:現(xiàn)在讓我們一起來學(xué)習(xí)《集合的運算——自己探索也能發(fā)現(xiàn)的'數(shù)學(xué)規(guī)律(第二講)》。

二、正文講解

1.引入:牛頓曾說過:“沒有大膽的猜測,就做不出偉大的發(fā)現(xiàn)?!?/p>

那么,這個規(guī)律是偶然的.,還是一個恒等式呢?

2.規(guī)律的驗證:

3.抽象概括:通過我們的觀察和驗證,我們發(fā)現(xiàn)這個規(guī)律是一個恒等式。

而這個規(guī)律就是180年前的英國數(shù)學(xué)家德摩根發(fā)現(xiàn)的。

為了紀(jì)念他,我們將它稱為德摩根律。

原來我們通過自己的探索也能發(fā)現(xiàn)這么偉大的數(shù)學(xué)規(guī)律。

三、結(jié)尾

通過這在道題的解答,我們發(fā)現(xiàn)德摩根律為解答集合運算問題提供了更為簡便的方法。

希望你在今后的學(xué)習(xí)中,勇于探索,發(fā)現(xiàn)更多有趣的規(guī)律。

高一數(shù)學(xué)課教案篇七

1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì)

2、掌握標(biāo)準(zhǔn)方程中的幾何意義

3、能利用上述知識進(jìn)行相關(guān)的論證、計算、作雙曲線的草圖以及解決簡單的實際問題

1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、

2、頂點間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、

3、雙曲線的漸進(jìn)線方程為、

4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、

探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、

探究2、雙曲線與其漸近線具有怎樣的關(guān)系、

練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、

例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、

(1)過點,離心率、

(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、

例3(理)求離心率為,且過點的雙曲線標(biāo)準(zhǔn)方程、

2、橢圓的離心率為,則雙曲線的離心率為、

3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、

4、設(shè)雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、

將本文的word文檔下載到電腦,方便收藏和打印

推薦度:

點擊下載文檔

搜索文檔

高一數(shù)學(xué)課教案篇八

2.掌握標(biāo)準(zhǔn)方程中的幾何意義

3.能利用上述知識進(jìn)行相關(guān)的論證、計算、作雙曲線的草圖以及解決簡單的實際問題

一、預(yù)習(xí)檢查

1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為.

2、頂點間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為.

3、雙曲線的漸進(jìn)線方程為.

4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是.

二、問題探究

探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同.

探究2、雙曲線與其漸近線具有怎樣的關(guān)系.

練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是.

例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程.

(1)過點,離心率.

(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為.

例2已知雙曲線,直線過點,左焦點到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率.

例3(理)求離心率為,且過點的雙曲線標(biāo)準(zhǔn)方程.

三、思維訓(xùn)練

1、已知雙曲線方程為,經(jīng)過它的右焦點,作一條直線,使直線與雙曲線恰好有一個交點,則設(shè)直線的斜率是.

2、橢圓的離心率為,則雙曲線的離心率為.

3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=.

4、(理)設(shè)是雙曲線上一點,雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點,若,則.

四、知識鞏固

1、已知雙曲線方程為,過一點(0,1),作一直線,使與雙曲線無交點,則直線的斜率的集合是.

2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點,相應(yīng)的焦點為,若以為直徑的圓恰好過點,則離心率為.

3、已知雙曲線的左,右焦點分別為,點在雙曲線的右支上,且,則雙曲線的離心率的值為.

4、設(shè)雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率.

5、(理)雙曲線的焦距為,直線過點和,且點(1,0)到直線的距離與點(-1,0)到直線的距離之和.求雙曲線的離心率的取值范圍.

高一數(shù)學(xué)課教案篇九

1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì)。

2、掌握標(biāo)準(zhǔn)方程中的幾何意義。

3、能利用上述知識進(jìn)行相關(guān)的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。

1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、

2、頂點間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、

3、雙曲線的漸進(jìn)線方程為、

探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、

探究2、雙曲線與其漸近線具有怎樣的關(guān)系、

例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、

(1)過點,離心率、

(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、

例3(理)求離心率為,且過點的雙曲線標(biāo)準(zhǔn)方程、

2、橢圓的離心率為,則雙曲線的離心率為、

3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、

高一數(shù)學(xué)課教案篇十

1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號及它們之間的關(guān)系。

2、了解集合的運算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的`一般思想。

3、了解集合元素個數(shù)問題的討論說明。

通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法。

培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維。

[教學(xué)重點、難點]:會正確應(yīng)用其概念和性質(zhì)做題[教具]:多媒體、實物投影儀。

[教學(xué)方法]:講練結(jié)合法。

[授課類型]:復(fù)習(xí)課。

[課時安排]:1課時。

[教學(xué)過程]:集合部分匯總。

本單元主要介紹了以下三個問題:

