總結(jié)是我們對過去一段時間工作生活的回顧和總結(jié),有助于我們明確未來的發(fā)展方向??偨Y(jié)要有一個明確的結(jié)構(gòu)和框架,以便更好地展現(xiàn)所總結(jié)的內(nèi)容。最重要的是要保持積極向上的心態(tài),相信自己能夠改變現(xiàn)狀,實現(xiàn)自己的夢想。
函數(shù)與方程的說課稿篇一
函數(shù)、方程和不等式都是人們刻畫現(xiàn)實世界的重要數(shù)學(xué)模型。用函數(shù)的觀點看方程(組)與不等式,學(xué)生不僅能加深對方程(組)、不等式的理解,提高認識問題的水平,而且能從函數(shù)的角度將三者統(tǒng)一起來,感受數(shù)學(xué)的統(tǒng)一美,學(xué)生在探索過程中體驗到的數(shù)形結(jié)合以及數(shù)學(xué)建模思想,既是對前面所學(xué)知識的升華,同時也對今后學(xué)習(xí)高中的解析幾何有著十分重要的意義。
情感態(tài)度方面:在探究活動中培養(yǎng)學(xué)生嚴謹?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動中,學(xué)會與人合作,學(xué)會傾聽、欣賞和感悟,體驗數(shù)學(xué)的價值,建立自信。
從以上目標可以看出,學(xué)生既要通過對一次函數(shù)與二元一次方程(組)關(guān)系的探究,習(xí)得知識、培養(yǎng)能力,又要用此關(guān)系解決相關(guān)實際問題,因此,本節(jié)課的教學(xué)重點應(yīng)是一次函數(shù)與二元一次方程(組)關(guān)系的探索??紤]到八年級學(xué)生的數(shù)學(xué)應(yīng)用意識不強,本節(jié)課的難點應(yīng)是綜合運用方程(組)、不等式和函數(shù)的知識解決相關(guān)實際問題。而關(guān)鍵則是通過問題情境的設(shè)計,激發(fā)學(xué)生的求知欲,引導(dǎo)學(xué)生探索、交流,引導(dǎo)學(xué)生發(fā)現(xiàn)、分析、解決問題。
《數(shù)學(xué)課程標準》明確指出“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué)”,“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人”。教師的職責(zé)在于向?qū)W生提供從事數(shù)學(xué)活動的機會,在活動中激發(fā)學(xué)生的學(xué)習(xí)潛能,引導(dǎo)學(xué)生自由探索、合作交流與實踐創(chuàng)新。對于認知主體來說,八年級學(xué)生樂于探索,富于幻想,但他們的數(shù)學(xué)推理能力以及對知識的主動遷移能力較弱,為幫助學(xué)生更好地構(gòu)建新的認知結(jié)構(gòu),促進學(xué)生的主動發(fā)展,本節(jié)課我采用情境—探究式教學(xué)法,以“情境――問題――探究――交流――應(yīng)用――反思――提高”的模式展開,以學(xué)生為中心,使其在“生動活潑、民主開放、主動探索”的氛圍中愉快學(xué)習(xí)。
本著重實際、重探究、重過程、重交流的教學(xué)宗旨,我將本節(jié)課的教學(xué)設(shè)計成以下六個環(huán)節(jié):情景導(dǎo)入——探究合作——解決問題——鞏固提高——歸納小結(jié)——布置作業(yè)。
這節(jié)課,我首先用貼近學(xué)生實際、學(xué)生感興趣的問題——上網(wǎng)交費問題引導(dǎo)學(xué)生進入本節(jié)課的學(xué)習(xí),充分調(diào)動學(xué)生的積極性。課件展示學(xué)生回答的用列方程組解答的過程,并提出問題:“同學(xué)們在解這個二元一次方程組時,基本上都是用的代入法或加減法,那么解二元一次方程組還有其它的方法嗎?”學(xué)生討論后可能會感到束手無策,感到原有的知識不夠用了。一石激起千層浪,問題提出來后,如何解決呢?此時,作為教師,應(yīng)把握好組織者、引導(dǎo)者和合作者的身份,不要急于發(fā)表自己的意見,而應(yīng)啟發(fā)學(xué)生去思、鼓勵學(xué)生去探、激勵學(xué)生去說,努力給學(xué)生造成“心求通而未能得,口欲言而不能說”的態(tài)勢,從而喚起學(xué)生強烈的學(xué)習(xí)熱情,使他們主動積極地投入到探索活動中來。另外,此問題的設(shè)置也為后面例題的講解作好鋪墊,有利于教學(xué)難點的突破。
為使學(xué)生更好地掌握本節(jié)課的重點知識,我遵循從特殊到一般,再從一般到特殊的認知規(guī)律,設(shè)計了以下問題“你們能否將方程轉(zhuǎn)化為一次函數(shù)的形式呢?”“如果能,你們能在平面直角坐標系中能畫出它的圖象嗎?”在學(xué)生將方程轉(zhuǎn)化為一次函數(shù)的形式并畫出圖象后,我引導(dǎo)學(xué)生觀察直線上的幾個點,發(fā)現(xiàn)它們的坐標都是方程的解,緊接著問“直線上任意一點的坐標一定是方程的解嗎?”“是否任意的二元一次方程都可以轉(zhuǎn)化為一次函數(shù)的形式呢?”“是否所有直線上任意一點的坐標都是它所對應(yīng)的二元一次方程的解呢?”學(xué)生先獨立思考,然后小組討論,不難發(fā)現(xiàn):每個二元一次方程都對應(yīng)一個一次函數(shù),于是也就對應(yīng)一條直線。一連串的問題由淺入深,環(huán)環(huán)相扣,引導(dǎo)學(xué)生發(fā)現(xiàn)一次函數(shù)與二元一次方程在數(shù)與形兩個方面的關(guān)系,為探索二元一次方程組的解與直線交點坐標的關(guān)系作好鋪墊。
