優(yōu)質(zhì)平方差公式教案設(shè)計(jì)意圖(通用13篇)

格式:DOC 上傳日期:2023-11-04 09:08:09
優(yōu)質(zhì)平方差公式教案設(shè)計(jì)意圖(通用13篇)
時(shí)間:2023-11-04 09:08:09     小編:LZ文人

教案是教師進(jìn)行評(píng)價(jià)和反思的重要依據(jù)和參考。教案的設(shè)計(jì)要注重培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力,提高教學(xué)的針對(duì)性和實(shí)效性。以下是小編為大家整理的教案范本,供大家參考。希望能夠幫助到廣大教師更好地編寫(xiě)教案,提高教學(xué)質(zhì)量。教案的質(zhì)量和準(zhǔn)備程度直接關(guān)系到課堂教學(xué)的效果和學(xué)生的學(xué)習(xí)效果,所以我們應(yīng)該認(rèn)真對(duì)待每一堂課的教案編寫(xiě)工作,注重細(xì)節(jié),保證教學(xué)的科學(xué)性和有效性。

平方差公式教案設(shè)計(jì)意圖篇一

本節(jié)課是圍繞“引導(dǎo)學(xué)生有效預(yù)習(xí)”的課題設(shè)計(jì)的,通過(guò)預(yù)設(shè)的問(wèn)題引發(fā)學(xué)生思考,在學(xué)生的預(yù)習(xí)基礎(chǔ)上回答相關(guān)的問(wèn)題,產(chǎn)生對(duì)整式的乘法、提公因式法和公式法的對(duì)比。

讓學(xué)生充分自主的對(duì)知識(shí)產(chǎn)生探究,同時(shí)利用數(shù)形結(jié)合的思想驗(yàn)證平方差公式;再通過(guò)質(zhì)疑的方式加深對(duì)平方差公式結(jié)構(gòu)特征的認(rèn)識(shí),有助于讓學(xué)生在應(yīng)用平方差公式行分解因式時(shí)注意到它的前提條件;通過(guò)例題練習(xí)的鞏固,讓學(xué)生把握教材,吃透教材,讓學(xué)生更加熟練、準(zhǔn)確,起到強(qiáng)化、鞏固的作用,讓學(xué)生領(lǐng)會(huì)換元的思想,達(dá)到初步發(fā)展學(xué)生綜合應(yīng)用的能力。

本節(jié)課是運(yùn)用提公因式法后公式法的第一課時(shí)——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應(yīng)用,它是解高次方程的基礎(chǔ),在教材中具有重要的地位。在教材的處理上以學(xué)生的自主探索為主,在原有用平方差公式進(jìn)行整式乘法計(jì)算的知識(shí)的基礎(chǔ)上充分認(rèn)識(shí)分解因式。明確因式分解是乘法公式的一種恒等變形,讓學(xué)生學(xué)會(huì)合情推理的能力,同時(shí)也培養(yǎng)了學(xué)生愛(ài)思考,善交流的良好學(xué)習(xí)慣。

(一)知識(shí)與技能

1.掌握運(yùn)用平方差公式分解因式的方法。

2.掌握提公因式法、平方差公式分解因式的綜合應(yīng)用。

(二)過(guò)程與方法

1.經(jīng)歷探究分解因式方法的過(guò)程,體會(huì)整式乘法與分解因式之間的聯(lián)系。

2.通過(guò)乘法公式:(a+b)(a-b)=a2-b2逆向變形,進(jìn)一步發(fā)展觀察、歸納、類(lèi)比、概括等能力,發(fā)展有條理地思考及語(yǔ)言表達(dá)能力。

3.通過(guò)活動(dòng)4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達(dá)化,培養(yǎng)學(xué)生的化歸思想。

4.通過(guò)活動(dòng)1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2 =(a+b)(a-b)。