1,集合的含義與特征。

2,集合的表示與轉(zhuǎn)化。

3,集合的基本運算。

一,集合的含義與表示(含分類)。

1,具有共同特征的對象的全體,稱一個集合。

2,集合按元素的個數(shù)分為:有限集和無窮集兩類。

高一數(shù)學(xué)課教案篇十一

教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號及術(shù)語。

教學(xué)過程:

一、閱讀下列語句:

1)全體自然數(shù)0,1,2,3,4,5,

2)代數(shù)式.

3)拋物線上所有的點

4)今年本校高一(1)(或(2))班的全體學(xué)生

5)本校實驗室的所有天平

6)本班級全體高個子同學(xué)

7)著名的科學(xué)家

上述每組語句所描述的對象是否是確定的?

二、1)集合:

2)集合的元素:

3)集合按元素的個數(shù)分,可分為1)__________2)_________

三、集合中元素的'三個性質(zhì):

四、元素與集合的關(guān)系:1)____________2)____________

五、特殊數(shù)集專用記號:

4)有理數(shù)集______5)實數(shù)集_____6)空集____

六、集合的表示方法:

1)

2)

3)

七、例題講解:

例1、中三個元素可構(gòu)成某一個三角形的三邊長,那么此三角形一定不是()

a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形

例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑?,然后說出它們是有限集還是無限集?

1)地球上的四大洋構(gòu)成的集合;

2)函數(shù)的全體值的集合;

3)函數(shù)的全體自變量的集合;

4)方程組解的集合;

5)方程解的集合;

6)不等式的解的集合;

7)所有大于0且小于10的奇數(shù)組成的集合;

8)所有正偶數(shù)組成的集合;

例3、用符號或填空:

1)______q,0_____n,_____z,0_____

2)______,_____

3)3_____,

4)設(shè),,則

例4、用列舉法表示下列集合;

1.

2.

3.

4.

例5、用描述法表示下列集合

1.所有被3整除的數(shù)

2.圖中陰影部分點(含邊界)的坐標(biāo)的集合

課堂練習(xí):

例7、已知:,若中元素至多只有一個,求的取值范圍。

思考題:數(shù)集a滿足:若,則,證明1):若2,則集合中還有另外兩個元素;2)若則集合a不可能是單元素集合。

小結(jié):

作業(yè)班級姓名學(xué)號

1.下列集合中,表示同一個集合的是()

a.m=,n=b.m=,n=

c.m=,n=d.m=,n=

2.m=,x=,y=,,.則()

a.b.c.d.

3.方程組的解集是____________________.

4.在(1)難解的題目,(2)方程在實數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.

5.設(shè)集合a=,b=,

c=,d=,e=。

其中有限集的個數(shù)是____________.

6.設(shè),則集合中所有元素的和為

7.設(shè)x,y,z都是非零實數(shù),則用列舉法將所有可能的值組成的集合表示為

8.已知f(x)=x2-ax+b,(a,br),a=,b=,

若a=,試用列舉法表示集合b=

9.把下列集合用另一種方法表示出來:

(1)(2)

(3)(4)

10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說明理由。

11.已知集合a=

(1)若a中只有一個元素,求a的值,并求出這個元素;

(2)若a中至多只有一個元素,求a的取值集合。

12.若-3,求實數(shù)a的值。

【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來幫助!

高一數(shù)學(xué)課教案篇十二

1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路

(1)分析,(2)建模,(3)求解,(4)檢驗;

2、實際問題中的有關(guān)術(shù)語、名稱:

(1)仰角與俯角:均是指視線與水平線所成的角;

(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;

(3)方向角:常見的`如:正東方向、東南方向、北偏東、南偏西等;

3、用正弦余弦定理解實際問題的常見題型有:

測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;

1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路

(1)分析,(2)建模,(3)求解,(4)檢驗;

2、實際問題中的有關(guān)術(shù)語、名稱:

(1)仰角與俯角:均是指視線與水平線所成的角;

(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;

(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;

3、用正弦余弦定理解實際問題的常見題型有:

測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;

一、知識歸納

1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路

(1)分析,(2)建模,(3)求解,(4)檢驗;