緊接著問學(xué)生:“你能用剛才的方法研究另一個方程2x—y=1嗎?”學(xué)生在同一坐標系中畫出一次函數(shù)y=2x—1的圖象后,發(fā)現(xiàn)兩條直線有一個交點,我又問“這個交點坐標與這兩條直線所對應(yīng)的方程的解有什么關(guān)系?與這兩個方程組成的方程組的解又有什么關(guān)系?”此時,學(xué)生慢慢體會到:既然每個二元一次方程都對應(yīng)一條直線,二元一次方程的每一個解又對應(yīng)直線上的每一個點,那么兩個二元一次方程的公共解就對應(yīng)著兩條直線的公共點,也就是說,二元一次方程組的解不就是對應(yīng)著兩條直線的交點嗎?這個時期,教師應(yīng)留給學(xué)生充分探索交流的時間與空間,對學(xué)生可能出現(xiàn)的疑問給予及時幫助,師生共同歸納出:用畫圖象的'方法可以解二元一次方程組,從而解決了本節(jié)課開頭所提出的問題。然后共同歸納:從“形”的角度看,解方程組相當于確定兩條直線交點的坐標。這告訴我們,既可用畫圖象的方法可以解二元一次方程組,也可用解方程組的方法求兩條直線交點的坐標。利用剛才已有的探究經(jīng)驗,學(xué)生很容易想到此問題的探究還可以從數(shù)的角度看,進一步歸納出:從“數(shù)”的角度看,解方程組相當于考慮自變量為何值時兩個函數(shù)的值相等,這個函數(shù)值是何值。
這樣,學(xué)生經(jīng)過自主探索、合作交流,從數(shù)和形兩個角度認識了一次函數(shù)與二元一次方程組的關(guān)系,真正掌握本節(jié)課的重點知識,并使學(xué)習(xí)過程成為一種再創(chuàng)造的過程。學(xué)生從一個個小問題的回答,到最后的歸納,充分享受學(xué)習(xí)、探究帶來的快樂,此時教師應(yīng)充分肯定學(xué)生的探究成果,及時對學(xué)生進行鼓勵,關(guān)注學(xué)生的情感體驗。
為滿足學(xué)生學(xué)以致用、爭強好勝的心理需求,我特意設(shè)計了兩個搶答題,既加強了對所學(xué)知識的消化理解,又調(diào)動了學(xué)生的積極性,更讓他們在搶答中品味到了成功的快樂。趁著學(xué)生高漲的情緒,我迅速引入開頭部分意猶未盡的上網(wǎng)收費問題,加以變式,再次激起學(xué)生強烈的求知欲望和主人翁的學(xué)習(xí)姿態(tài)。經(jīng)過一番探索,學(xué)生可能想到:要選擇合理的收費方式就需要對它們所收費用的大小進行比較,因此一定會有學(xué)生用過去的知識——方程或不等式解決問題,對于這部分學(xué)生的想法要給予充分的肯定表揚,然后繼續(xù)提問“你能用今天所學(xué)的圖象法來解決這個問題嗎?”引導(dǎo)學(xué)生建立函數(shù)模型進行探索。
學(xué)生在同一坐標系中分別畫出兩個一次函數(shù)的圖象后,我引導(dǎo)學(xué)生觀察圖象的特征,學(xué)生討論后發(fā)現(xiàn)當0≤x400時,紅色點在藍色點的上方;當x=400時,紅色點與藍色點重合;當x400時,紅色點在藍色點的下方,這樣利用直線上點位置的高低直觀地比較函數(shù)值的大小,從而找到答案。為避免圖象法作圖誤差造成的不足,可引導(dǎo)學(xué)生通過代數(shù)計算求出交點坐標。為培養(yǎng)學(xué)生一題多解的能力,我啟發(fā)學(xué)生用作差法,類似地用點位置的高低直觀地找到y(tǒng)0,y=0及y0時所對應(yīng)的x的范圍,進而得到答案。通過對實際問題的探究,學(xué)生可以發(fā)現(xiàn)圖象法的直觀性,體會數(shù)形結(jié)合這一思想方法的應(yīng)用,并學(xué)會用函數(shù)的觀點,動態(tài)地分析不等式和方程(組)。
為了鞏固學(xué)生的學(xué)習(xí)成果,我把剛剛結(jié)束不久的鐵山礦冶文化旅游節(jié)帶進課堂,讓學(xué)生欣賞一組美麗的黃石礦冶文化景點圖片,在學(xué)生體驗家鄉(xiāng)美好的輕松愉快氛圍中,我再一次出示了一個與之有關(guān)的旅游購票問題,并鼓勵學(xué)生用不同的方法進行解答,進一步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識,從而更好地促進學(xué)生對本節(jié)課難點的理解和應(yīng)用,幫助學(xué)生不斷完善新的認知結(jié)構(gòu)。
在課堂臨近尾聲時,引導(dǎo)學(xué)生對本節(jié)課所學(xué)進行小結(jié),鼓勵學(xué)生從數(shù)學(xué)知識、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進行自我評價。嘗試開放式課堂教學(xué),以真正體現(xiàn)學(xué)生的主體地位,使課堂活動民主化,多樣化。
本節(jié)課的作業(yè)由必做題和選做題組成,體現(xiàn)分層教學(xué),讓不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展。
這節(jié)課,我始終貫穿以學(xué)生為主體的原則,突出數(shù)形結(jié)合的思想,體現(xiàn)數(shù)學(xué)建模的價值,滲透應(yīng)用數(shù)學(xué)的意識,關(guān)注學(xué)生個性的發(fā)展,讓每一個學(xué)生在課堂上都有所感悟,都有著各自的數(shù)學(xué)體驗,不同的學(xué)生在數(shù)學(xué)的各個不同方面上都得到不同的發(fā)展。
函數(shù)與方程的說課稿篇二
情感態(tài)度:在探究活動中培養(yǎng)學(xué)生嚴謹?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動中,學(xué)會與人合作,學(xué)會傾聽、欣賞和感悟,體驗數(shù)學(xué)的價值,建立自信心。
教學(xué)重難點。
難點:綜合運用方程(組)、不等式和函數(shù)的知識解決實際問題。
教學(xué)過程。
(一)引入新課。
學(xué)生已經(jīng)學(xué)習(xí)過列方程(組)解應(yīng)用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結(jié)合前面對一次函數(shù)與一元一次方程、一元一次不等式之間關(guān)系的探究,我自然地提出問題:一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?,從而揭示課題。
(二)進行新課。
填空:二元一次方程可以轉(zhuǎn)化為________。
(3)是否直線上任意一點的坐標都是它所對應(yīng)的二元一次方程的解?