5.通過(guò)活動(dòng)4,讓學(xué)生自己發(fā)現(xiàn)問(wèn)題,提出問(wèn)題,然后解決問(wèn)題,體會(huì)在解決問(wèn)題的過(guò)程中與他人合作的重要性。

(三)情感與態(tài)度

1.通過(guò)探究平方差公式,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志,建立自己信心。

平方差公式教案設(shè)計(jì)意圖篇二

本節(jié)課是圍繞“引導(dǎo)學(xué)生有效預(yù)習(xí)”的課題設(shè)計(jì)的,通過(guò)預(yù)設(shè)的問(wèn)題引發(fā)學(xué)生思考,在學(xué)生的預(yù)習(xí)基礎(chǔ)上回答相關(guān)的'問(wèn)題,產(chǎn)生對(duì)整式的乘法、提公因式法和公式法的對(duì)比。

讓學(xué)生充分自主的對(duì)知識(shí)產(chǎn)生探究,同時(shí)利用數(shù)形結(jié)合的思想驗(yàn)證平方差公式;再通過(guò)質(zhì)疑的方式加深對(duì)平方差公式結(jié)構(gòu)特征的認(rèn)識(shí),有助于讓學(xué)生在應(yīng)用平方差公式行分解因式時(shí)注意到它的前提條件;通過(guò)例題練習(xí)的鞏固,讓學(xué)生把握教材,吃透教材,讓學(xué)生更加熟練、準(zhǔn)確,起到強(qiáng)化、鞏固的作用,讓學(xué)生領(lǐng)會(huì)換元的思想,達(dá)到初步發(fā)展學(xué)生綜合應(yīng)用的能力。

二、教材分析。

本節(jié)課是運(yùn)用提公因式法后公式法的第一課時(shí)——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應(yīng)用,它是解高次方程的基礎(chǔ),在教材中具有重要的地位。在教材的處理上以學(xué)生的自主探索為主,在原有用平方差公式進(jìn)行整式乘法計(jì)算的知識(shí)的基礎(chǔ)上充分認(rèn)識(shí)分解因式。明確因式分解是乘法公式的一種恒等變形,讓學(xué)生學(xué)會(huì)合情推理的能力,同時(shí)也培養(yǎng)了學(xué)生愛(ài)思考,善交流的良好學(xué)習(xí)慣。

三、學(xué)情分析。

四、教學(xué)目標(biāo)。

(一)知識(shí)與技能。

2.掌握提公因式法、平方差公式分解因式的綜合應(yīng)用。

(二)過(guò)程與方法。

1.經(jīng)歷探究分解因式方法的過(guò)程,體會(huì)整式乘法與分解因式之間的聯(lián)系。

2.通過(guò)乘法公式:(a+b)(a-b)=a2-b2逆向變形,進(jìn)一步發(fā)展觀察、歸納、類(lèi)比、概括等能力,發(fā)展有條理地思考及語(yǔ)言表達(dá)能力。

3.通過(guò)活動(dòng)4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達(dá)化,培養(yǎng)學(xué)生的化歸思想。

4.通過(guò)活動(dòng)1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。

5.通過(guò)活動(dòng)4,讓學(xué)生自己發(fā)現(xiàn)問(wèn)題,提出問(wèn)題,然后解決問(wèn)題,體會(huì)在解決問(wèn)題的過(guò)程中與他人合作的重要性。

(三)情感與態(tài)度。

1.通過(guò)探究平方差公式,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志,建立自己信心。

平方差公式教案設(shè)計(jì)意圖篇三

(l)(2)(3)(4)

學(xué)生活動(dòng):學(xué)生分組討論,選代表解答.

練習(xí)三

甲的計(jì)算過(guò)程是:原式

乙的計(jì)算過(guò)程是:原式

丙的計(jì)算過(guò)程是:原式

丁的計(jì)算過(guò)程是:原式

(2)想一想,與相等嗎?為什么?

與相等嗎?為什么?