2、實際問題中的有關(guān)術(shù)語、名稱:

(1)仰角與俯角:均是指視線與水平線所成的角;

(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;

(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;

3、用正弦余弦定理解實際問題的常見題型有:

測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;

二、例題討論

一)利用方向角構(gòu)造三角形

四)測量角度問題

例4、在一個特定時段內(nèi),以點e為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點e正北55海里處有一個雷達(dá)觀測站a.某時刻測得一艘勻速直線行駛的船只位于點a北偏東。

高一數(shù)學(xué)課教案篇十三

(1)掌握斜二測畫法畫水平設(shè)置的平面圖形的直觀圖。

(2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。

2.過程與方法。

學(xué)生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。

3.情感態(tài)度與價值觀。

(1)提高空間想象力與直觀感受。

(2)體會對比在學(xué)習(xí)中的作用。

(3)感受幾何作圖在生產(chǎn)活動中的應(yīng)用。

高一數(shù)學(xué)課教案篇十四

三維目標(biāo)的具體內(nèi)容和層次劃分

請闡述數(shù)學(xué)課堂教學(xué)三維目標(biāo)的具體內(nèi)容和層次劃分

所謂三維目標(biāo)是是指:“知識與技能”,“過程和方法”、“情感、態(tài)度、價值觀”。

知識與技能:既是課堂教學(xué)的出發(fā)點,又是課堂教學(xué)的歸宿。我們在教學(xué)過程中,需要學(xué)生掌握什么,哪些些問題需要重點掌握,哪些只需簡單理解;技能是會與不會的問題。屬顯性范疇,具有可測性,大都采用定量分析與評價、知識與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國傳統(tǒng)教育教學(xué)的優(yōu)勢,應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚。新課改不是不要雙基,而是不要過度的強(qiáng)調(diào)雙基,而舍棄弱化其它有價值的東西,導(dǎo)致非全面、不和藹的發(fā)展。

過程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)?!斑^程和方法”維度的目標(biāo)立足于讓學(xué)生會學(xué),新課程倡導(dǎo)對學(xué)與教的過程的體驗、方法的選擇,是在知識與能力目標(biāo)基礎(chǔ)上對教學(xué)目標(biāo)的進(jìn)一步開發(fā)。過程與方法是一個體驗的過程、發(fā)現(xiàn)的過程,不但可以讓學(xué)生體驗到科學(xué)發(fā)展的過程,我們更多地要讓學(xué)生掌握過程,不一定要統(tǒng)一的結(jié)果。

情感、態(tài)度與價值觀:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動力系統(tǒng)。“情感、態(tài)度和價值觀”,目標(biāo)立足于讓學(xué)生樂學(xué),新課程倡導(dǎo)對學(xué)與教的情感體驗、態(tài)度形成、價值觀的體現(xiàn),是在知識與能力、過程與方法目標(biāo)基礎(chǔ)上對教學(xué)目標(biāo)深層次的開拓,只有學(xué)生充分的認(rèn)識到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來回報社會。

三維目標(biāo)不是三個目標(biāo),也不是三種目標(biāo),是一個問題的三個方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。

高一數(shù)學(xué)課教案篇十五

1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.

(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.

(2)能從數(shù)和形兩個角度認(rèn)識單調(diào)性和奇偶性.

(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.

2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.

3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗,培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.

(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.

(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.

(1)本節(jié)教學(xué)的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識.教學(xué)的難點是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.

(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點.

(1)函數(shù)單調(diào)性概念引入時,可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性認(rèn)識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認(rèn)識就可以融入其中,將概念的形成與認(rèn)識結(jié)合起來.

(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.

函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來.經(jīng)歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數(shù)多個等式,是個恒等式.關(guān)于定義域關(guān)于原點對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象說明定義域關(guān)于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.

高一數(shù)學(xué)課教案篇十六

復(fù)習(xí)要求】熟悉與數(shù)列知識相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實際問題的能力,強(qiáng)化應(yīng)用儀式。

方法規(guī)律】應(yīng)用數(shù)列知識界實際應(yīng)用問題的關(guān)鍵是通過對實際問題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項,公差或公比等基本元素,然后設(shè)計合理的計算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。

一、基礎(chǔ)訓(xùn)練。

a、511b、512c、1023d、1024。

2、若一工廠的生產(chǎn)總值的月平均增長率為p,則年平均增長率為。

a、b、

c、d、

二、典型例題。

例4、流行性感冒簡稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù)。

高一數(shù)學(xué)課教案篇十七

“解三角形”既是高中數(shù)學(xué)的.基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內(nèi)容從知識體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識的基礎(chǔ)上,通過對三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗“觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識。