此時教師留給學(xué)生充分探索交流的時間與空間,對學(xué)生可能出現(xiàn)的疑問給予幫助,師生共同歸納出:從形的角度看,解方程組相當于確定兩條直線交點的坐標。
進一步歸納出:從數(shù)的角度看,解方程組相當于考慮自變量為何值時兩個函數(shù)的值相等,以及這個函數(shù)值是何值。
3、列一元二次不等式。
解法1:設(shè)上網(wǎng)時間為分,若按方式a則收元;若按方式b則收元。然后在同一坐標系中分別畫出這兩個函數(shù)的圖象,計算出交點坐標,結(jié)合圖象,利用直線上點位置的高低直觀地比較函數(shù)值的大小,得到當一個月內(nèi)上網(wǎng)時間少于400分時,選擇方式a省錢;當上網(wǎng)時間等于400分時,選擇方式a、b沒有區(qū)別;當上網(wǎng)時間多于400分時,選擇方式b省錢。
解法2:設(shè)上網(wǎng)時間為分,方式b與方式a兩種計費的差額為元,得到一次函數(shù):,即,然后畫出函數(shù)的圖象,計算出直線與軸的交點坐標,類似地用點位置的高低直觀地找到答案。
注意:所畫的函數(shù)圖象都是射線。
4、習(xí)題。
(1)、以方程的解為坐標的所有點都在一次函數(shù)_____的圖象上。
(2)、方程組的解是________,由此可知,一次函數(shù)與的圖象必有一個交點,且交點坐標是________。
5、旅游問題。
古城荊州歷史悠久,文化燦爛。
函數(shù)與方程的說課稿篇三
函數(shù)、方程和不等式都是人們刻畫現(xiàn)實世界的重要數(shù)學(xué)模型。用函數(shù)的觀點看方程(組)與不等式,使學(xué)生不僅能加深對方程(組)、不等式的理解,提高認識問題的水平,而且能從函數(shù)的角度將三者統(tǒng)一起來,感受數(shù)學(xué)的統(tǒng)一美。本節(jié)課是學(xué)生學(xué)習(xí)完一次函數(shù)、一元一次方程及一元一次不等式的聯(lián)系后對一次函數(shù)和二元一次方程(組)關(guān)系的探究,學(xué)生在探索過程中體驗數(shù)形結(jié)合的思想方法和數(shù)學(xué)模型的應(yīng)用價值,這對今后的學(xué)習(xí)有著十分重要的意義。
2、教學(xué)重難點。
難點:綜合運用方程(組)、不等式和函數(shù)的知識解決實際問題。
3、教學(xué)目標。
解決問題:能綜合應(yīng)用一次函數(shù)、一元一次方程、一元一次不等式、二元一次方程(組)解決相關(guān)實際問題。
情感態(tài)度:在探究活動中培養(yǎng)學(xué)生嚴謹?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動中,學(xué)會與人合作,學(xué)會傾聽、欣賞和感悟,體驗數(shù)學(xué)的價值,建立自信心。
二、教法說明。
對于認知主體學(xué)生來說,他們已經(jīng)具備了初步探究問題的能力,但是對知識的.主動遷移能力較弱,為使學(xué)生更好地構(gòu)建新的認知結(jié)構(gòu),促進學(xué)生的發(fā)展,我將在教學(xué)中采用探究式教學(xué)法。以學(xué)生為中心,使其在生動活潑、民主開放、主動探索的氛圍中愉快地學(xué)習(xí)。
三、教學(xué)過程。
(一)感知身邊數(shù)學(xué)。
學(xué)生已經(jīng)學(xué)習(xí)過列方程(組)解應(yīng)用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結(jié)合前面對一次函數(shù)與一元一次方程、一元一次不等式之間關(guān)系的探究,我自然地提出問題:一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?,從而揭示課題。
[設(shè)計意圖]建構(gòu)主義認為,在實際情境中學(xué)習(xí)可以激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,用上網(wǎng)收費這一生活實際創(chuàng)設(shè)情境,并用問題啟發(fā)學(xué)生去思、鼓勵學(xué)生去探、激勵學(xué)生去說,努力給學(xué)生造成心求通而未能得,口欲言而不能說的情勢,從而喚起學(xué)生強烈的求知欲,使他們以躍躍欲試的姿態(tài)投入到探索活動中來。
(二)享受探究樂趣。
[設(shè)計意圖]用一連串的問題引導(dǎo)學(xué)生發(fā)現(xiàn)一次函數(shù)與二元一次方程在數(shù)與形兩個方面的關(guān)系,為探索二元一次方程組的解與直線交點坐標的關(guān)系作好鋪墊。
[設(shè)計意圖]學(xué)生經(jīng)過自主探索、合作交流,從數(shù)和形兩個角度認識一次函數(shù)與二元一次方程組的關(guān)系,真正掌握本節(jié)課的重點知識,從而在頭腦中再現(xiàn)知識的形成過程,避免單純地記憶,使學(xué)習(xí)過程成為一種再創(chuàng)造的過程。此時教師及時對學(xué)生進行鼓勵,充分肯定學(xué)生的探究成果,關(guān)注學(xué)生的情感體驗。
(三)乘坐智慧快車。
[設(shè)計意圖]為培養(yǎng)學(xué)生的發(fā)散思維和規(guī)范解題的習(xí)慣,引導(dǎo)學(xué)生將上網(wǎng)問題延伸為例題,并用問題:你家選擇的上網(wǎng)收費方式好嗎?再次激起學(xué)生強烈的求知欲望和主人翁的學(xué)習(xí)姿態(tài)。通過此問題的探究,使學(xué)生有效地理解本節(jié)課的難點,體會數(shù)形結(jié)合這一思想方法的應(yīng)用。
(四)體驗成功喜悅。
1、搶答題。
2、旅游問題。
[設(shè)計意圖]抓住學(xué)生對競爭充滿興趣的心理特征,用搶答題使學(xué)生的眼、耳、腦、口得到充分的調(diào)動,并在搶答中品味成功的快樂,提高思維的速度。在學(xué)生感興趣的旅游問題中,進一步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識,更好地促進學(xué)生對本節(jié)課難點的理解和應(yīng)用,幫助學(xué)生不斷完善新的認知結(jié)構(gòu)。
(五)分享你我收獲。
在課堂臨近尾聲時,向?qū)W生提出:通過今天的學(xué)習(xí),你有什么收獲?你印象最深的是什么?