學(xué)生活動(dòng):觀察、思考后,回答問(wèn)題.

練習(xí)四

運(yùn)用乘法公式計(jì)算:

(l)(2)

(3)(4)

(四)總結(jié)、擴(kuò)展

這節(jié)課我們學(xué)習(xí)了乘法公式中的完全平方公式.

引導(dǎo)學(xué)生舉例說(shuō)明公式的結(jié)構(gòu)特征,公式中字母含義和運(yùn)用公式時(shí)應(yīng)該注意的問(wèn)題.

八、布置作業(yè)

p1331,2.(3)(4).

參考答案

略.

平方差公式教案設(shè)計(jì)意圖篇四

1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的形式和特點(diǎn);使學(xué)生知道把完全平方公式反過(guò)來(lái)就可以得到相應(yīng)的因式分解。

2、掌握運(yùn)用完全平方公式分解因式的`方法,能正確運(yùn)用完全平方公式把多項(xiàng)式分解因式(直接用公式不超過(guò)兩次)。

教學(xué)方法:對(duì)比發(fā)現(xiàn)法課型新授課教具投影儀。

教師活動(dòng):學(xué)生活動(dòng)。

新課講解:

(投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項(xiàng)式因式分解。例如:

a2+8a+16=a2+2×4a+42=(a+4)2。

a2-8a+16=a2-2×4a+42=(a-4)2。

(要強(qiáng)調(diào)注意符號(hào))。

首先我們來(lái)試一試:(投影:牛刀小試)。

1.把下列各式分解因式:

(1)x2+8x+16;;(2)25a4+10a2+1。

(3)(m+n)2-4(m+n)+4。

(教師強(qiáng)調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯(cuò)點(diǎn),及時(shí)糾正)。

2.把81x4-72x2y2+16y4分解因式。

(本題用了兩次乘法公式,難度稍大,教師要鼓勵(lì)學(xué)生大膽嘗試,敢于創(chuàng)新)。

將乘法公式反過(guò)來(lái)就得到多項(xiàng)式因式分解的公式。運(yùn)用這些公式把一個(gè)多項(xiàng)式分解因式的方法叫做運(yùn)用公式法。

練習(xí):第88頁(yè)練一練第1、2題。

平方差公式教案設(shè)計(jì)意圖篇五

1、了解完全平方公式的特征,會(huì)用完全平方公式進(jìn)行因式分解.

2、通過(guò)整式乘法逆向得出因式分解方法的過(guò)程,發(fā)展學(xué)生逆向思維能力和推理能力.

3、通過(guò)猜想、觀察、討論、歸納等活動(dòng),培養(yǎng)學(xué)生觀察能力,實(shí)踐能力和創(chuàng)新能力.

學(xué)習(xí)建議教學(xué)重點(diǎn):

平方差公式教案設(shè)計(jì)意圖篇六

《平方差公式》是一節(jié)公式定理課,是各位老師非常熟悉的一個(gè)課題,對(duì)大家更熟悉,我深深感到一種壓力。但是,無(wú)論如何,“新”、“實(shí)”是我追求的目標(biāo)。為此,我作了如下努力:

1、把數(shù)學(xué)問(wèn)題“蘊(yùn)藏”在游戲中。

導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)?!昂玫拈_(kāi)始是成功的一半”,首先是一個(gè)智力搶答,學(xué)生通過(guò)搶答初步感知平方差公式,接下來(lái),采用小組合作學(xué)習(xí)的方式,利用“四問(wèn)”讓學(xué)生進(jìn)行試驗(yàn)操作,學(xué)生選擇的字母有很多種,讓它們都有其共性。由此,學(xué)生在探索中驗(yàn)證自己的猜想,同時(shí)也感受和認(rèn)識(shí)知識(shí)的發(fā)生和發(fā)展的過(guò)程,得出(a+b)(a-b)=a2-b2.經(jīng)過(guò)不斷的嘗試小組合作學(xué)習(xí)方式的教學(xué),我發(fā)現(xiàn)也真正體會(huì)到,只要我們給學(xué)生創(chuàng)造一個(gè)自由活動(dòng)的空間,學(xué)生便會(huì)還給我們一個(gè)意外的驚喜。