二、學(xué)情分析

我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識和技能還不高。但是,大多數(shù)學(xué)生對數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯的表現(xiàn)。

三、教學(xué)目標(biāo)

1、知識和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。

過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對現(xiàn)實世界的一些數(shù)學(xué)模型進(jìn)行思考。

情感、態(tài)度、價值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時,通過實際問題的探討、解決,讓學(xué)生體驗學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。

2、教學(xué)重點、難點

教學(xué)重點:正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應(yīng)用。

教學(xué)難點:正弦定理證明及應(yīng)用。

四、教學(xué)方法與手段

為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實物投影儀等教學(xué)手段來激發(fā)興趣、突出重點,突破難點,提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。

五、教學(xué)過程

為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點,突破難點,同時本著貼近生活、貼近學(xué)生、貼近時代的原則,我設(shè)計了這樣的教學(xué)過程:

(一)創(chuàng)設(shè)情景,揭示課題

問題2:在現(xiàn)在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題,其實并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)

[設(shè)計說明]引用教材本章引言,制造知識與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識的興趣。

(二)特殊入手,發(fā)現(xiàn)規(guī)律

引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理。

(三)類比歸納,嚴(yán)格證明

高一數(shù)學(xué)課教案篇十八

重難點分析

本節(jié)的重點是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計算進(jìn)行,而二次根式的化簡不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運算性質(zhì),還要牽涉到絕對值以及各種非負(fù)數(shù)、因式分解等知識,在應(yīng)用中常常需要對字母進(jìn)行分類討論.

本節(jié)的難點是正確理解與應(yīng)用公式.這個公式的表達(dá)形式對學(xué)生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯誤.

教法建議

1.性質(zhì)的引入方法很多,以下2種比較常用:

(1)設(shè)計問題引導(dǎo)啟發(fā):由設(shè)計的問題

1)、、各等于什么?

2)、、各等于什么?

啟發(fā)、引導(dǎo)學(xué)生猜想出

(2)從算術(shù)平方根的意義引入.

2.性質(zhì)的鞏固有兩個方面需要注意:

(1)注意與性質(zhì)進(jìn)行對比,可出幾道類型不同的題進(jìn)行比較;

(2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時要注意細(xì)分層次加以鞏固,如單個數(shù)字,單個字母,單項式,可進(jìn)行因式分解的多項式,等等.

(第1課時)

1.掌握二次根式的性質(zhì)

2.能夠利用二次根式的性質(zhì)化簡二次根式

3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法

對比、歸納、總結(jié)

1.重點:理解并掌握二次根式的性質(zhì)

2.難點:理解式子中的可以取任意實數(shù),并能根據(jù)字母的取值范圍正確地化簡有關(guān)的二次根式.

1課時

五、教b具學(xué)具準(zhǔn)備

投影儀、膠片、多媒體

復(fù)習(xí)對比,歸納整理,應(yīng)用提高,以學(xué)生活動為主

一、導(dǎo)入新課

我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.

問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?

答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實數(shù).

二、新課

計算下列各題,并回答以下問題:

(1);(2);(3);

1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?

2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?

3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.

高一數(shù)學(xué)課教案篇十九

把實物圓柱放在講臺上讓學(xué)生畫。

2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。

(二)研探新知。

1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時給予點評。

畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結(jié)這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結(jié)為確定點的位置的畫法。強(qiáng)調(diào)斜二測畫法的步驟。

練習(xí)反饋。

根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨立完成后,教師檢查。

2.例2,用斜二測畫法畫水平放置的圓的直觀圖。

教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構(gòu)造出一些點。

教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點,與學(xué)生共同完成例2并詳細(xì)板書畫法。

3.探求空間幾何體的直觀圖的畫法。

(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。

教師引導(dǎo)學(xué)生完成,要注意對每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。

(2)投影出示幾何體的三視圖。

請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握圖形尺寸大小之間的關(guān)系。

4.平行投影與中心投影。

投影出示課本p23圖,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。

5.鞏固練習(xí),課本p25練習(xí)1,2,3。

三、歸納整理。

學(xué)生回顧斜二測畫法的關(guān)鍵與步驟。

四、作業(yè)。

1.書畫作業(yè),課本p25習(xí)題1—3a組和b組。

【本文地址:http://mlvmservice.com/zuowen/7891905.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