[設(shè)計意圖]培養(yǎng)學(xué)生歸納和語言表達能力,鼓勵學(xué)生從數(shù)學(xué)知識、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進行自我評價。
(六)開拓嶄新天地。
1、數(shù)學(xué)日記。
2、布置作業(yè)。
[設(shè)計意圖]新課程強調(diào)發(fā)展學(xué)生數(shù)學(xué)交流的能力,用數(shù)學(xué)日記給學(xué)生提供一種表達數(shù)學(xué)思想方法和情感的方式,以體現(xiàn)評價體系的多元化,并使學(xué)生嘗試用數(shù)學(xué)的眼睛觀察事物,體驗數(shù)學(xué)的價值。作業(yè)由必做題和選做題組成,體現(xiàn)分層教學(xué),讓不同的人在數(shù)學(xué)上得到不同的發(fā)展。
四、教學(xué)設(shè)計反思。
1、貫穿一個原則以學(xué)生為主體的原則。
2、突出一個思想數(shù)形結(jié)合的思想。
3、體現(xiàn)一個價值數(shù)學(xué)建模的價值。
4、滲透一個意識應(yīng)用數(shù)學(xué)的意識。
函數(shù)與方程的說課稿篇四
探究式創(chuàng)造性思維教學(xué)法是新課程理念下的一個科研課題.本節(jié)課就是以這一理論為指導(dǎo),借助多媒體手段創(chuàng)設(shè)問題情境,指導(dǎo)學(xué)生研究式學(xué)習(xí)和體驗式學(xué)習(xí).如,函數(shù)零點與方程根之間的關(guān)系是這節(jié)課的一個重點,為了突破這一重點,在教學(xué)中利用多媒體教學(xué),調(diào)動了學(xué)生學(xué)習(xí)的積極性,幾何畫板畫圖象,準確、直觀、易于學(xué)生理解,符合學(xué)生的認知特點,調(diào)動了學(xué)生主動參與教學(xué)的積極性,使他們進行自主探究與合作交流,親身體驗知識的形成過程,變靜態(tài)教學(xué)為動態(tài)教學(xué).
2、滲透數(shù)學(xué)思想方法重在平時。
當學(xué)生有一天不再學(xué)習(xí)數(shù)學(xué)了,我們給他們留下了什么?我想應(yīng)該是學(xué)生遇到具體問題時那種思考問題的方式,和解決問題的方法.本節(jié)課始終是注意數(shù)學(xué)思想方法和數(shù)學(xué)探索方式的合理滲透,如特殊一般,數(shù)形結(jié)合,類比歸納等的交叉運用.
3、問題設(shè)計合理。
通過層層深入,由淺入深,由特殊到一般的階梯式問題,有效的降解了本課的難點,幫助學(xué)生實現(xiàn)了思維的騰飛.
美中不足的是教學(xué)重點不是太突出,零點的引入部分可以簡化改進,使之更趨合理,零點存在性定理引入部分略顯生硬,應(yīng)該有更藝術(shù)的方式.高一學(xué)生在函數(shù)的學(xué)習(xí)中,常表現(xiàn)出不適,主要是數(shù)形結(jié)合與抽象思維尚不能勝任.具體表現(xiàn)為將函數(shù)孤立起來,認識不到函數(shù)在高中數(shù)學(xué)中的核心地位.函數(shù)與方程相聯(lián)系的觀點的建立,函數(shù)應(yīng)用的意識的初步樹立,應(yīng)該是本節(jié)課必須承載的重要任務(wù).在這一任務(wù)的達成度方面,本課還需更加濃墨重彩的予以突出.另外,課堂上教師怎樣引導(dǎo)學(xué)生也是值得我深思的一個問題,還有少講多學(xué)方面也是我今后教學(xué)中努力的方向.