2、充分重視“自主、合作、探究”的教學(xué)方式的運(yùn)用。

把探究的機(jī)會(huì)留給學(xué)生,讓學(xué)生在動(dòng)腦思考中構(gòu)建知識(shí),真正成為教學(xué)活動(dòng)的主體。使他們?cè)诨顒?dòng)中進(jìn)行規(guī)律的總結(jié),并且通過(guò)交流練習(xí)、應(yīng)用,深化了對(duì)規(guī)律的理解。學(xué)生對(duì)知識(shí)的掌握往往通過(guò)練習(xí)來(lái)達(dá)到目的。新授后要有針對(duì)性強(qiáng)的有效訓(xùn)練,讓學(xué)生對(duì)所學(xué)知識(shí)建立初步的表象,以達(dá)到對(duì)知識(shí)的理解、掌握及應(yīng)用,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華。在此設(shè)計(jì)了三個(gè)層次的有效訓(xùn)練,讓學(xué)生體會(huì)平方差公式的特點(diǎn):第一層次是直接運(yùn)用公式,第二層次是將式子進(jìn)行適當(dāng)變形后應(yīng)用公式,第三個(gè)層次是平方差公式的靈活應(yīng)用。通過(guò)做題學(xué)生歸納出平方差公式的運(yùn)用技巧。

3、自置懸念,享受成功

以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰(shuí)出得有水平。學(xué)生每人都設(shè)計(jì)了題目,任意叫了四位學(xué)生在黑板上寫(xiě),經(jīng)評(píng)價(jià)結(jié)果都對(duì)了。這種方法,不僅令人耳目一新,而且把學(xué)生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問(wèn)題的一個(gè)學(xué)習(xí)過(guò)程,使學(xué)生獲得思維之趣,參與之樂(lè),成功之悅。

4、切實(shí)落在實(shí)效上

本節(jié)課在采用小組學(xué)習(xí)之后,為了讓學(xué)生的鞏固有效果,采用了學(xué)生上臺(tái)講解、作業(yè)實(shí)物投影的方式來(lái)進(jìn)行,多種方式的選擇,讓學(xué)生暴露出自己的問(wèn)題,然后通過(guò)生生互動(dòng)、師生互動(dòng)解決問(wèn)題,實(shí)現(xiàn)問(wèn)題及時(shí)處理,學(xué)習(xí)效果不錯(cuò)。

5、值得注意的是:

1、節(jié)奏的把握上

這一節(jié)我覺(jué)得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計(jì)算方法等問(wèn)題上,花了不少時(shí)間,節(jié)奏把握的不是很好。

2、充分發(fā)揮學(xué)生的主體地位上

這節(jié)課上,我覺(jué)得學(xué)生的積極性不很高,回答問(wèn)題沒(méi)有激情,說(shuō)明我背學(xué)生還不夠,自己想象的比現(xiàn)實(shí)的好。

平方差公式教案設(shè)計(jì)意圖篇七

平方差公式與完全平方公式是初中數(shù)學(xué)代數(shù)學(xué)知識(shí)方面應(yīng)用最廣泛的公式,也是學(xué)生代數(shù)運(yùn)算的基礎(chǔ)公式,在今后的數(shù)學(xué)學(xué)習(xí)過(guò)程中,更能體現(xiàn)其重要性,所以這兩個(gè)公式的教學(xué)要求很高,需要每一名學(xué)生都必須熟練掌握這兩個(gè)公式,并因此可以靈活運(yùn)用公式進(jìn)行因式分解和分解因式,解決很多代數(shù)問(wèn)題。