函數(shù)與方程的說課稿篇五
上完課后失敗感比較強。
本節(jié)課是人教版八年級上冊第十一章第三節(jié)第三課時。此前,學(xué)生已經(jīng)探究過一次函數(shù)、一元一次方程及一元一次不等式的聯(lián)系。通過本節(jié)課的學(xué)習(xí),讓學(xué)生能從函數(shù)的角度動態(tài)地分析方程(組)、不等式,提高認識問題的水平。
本節(jié)課的引入我通過一個一次函數(shù)形式問題提問,學(xué)生看出即使一次函數(shù)也是二元一次方程創(chuàng)設(shè)情境,引出一次函數(shù)與方程有一定的關(guān)系,使學(xué)生主動投入到一次函數(shù)與二元一次方程(組)關(guān)系的探索活動中;緊接著,用一連串的問題引導(dǎo)學(xué)生自主探索、合作交流,從數(shù)和形兩個角度認識它們的關(guān)系,使學(xué)生真正掌握本節(jié)課的重點知識。在探究過程中,我把學(xué)生分為一個函數(shù)組一個方程組,使學(xué)生能身臨其境感受知識,并及時的進行團結(jié)合作教育,把德育教育滲透在我的教學(xué)中。在探究中,我把握自己是組織者、引導(dǎo)者和合作者的身份,及時對學(xué)生進行知識探究。但在實際操作過程中還是把握的不夠好,沒有很好的起到引導(dǎo)者的作用,缺乏情感性的鼓勵,沒有使大多數(shù)學(xué)生能完全積極融入到的知識的探討與學(xué)習(xí)中。
本節(jié)教學(xué)內(nèi)容是《一次函數(shù)與一元二次方程(組)》,“一個二元一次方程對應(yīng)一個一次函數(shù),一般地一個二元一次方程組對應(yīng)兩個一次函數(shù),因而也對應(yīng)兩條直線。如果一個二元一次方程組有唯一的解,那么這個解就是方程組對應(yīng)的兩條直線的交點的坐標。本節(jié)的'圖象解法依據(jù)了這個道理。”因此本節(jié)需要迅速畫出圖象,利用圖象解決問題。而我的失誤主要發(fā)生在畫圖象上。大部分學(xué)生不能迅速畫出圖象,并找準交點,這就使他們理解本節(jié)知識有了困難。
為了培養(yǎng)學(xué)生的發(fā)散思維和規(guī)范解題的習(xí)慣,我引導(dǎo)學(xué)生將“上網(wǎng)收費”問題延伸為拓展應(yīng)用題,前后呼應(yīng),使學(xué)生有效地理解本節(jié)課的難點。但在此題的探討過程中,我做的不夠好,沒有給學(xué)生充分思考的時間及學(xué)生探討解決問題的方法,又由于用多媒體課件展示,點了一下屏幕,結(jié)果解題答案出來了,有點操之過急,而且我當時也沒有采取撲救措施,這是我的失誤,也是這節(jié)課的失敗之處。
一次失誤也反映了一位老師駕馭課題的能力,今后,在我的課堂教學(xué)中要注重培養(yǎng)這種能力,關(guān)注細節(jié),完善課堂和各個環(huán)節(jié),不留遺憾,提高教育教學(xué)質(zhì)量。
將本文的word文檔下載到電腦,方便收藏和打印。
函數(shù)與方程的說課稿篇六
本節(jié)課選自人教版高中數(shù)學(xué)必修一第三章第一節(jié)。是在學(xué)生學(xué)習(xí)了基本初等函數(shù)的圖象和性質(zhì)的基礎(chǔ)上,引入函數(shù)零點的概念,研究函數(shù)零點與相應(yīng)方程根的關(guān)系,函數(shù)零點存在的條件,及零點個數(shù)的判斷方法。為后面學(xué)習(xí)“用二分法求方程的近似解”奠定基礎(chǔ)。
二、學(xué)情分析。
高中學(xué)生有豐富的想象力,樂于探索,不滿足于知識的灌輸,自主學(xué)習(xí)和探索新知的習(xí)慣已初步形成,有初步的數(shù)形結(jié)合的意識,但本節(jié)課對思想方法的要求較高,而學(xué)生數(shù)學(xué)探究的能力不足,因此需要教師在方法上加強指導(dǎo)。
三、教學(xué)目標。
根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標:
(一)知識與技能。
體會方程的根與函數(shù)零點之間的關(guān)系,學(xué)會函數(shù)零點存在的判定方法,會利用函數(shù)單調(diào)性判斷函數(shù)零點的個數(shù)。
(二)過程與方法。
通過觀察、思考、分析、猜想、驗證的過程,體驗從特殊到一般及函數(shù)與方程的思想方法,提升抽象和概括能力。
(三)情感態(tài)度與價值觀。
通過學(xué)習(xí),學(xué)會認識事物的特殊性與一般性之間的關(guān)系,構(gòu)建和諧的課堂氛圍,逐步養(yǎng)成勇于提問,善于探索的思維品質(zhì)。
四、教學(xué)重難點。
我認為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點、突破難點。根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點是:對函數(shù)零點概念的理解;函數(shù)零點存在性的判定。教學(xué)難點是:探究并發(fā)現(xiàn)零點存在性定理及其應(yīng)用。
五、教學(xué)方法。
新課程標準指出,教無定法,貴在得法,教師是學(xué)生學(xué)習(xí)活動的組織者、引導(dǎo)者和合作者,是師生關(guān)系中平等的首席,根據(jù)這一教學(xué)理念,我主要采用啟發(fā)誘導(dǎo)式的教學(xué)方式,鼓勵學(xué)生交流,并讓學(xué)生運用已學(xué)知識大膽創(chuàng)新。
在學(xué)法的指導(dǎo)上,我始終將學(xué)生放在主體地位上,使學(xué)習(xí)的主要內(nèi)容不是由教師灌輸給學(xué)生,而是以問題的形式呈現(xiàn)出來,由學(xué)生自己去思考討論,然后內(nèi)化為自己的'一部分。
六、教學(xué)過程。
(一)引入新課。
首先我會帶領(lǐng)學(xué)生復(fù)習(xí)一元二次方程的根及判別式,一元二次函數(shù)的圖象。
引發(fā)學(xué)生思考,引出課題。
復(fù)習(xí)舊知的目的是喚起學(xué)生已有的知識經(jīng)驗,把握好教學(xué)的起點,抓住方程的根和函數(shù)零點間的關(guān)系,引起學(xué)生學(xué)習(xí)新知的欲望。
(二)探索新知。
接下來是最重要的探索新知環(huán)節(jié)。在這一部分,我會做好教師的引導(dǎo)者的角色,啟發(fā)引導(dǎo)學(xué)生自主思考、探索、交流,形成知識,從而鍛煉學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題、解決問題的能力。
函數(shù)與方程的說課稿篇七
本節(jié)課的主要內(nèi)容有函數(shù)零點的的概念、函數(shù)零點存在性判定定理。
函數(shù)f(x)的零點,是中學(xué)數(shù)學(xué)的一個重要概念,從函數(shù)值與自變量對應(yīng)的角度看,就是使函數(shù)值為0的實數(shù)x;從方程的角度看,即為相應(yīng)方程f(x)=0的實數(shù)根,從函數(shù)的圖形表示看,函數(shù)的零點就是函數(shù)f(x)與x軸交點的橫坐標.函數(shù)是中學(xué)數(shù)學(xué)的核心概念,核心的根本原因之一在于函數(shù)與其他知識具有廣泛的聯(lián)系性,而函數(shù)的零點就是其中的一個鏈結(jié)點,它從不同的角度,將數(shù)與形,函數(shù)與方程有機的聯(lián)系在一起。
函數(shù)零點的存在性判定定理,其目的就是通過找函數(shù)的零點來研究方程的根,進一步突出函數(shù)思想的應(yīng)用,也為二分法求方程的近似解作好知識上和思想上的準備。定理不需證明,關(guān)鍵在于讓學(xué)生通過感知體驗并加以確認,由些需要結(jié)合具體的實例,加強對定理進行全面的認識,比如定理應(yīng)用的局限性,即定理的前提是函數(shù)的圖象必須是連續(xù)的,定理只能判定函數(shù)的“變號”零點;定理結(jié)論中零點存在但不一定唯一,需要結(jié)合函數(shù)的圖象和性質(zhì)作進一步的判斷。
對函數(shù)與方程的關(guān)系有一個逐步認識的過程,教材遵循了由淺入深、循序漸進的原則.從學(xué)生認為較簡單的一元二次方程與相應(yīng)的二次函數(shù)入手,由具體到一般,建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后將其推廣到一般方程與相應(yīng)的函數(shù)的情形。
函數(shù)與方程相比較,一個“動”,一個“靜”;一個“整體”,一個“局部”。用函數(shù)的.觀點研究方程,本質(zhì)上就是將局部的問題放在整體中研究,將靜態(tài)的結(jié)果放在動態(tài)的過程中研究,這為今后進一步學(xué)習(xí)函數(shù)與不等式等其它知識的聯(lián)系奠定了堅實的基礎(chǔ)。
本節(jié)是函數(shù)應(yīng)用的第一課,因此教學(xué)時應(yīng)當站在函數(shù)應(yīng)用的高度,從函數(shù)與其他知識的聯(lián)系的角度來引入較為適宜。
二、教學(xué)目標解析。
1.結(jié)合具體的問題,并從特殊推廣到一般,使學(xué)生領(lǐng)會函數(shù)與方程之間的內(nèi)在聯(lián)系,從而了解函數(shù)的零點與方程根的聯(lián)系。
2.結(jié)合函數(shù)圖象,通過觀察分析特殊函數(shù)的零點存在的特點,通過問題,理解連續(xù)函數(shù)在某個區(qū)間上存在零點的判定方法,并能由此方法判定函數(shù)在某個區(qū)間上存在零點。了解定理應(yīng)用的前提條件,應(yīng)用的局限性,及定理的準確結(jié)論。
3.通過具體實例,學(xué)生能結(jié)合函數(shù)的圖象和性質(zhì)進一步判斷函數(shù)零點的個數(shù)。
4.在學(xué)習(xí)過程中,體驗函數(shù)與方程思想及數(shù)形結(jié)合思想。
三、教學(xué)問題診斷分析。
1.通過前面的學(xué)習(xí),學(xué)生已經(jīng)了解一些基本初等函數(shù)的模型,掌握了函數(shù)圖象的一般畫法,及一定的看圖識圖能力,這為本節(jié)課利用函數(shù)圖象,判斷方程根的存在性提供了一定的知識基礎(chǔ)。對于函數(shù)零點的概念本質(zhì)的理解,學(xué)生缺乏的是函數(shù)的觀點,或是函數(shù)應(yīng)用的意識,造成對函數(shù)與方程之間的聯(lián)系缺乏了解。由此作為函數(shù)應(yīng)用的第一課時,有必要點明函數(shù)的核心地位,即說明函數(shù)與其他知識的聯(lián)系及其在生活中的應(yīng)用,初步樹立起函數(shù)應(yīng)用的意識。并從此出發(fā),通過問題的設(shè)置,引導(dǎo)學(xué)生思考,再通過實例的確認與體驗,從直觀到抽象,從特殊到一般的學(xué)習(xí)方式,捅破學(xué)生認識上的這層“窗戶紙”。
2.對于零點存在的判定定理,教材不要求給予其證明,這需要教師提供一定量的具體案例讓學(xué)生操作感知,同時鼓勵學(xué)生舉例來驗證,最終能自主地獲得并確認該定理的結(jié)論。對于定理的條件和結(jié)論,學(xué)生往往考慮不夠深入,需要教師通過具體的問題,引導(dǎo)學(xué)生從正面、反面、側(cè)面等不同的角度重新進行審視。
3.函數(shù)的零點,體現(xiàn)了函數(shù)與方程之間的密切聯(lián)系,教學(xué)中應(yīng)遵循高中數(shù)學(xué)以函數(shù)為主線的這一原則進行聯(lián)結(jié),側(cè)重在從函數(shù)的角度看方程,同時為二分法求方程的近似解作知識和思想上的準備。
四、教學(xué)過程設(shè)計。
(一)創(chuàng)設(shè)情景,揭示課題。
函數(shù)是中學(xué)數(shù)學(xué)的核心內(nèi)容,它不僅在生活中有著大量的應(yīng)用,與其他數(shù)學(xué)知識有著千絲萬縷的聯(lián)系,若能抓住這一聯(lián)系,你就擁有了一把解決問題的金鑰匙。
案例1:周長為定值的矩形。
不妨取l=12。
問題1:求其面積的值:
顯然面積是一個關(guān)于x的一個二次多項式。
用幾何畫板演示矩形的變化:
問題2:求矩形面積的最大值?
當x取不同值時,代數(shù)式的值也相應(yīng)隨之變化,你能從函數(shù)的角度審視其中的關(guān)系嗎?
問題3:能否使得矩形的面積為8?你是如何分析的?
(1)實驗演示的角度進行估計,拖動時難以恰好出現(xiàn)面積為8的情況;。
(2)解方程:x(6-x)=8。
問題4:
一般地,對于一般的二次三項式,二次方程與二次函數(shù),它們之間有何聯(lián)系?
結(jié)論:
代數(shù)式的值就是相應(yīng)的函數(shù)值;。
更一般地。
方程f(x)=0的根,就是使函數(shù)值y=f(x)的函數(shù)值為0的x值,從函數(shù)的角度我們稱之為零點。
設(shè)計意圖:本節(jié)課是函數(shù)應(yīng)用的第一課,有必要讓學(xué)生對函數(shù)的應(yīng)用有所了解。從具體的問題出發(fā),揭示函數(shù)與代數(shù)式、方程之間的內(nèi)在聯(lián)系,并從學(xué)生所熟悉的具體的二次函數(shù),推廣到一般的二次函數(shù),再進一步推廣到一般的函數(shù)。
(二)互動交流研討新知。
對于函數(shù)。
把使。
成立的實數(shù)。
叫做函數(shù)。
的零點.