如同勾股定理在全世界數(shù)學(xué)基礎(chǔ)教學(xué)中地位顯著,全世界各地?cái)?shù)學(xué)教科書(shū)都要求學(xué)生掌握一樣,平方差公式與完全平方公式也是全世界以致全國(guó)各地教科書(shū)都必講必學(xué)的內(nèi)容之一,作為整式的乘法公式,人教版教科書(shū)把平方差公式與完全平方公式安排在整式的乘法這一章的第二節(jié),在第一節(jié)內(nèi)容上先讓學(xué)生掌握整式乘法的各項(xiàng)法則,當(dāng)學(xué)生熟練掌握多項(xiàng)式與多項(xiàng)式的乘法后,再由此讓學(xué)生來(lái)學(xué)生我們的乘法公式,本節(jié)內(nèi)容分兩部分,先介紹平方差公式,再介紹完全平方公式。

在學(xué)生熟練掌握多項(xiàng)式與多項(xiàng)式的乘法后,開(kāi)始介紹平方差公式,教科書(shū)上是由找規(guī)律開(kāi)始,讓學(xué)生利用多項(xiàng)式乘法法則計(jì)算,從而發(fā)現(xiàn)平方差公式,由找規(guī)律得出公式的猜想,再介紹平方差公式的幾何面積驗(yàn)證方法,來(lái)驗(yàn)證公式猜想的正確性,從而由代數(shù)探究及幾何論證來(lái)得出平方差公式,得出公式后再來(lái)實(shí)際應(yīng)用。

我一直嚴(yán)格要求自己,認(rèn)真?zhèn)浣滩?,?dāng)然也認(rèn)真?zhèn)鋵W(xué)生,使課堂教學(xué)符合學(xué)生的實(shí)際需要。學(xué)生基礎(chǔ)較差,教學(xué)內(nèi)容要求生動(dòng)、易學(xué)易懂,讓學(xué)生能在活動(dòng)教學(xué)中進(jìn)行簡(jiǎn)單探究從而掌握好基礎(chǔ)知識(shí)。,我認(rèn)真準(zhǔn)備,仔細(xì)研讀教材,精心制作出課件和教案,按教科書(shū)的教學(xué)順序和過(guò)程,既安排學(xué)生計(jì)算上的運(yùn)算探究猜想,又安排幾何實(shí)踐剪紙法,利用面積來(lái)驗(yàn)證公式。我從實(shí)際問(wèn)題出發(fā),給出動(dòng)手操作的實(shí)際幾何問(wèn)題引出本課,得出平方差公式的猜想,讓學(xué)生動(dòng)手實(shí)踐,數(shù)形結(jié)合得出平方差公式,在利用多項(xiàng)式的乘法法則計(jì)算驗(yàn)證,最后辨析、應(yīng)用,讓學(xué)生熟悉平方差公式,最后應(yīng)用提高,給出實(shí)際生活中的一個(gè)問(wèn)題,利用平方差公式計(jì)算較大的數(shù)字,讓學(xué)生明白學(xué)習(xí),平方差公式不但可以在實(shí)際生活中運(yùn)用,而且還可以簡(jiǎn)便計(jì)算,激發(fā)學(xué)生對(duì)平方差公式學(xué)習(xí)的興趣,從而很好地掌握好平方差公式。最后再進(jìn)行小結(jié),反饋。

平方差公式教案設(shè)計(jì)意圖篇八

教學(xué)目標(biāo):

一、 知識(shí)與技能

1、 參與探索平方差公式的過(guò)程,發(fā)展學(xué)生的推理能力 2、 會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的乘法運(yùn)算。

二、 過(guò)程與方法

1、 經(jīng)歷探索過(guò)程,學(xué)會(huì)歸納推導(dǎo)出某種特種特定類(lèi)型乘法并用簡(jiǎn)單的

數(shù)學(xué)式子表達(dá)出,即給出公式。

2、 在探索過(guò)程的教學(xué)中,培養(yǎng)學(xué)生觀察、歸納的能力,發(fā)展學(xué)生的符

號(hào)感和語(yǔ)言描述能力。

三、 情感與態(tài)度

以探索、歸納公式和簡(jiǎn)單運(yùn)用公式這一數(shù)學(xué)情景,加深學(xué)生的體驗(yàn),增加學(xué)習(xí)數(shù)學(xué)和使用的信心。培養(yǎng)學(xué)生由觀察-發(fā)現(xiàn)-歸納-驗(yàn)證-使用這一數(shù)學(xué)方法的逐步形成.