2.對零點概念的理解。
案例2:觀察圖象。
問題1:此圖象是否能表示函數(shù)?
問題2:你能從中分析函數(shù)有哪些零點嗎?
問題3:從函數(shù)圖象的角度,你能對函數(shù)的零點換一種說法嗎?
結(jié)論:函數(shù)。
的零點就是方程。
實數(shù)根,亦即函數(shù)。
的圖象與。
軸交點的橫坐標.即:
方程。
有實數(shù)根。
函數(shù)。
的圖象與。
軸有交點。
函數(shù)。
有零點.
設(shè)計意圖:進一步掌握函數(shù)的核心概念,同時通過圖象進行一步完善對函數(shù)零點的全面理解,為下面借助圖象探究零點存在性定理作好一定的鋪墊。
2.零點存在定理的探究。
案例3:下表是三次函數(shù)。
的部分對應(yīng)值表:
問題2:結(jié)合圖象與表格,你能發(fā)現(xiàn)此函數(shù)零點的附近函數(shù)值有何特點?
生:兩邊的函數(shù)值異號!
注意:函數(shù)在區(qū)間上必須是連續(xù)的(圖象能一筆畫),從而引出零點存在性定理.
問題4:有位同學(xué)畫了一個圖,認為定理不一定成立,你的看法呢?
問題5:你能改變定理的條件或結(jié)論,得到一些新的命題嗎?
如3:一般化:一個函數(shù)的零點是否都可由上述的定理進行判斷?(反例:同號零點,如案例2中的零點-2)。
設(shè)計意圖:通過表格,是為了進一步鞏固對函數(shù)這一概念的全面認識,并為觀察零點存在性定理中函數(shù)值的異號埋下伏筆。通過教師的設(shè)問讓學(xué)生進一步全面深入地領(lǐng)悟定理的內(nèi)容,而鼓勵學(xué)生提問,是培養(yǎng)學(xué)生學(xué)習(xí)主動性和創(chuàng)造能力必要的過程。
(三)鞏固深化,發(fā)展思維。
例1、求函數(shù)f(x)=rx+2x-6的零點個數(shù)。
設(shè)計問題:
(1)你可以想到什么方法來判斷函數(shù)零點?
(2)你是如何來確定零點所在的區(qū)間的?請各自選擇。
(3)零點是唯一的嗎?為什么?
本題可以使學(xué)生意識對零點的區(qū)間是不唯一的,為下一節(jié)二分法求方程的近似解奠定基礎(chǔ)。
讓學(xué)生進一步領(lǐng)悟,零點的唯一性需要借助函數(shù)的單調(diào)性。
(四)歸納整理,整體認識。
請回顧本節(jié)課所學(xué)知識內(nèi)容有哪些?
所涉及到的主要數(shù)學(xué)思想又有哪些?
你還獲得了什么?
(五)作業(yè)(略)。
函數(shù)與方程的說課稿篇八
2.結(jié)合零點定義的探究,掌握方程的實根與其相應(yīng)函數(shù)零點之間的等價關(guān)系;
3.結(jié)合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點個數(shù)和所在區(qū)間的方法.。
過程與方法。
2.通過數(shù)形結(jié)合思想的滲透,培養(yǎng)學(xué)生主動應(yīng)用數(shù)學(xué)思想的意識;
4.通過對函數(shù)與方程思想的不斷剖析,促進學(xué)生對知識靈活應(yīng)用的能力.。
情感、態(tài)度與價值觀。
2.培養(yǎng)學(xué)生鍥而不舍的探索精神和嚴密思考的良好學(xué)習(xí)習(xí)慣;
3.使學(xué)生感受學(xué)習(xí)、探索發(fā)現(xiàn)的樂趣與成功感.。
教學(xué)重點與難點。
教學(xué)重點:零點的概念及零點存在性的判定.。
教學(xué)難點:探究判斷函數(shù)的零點個數(shù)和所在區(qū)間的方法.。
教學(xué)的方法與手段。
授課類型新授課教學(xué)方法啟發(fā)式教學(xué)、探究式學(xué)習(xí).
函數(shù)與方程的說課稿篇九
各位尊敬的老師,下午好。今天我說課的題目是《方程的根與函數(shù)的零點》。下面我將從教材的地位與作用、學(xué)情分析,教學(xué)目標與重難點分析,教法和學(xué)法指導(dǎo)、教學(xué)過程設(shè)計五個方面來闡述我對本節(jié)課的構(gòu)思。
【教材的地位與作用】。
本節(jié)課是選自人教版《高中課程標準實驗教科書》a版必修1第三章第一節(jié)。函數(shù)是中學(xué)數(shù)學(xué)的核心概念,核心的根本原因之一在于函數(shù)與其他知識具有廣泛的聯(lián)系性,而函數(shù)的零點就是其中的一個鏈結(jié)點,它從不同的角度,將數(shù)與形,函數(shù)與方程有機的聯(lián)系在一起。
對函數(shù)與方程的關(guān)系有一個逐步認識的過程,教材遵循了由淺入深、循序漸進的原則.從學(xué)生認為較簡單的一元二次方程與相應(yīng)的二次函數(shù)入手,由具體到一般,建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后將其推廣到一般方程與相應(yīng)的函數(shù)的情形。
【學(xué)情分析】。
1.通過前面的學(xué)習(xí),學(xué)生已經(jīng)了解一些基本初等函數(shù)的模型,掌握了函數(shù)圖象的一般畫法,及一定的看圖識圖能力,這為本節(jié)課利用函數(shù)圖象,判斷方程根的存在性提供了一定的知識基礎(chǔ)。對于函數(shù)零點的概念本質(zhì)的理解,學(xué)生缺乏的是函數(shù)的觀點,或是函數(shù)應(yīng)用的意識,造成對函數(shù)與方程之間的聯(lián)系缺乏了解。
【教材目標】。
根據(jù)本課教學(xué)內(nèi)容的特點以及新課標對本節(jié)課的教學(xué)要求,考慮學(xué)生已有的認知結(jié)構(gòu)與心理特征,我制定以下教學(xué)目標:
(一)認知目標:
2.理解零點存在條件,并能確定具體函數(shù)存在零點的區(qū)間.。
(二)能力目標:
培養(yǎng)學(xué)生自主發(fā)現(xiàn)、探究實踐的能力.。
(三)情感目標:
在函數(shù)與方程的聯(lián)系中體驗數(shù)學(xué)轉(zhuǎn)化思想的意義和價值。
【教材重難點】。
本著新課程標準的教學(xué)理念,針對教學(xué)內(nèi)容的特點,我確立了如下的教學(xué)重點、難點:
教學(xué)重點:體會函數(shù)的零點與方程的根之間的聯(lián)系,掌握零點存在的判定條件及應(yīng)用.。
教學(xué)難點:探究發(fā)現(xiàn)函數(shù)零點的存在性.