教學(xué)重點(diǎn): 公式的簡(jiǎn)單運(yùn)用

教學(xué)難點(diǎn): 公式的推導(dǎo)

教學(xué)方法: 學(xué)生探索歸納與教師講授結(jié)合

課前準(zhǔn)備:投影儀、幻燈片

平方差公式教案設(shè)計(jì)意圖篇九

學(xué)生已經(jīng)掌握了多項(xiàng)式與多項(xiàng)式相乘,但是對(duì)于某些特殊的多項(xiàng)式相乘,可以寫(xiě)成公式的形式,直接寫(xiě)出結(jié)果,乘法公式應(yīng)用十分廣泛,也是本章重點(diǎn)內(nèi)容之一。

平方差公式是第一個(gè)乘法公式,教學(xué)時(shí),我是這樣引入新課的,先計(jì)算下列各題,看誰(shuí)做的又對(duì)又快?(1)(x+1)(x―1)=_____,(2)(m+2)(m―2)=_____,(3)(2x+1)(2x―1)=____,(4)(y+3z)(y―3z)=_____。激發(fā)學(xué)生的好勝心并為進(jìn)一步探索新知搭建好有力的平臺(tái),然后我又讓學(xué)生討論交流上面幾個(gè)等式左、右兩邊各有什么特點(diǎn),你能用字母表示你發(fā)現(xiàn)的規(guī)律嗎?你能用語(yǔ)言敘述這個(gè)規(guī)律嗎?給學(xué)生充分的觀察、分析、討論交流的時(shí)間,老師應(yīng)及時(shí)的給與必要的指導(dǎo)、鼓勵(lì)和由衷的贊美,這一點(diǎn)我做的還很不夠,今后要多多注意。

然后我有設(shè)計(jì)了這樣一道題:下列多項(xiàng)式乘法中可以用平方差公式計(jì)算的是(1)(x+1)(1+x),(2)(2x+y)(y―2x),(3)(a―b)(―a+b),(4)(―a―b)(―a+b)幫助學(xué)生理解公式的特征,掌握公式的。特征是正確運(yùn)用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項(xiàng)式或多項(xiàng)式,由于學(xué)生的認(rèn)知能力有一個(gè)過(guò)程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。

平方差公式教案設(shè)計(jì)意圖篇十

1會(huì)推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算.

2.經(jīng)歷探索平方差公式的過(guò)程,認(rèn)識(shí)“特殊”與“一般”的關(guān)系,了解“特殊到一般”的認(rèn)識(shí)規(guī)律和數(shù)學(xué)發(fā)現(xiàn)方法,平方差公式第一課時(shí)教學(xué)反思。

重點(diǎn):公式的理解與正確運(yùn)用(考點(diǎn):此公式很關(guān)鍵,一定要搞清楚特征,在以后的學(xué)習(xí)中還繼續(xù)應(yīng)用)

難點(diǎn):公式的理解與正確運(yùn)用

教法:自主探究和合作交流

(1)(x+2)(x-2)(2)(1+2y)(1-2y)(3)(x+3y)(x-3y)

=x2-22=12-(2y)2=x2-(3y)2

學(xué)生分組討論,交流,小組長(zhǎng)回答問(wèn)題。

師生共同總結(jié)歸納:

平方差公式:(a+b)(a-b)=a2-b2

即兩數(shù)和與兩數(shù)差的積,等于它們的平方差。

平方差公式特征:

(1)一組完全相同的項(xiàng);

(2)一組互為相反數(shù)的項(xiàng)

2.例題

(1)(5+6x)(5-6x)(2)(-m+n)(-m-n)

3.公式應(yīng)用

(1)(a+2)(a-2)(2)(-x+2y)(-x-3y)

兩個(gè)學(xué)生板演,其余學(xué)生在練習(xí)本上自己獨(dú)立完成

老師巡視,輔導(dǎo)學(xué)困生。

1.計(jì)算(1)(a+1)(a-1)(a2+1)(2)(a+b)(a-b)(a2+b2)

師生共同分析:此題特征,兩次利用平方差公式,教學(xué)反思《平方差公式第一課時(shí)教學(xué)反思》。

學(xué)生在練習(xí)本上獨(dú)立完成,同桌互相檢查。

2.(ab)(-ab)=?能用平方差公式嗎?它的a和b分別是什么?

學(xué)生分組討論交流,獨(dú)立完成運(yùn)算。

1、(ab+8)(ab-8)2、(5m-n)(-5m-n)

3、(3x+4y-z)(3x-4y+z)4、(a+b)(a-b)(a2+b2)

1、什么是平方差公式?

2、運(yùn)用公式要注意的.問(wèn)題:

(1)平方差公式運(yùn)用的條件是什么?

(2)公式中的a、b可以代表什么?

平方差公式(1)

一、檢測(cè)導(dǎo)入

二、例題展示

三、拓展延伸

四、達(dá)標(biāo)堂測(cè)

五、歸納小結(jié)

平方差公式:(a+b)(a-b)=a2-b2

即兩數(shù)和與兩數(shù)差的積,等于它們的平方差。

六、布置作業(yè)

p21:習(xí)題1.91、2

平方差公式教案設(shè)計(jì)意圖篇十一

平方差公式的教學(xué)已經(jīng)是好幾次了,舊教材總是定向于代數(shù)方法,新課程理念同幾何意義探究,這也是對(duì)教學(xué)者的一次挑戰(zhàn),通過(guò)教學(xué),我從中領(lǐng)會(huì)到它所蘊(yùn)含的新的教學(xué)理念,新的教學(xué)方式和方法。

1、在教學(xué)設(shè)計(jì)時(shí)應(yīng)提供充分探索與交流的空間,使學(xué)生進(jìn)一步經(jīng)歷觀察,實(shí)驗(yàn)、猜測(cè)、推理、交流、反思等活動(dòng),我在設(shè)計(jì)中讓學(xué)生從計(jì)算花圃面積入手,要求學(xué)生找出不同的計(jì)算方法,學(xué)生欣然接受了挑戰(zhàn),通過(guò)交流,給出了兩種方法,繼而通過(guò)觀察發(fā)現(xiàn)了面積的求法與乘法公式之間的吻合,激發(fā)了學(xué)生學(xué)習(xí)興趣的同時(shí)也激活了學(xué)生的思維,所以這個(gè)探究過(guò)程是很有效的。

2、我知道培養(yǎng)學(xué)生數(shù)形結(jié)合思想方法和能力的重要性,通過(guò)幾何意義說(shuō)明平方差方式的探究過(guò)程,學(xué)生可以切實(shí)感受到兩者之間的聯(lián)系,學(xué)會(huì)一些探究的基本方法與思路,并體會(huì)到數(shù)學(xué)證明的靈巧間法與和諧美是很有必要的。

3、加強(qiáng)師生之間的活動(dòng)也是必要的。在活動(dòng)中,通過(guò)我的組織、引導(dǎo)和鼓勵(lì)下,學(xué)生不斷地思考和探究,并積極地進(jìn)行交流,使活動(dòng)有序進(jìn)行,我始終以平等、欣賞、尊重的態(tài)度參與到學(xué)生活動(dòng)中,營(yíng)造出了一個(gè)和諧,寬松的教學(xué)環(huán)境。

平方差公式教案設(shè)計(jì)意圖篇十二

這節(jié)課學(xué)習(xí)的主要內(nèi)容是運(yùn)用平方差公式進(jìn)行因式分解,學(xué)習(xí)時(shí)如果直接就給同學(xué)們講把前面在整式的乘法中學(xué)習(xí)到的平方差公式反過(guò)來(lái)運(yùn)用就形成了因式分解的平方差公式,然后就是反復(fù)的運(yùn)用、反復(fù)的操練的話,學(xué)生學(xué)起來(lái)就會(huì)覺(jué)得沒(méi)有味道,對(duì)數(shù)學(xué)有一種厭煩感,所以我就想到了運(yùn)用逆向思維的方法來(lái)學(xué)習(xí)這節(jié)課的內(nèi)容,而且非常不利于學(xué)生理解整式乘法和因式分解之間的互逆的關(guān)系。

在新課引入的過(guò)程中,首先讓學(xué)生回憶了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。然后,巧妙的'將剛才用平方差公式計(jì)算得出的三個(gè)多項(xiàng)式作為因式分解的題目請(qǐng)學(xué)生嘗試一下??梢哉f(shuō),對(duì)新問(wèn)題的引入,是采取了由淺入深的方法,使學(xué)生對(duì)新知識(shí)不產(chǎn)生任何的畏懼感。

在這節(jié)課中就明顯出現(xiàn)了這個(gè)問(wèn)題,許多學(xué)生容易產(chǎn)生的問(wèn)題都集中在一起讓學(xué)生解決,反而將學(xué)生搞得不清不楚。所以,通過(guò)這節(jié)展示課也讓我學(xué)到了很多,比如,化解難點(diǎn)時(shí)要考慮到學(xué)生的思維障礙,不可操之過(guò)急,否則適得其反。

平方差公式教案設(shè)計(jì)意圖篇十三

湖北口中學(xué)張衍生

教學(xué)內(nèi)容:p108—110平方差公式例1例2例3

教學(xué)目的:1、使學(xué)生會(huì)推導(dǎo)平方差公式,并掌握公式特征。

2、使學(xué)生能正確而熟練地運(yùn)用平方差公式進(jìn)行計(jì)算。

教學(xué)重點(diǎn):使學(xué)生會(huì)推導(dǎo)平方差公式,掌握公式特征,并能正確而熟

練地運(yùn)用平方差公式進(jìn)行計(jì)算。

教學(xué)難點(diǎn):掌握平方差公式的特征,并能正確而熟練地運(yùn)用它進(jìn)行計(jì)

算。

教學(xué)過(guò)程:

一、復(fù)習(xí)引入

1、復(fù)述多項(xiàng)式與多項(xiàng)式的`乘法法則

2、計(jì)算(演板)

(1)(a+b)(a-b)(2)(m+n)(m-n)

(3)(x+y)(x-y)(4)(2a+3b)(2a-3b)

3、引入新課,由2題的計(jì)算引導(dǎo)學(xué)生觀察題目特征,結(jié)果特征(引入新課,板書(shū)課題)

二、新課

1、平方差公式

由上面的運(yùn)算,再讓學(xué)生探究

現(xiàn)在你能很快算出多項(xiàng)式(2m+3n)與多項(xiàng)式(2m-3n)的乘積嗎?引導(dǎo)學(xué)生把2m看成a,3n看成b寫(xiě)出結(jié)果.

(2m+3n)(2m-3n)=(2m)2-(3m)2=4m2-9n2

(a+b)(a-b)=a2-b2

向?qū)W生說(shuō)明:我們把

(a+b)(a-b)=a2-b2(重點(diǎn)強(qiáng)調(diào)公式特征)

【本文地址:http://mlvmservice.com/zuowen/7372119.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