【教學(xué)過程】。
(一)創(chuàng)設(shè)情景,提出問題。
以學(xué)生熟悉二次函數(shù)圖象和二次方程為平臺,觀察方程和函數(shù)形式上的聯(lián)系,從而得到方程實數(shù)根與函數(shù)圖象之間的關(guān)系。培養(yǎng)學(xué)生的歸納能力。理解零點是連接函數(shù)與方程的結(jié)點。
(二)啟發(fā)引導(dǎo),形成概念。
利用辨析練習(xí),來加深學(xué)生對概念的理解.目的要學(xué)生明確零點是一個實數(shù),不是一個點.
(三)初步運用,示例練習(xí)。
鞏固函數(shù)零點的求法,滲透二次函數(shù)以外的函數(shù)零點情況.進一步體會方程與函數(shù)的關(guān)系.。
(四)討論探究,揭示定理。
通過小組討論完成探究,教師恰當輔導(dǎo),引導(dǎo)學(xué)生大膽猜想出函數(shù)零點存在性的判定方法.這樣設(shè)計既符合學(xué)生的認知特點,也讓學(xué)生經(jīng)歷從特殊到一般過程.函數(shù)零點的存在性判定定理,其目的就是通過找函數(shù)的零點來研究方程的根,進一步突出函數(shù)思想的應(yīng)用,也為二分法求方程的近似解作好知識上和思想上的準備。
(四)討論辨析,形成概念。
(五)觀察感知,例題學(xué)習(xí)。
引導(dǎo)學(xué)生思考如何應(yīng)用定理來解決相關(guān)的具體問題,接著讓學(xué)生利用計算器完成對應(yīng)值表,然后利用函數(shù)單調(diào)性判斷零點的個數(shù),并借助函數(shù)圖象對整個解題思路有一個直觀的認識.
(六)知識應(yīng)用,嘗試練習(xí)。
對新知識的理解需要一個不斷深化完善的過程,通過練習(xí),進行數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,同時反映教學(xué)效果,便于教師進行查漏補缺.
(八)課后作業(yè),自主學(xué)習(xí)。
鞏固學(xué)生所學(xué)的新知識,將學(xué)生的思維向外延伸,激發(fā)學(xué)生的發(fā)散思維。
函數(shù)與方程的說課稿篇十
本節(jié)課選自人教版高中數(shù)學(xué)必修一第三章第一節(jié)。是在學(xué)生學(xué)習(xí)了基本初等函數(shù)的圖象和性質(zhì)的基礎(chǔ)上,引入函數(shù)零點的概念,研究函數(shù)零點與相應(yīng)方程根的關(guān)系,函數(shù)零點存在的條件,及零點個數(shù)的判斷方法。為后面學(xué)習(xí)“用二分法求方程的近似解”奠定基礎(chǔ)。
二、學(xué)情分析。
高中學(xué)生有豐富的想象力,樂于探索,不滿足于知識的灌輸,自主學(xué)習(xí)和探索新知的習(xí)慣已初步形成,有初步的數(shù)形結(jié)合的意識,但本節(jié)課對思想方法的要求較高,而學(xué)生數(shù)學(xué)探究的能力不足,因此需要教師在方法上加強指導(dǎo)。
三、教學(xué)目標。
根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標:
(一)知識與技能。
體會方程的根與函數(shù)零點之間的關(guān)系,學(xué)會函數(shù)零點存在的判定方法,會利用函數(shù)單調(diào)性判斷函數(shù)零點的個數(shù)。
(二)過程與方法。
通過觀察、思考、分析、猜想、驗證的過程,體驗從特殊到一般及函數(shù)與方程的思想方法,提升抽象和概括能力。
(三)情感態(tài)度與價值觀。
通過學(xué)習(xí),學(xué)會認識事物的特殊性與一般性之間的關(guān)系,構(gòu)建和諧的課堂氛圍,逐步養(yǎng)成勇于提問,善于探索的思維品質(zhì)。
四、教學(xué)重難點。
我認為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點、突破難點。根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點是:對函數(shù)零點概念的理解;函數(shù)零點存在性的判定。教學(xué)難點是:探究并發(fā)現(xiàn)零點存在性定理及其應(yīng)用。
五、教學(xué)方法。
新課程標準指出,教無定法,貴在得法,教師是學(xué)生學(xué)習(xí)活動的組織者、引導(dǎo)者和合作者,是師生關(guān)系中平等的首席,根據(jù)這一教學(xué)理念,我主要采用啟發(fā)誘導(dǎo)式的教學(xué)方式,鼓勵學(xué)生交流,并讓學(xué)生運用已學(xué)知識大膽創(chuàng)新。
在學(xué)法的指導(dǎo)上,我始終將學(xué)生放在主體地位上,使學(xué)習(xí)的主要內(nèi)容不是由教師灌輸給學(xué)生,而是以問題的形式呈現(xiàn)出來,由學(xué)生自己去思考討論,然后內(nèi)化為自己的'一部分。
六、教學(xué)過程。
(一)引入新課。
首先我會帶領(lǐng)學(xué)生復(fù)習(xí)一元二次方程的根及判別式,一元二次函數(shù)的圖象。
引發(fā)學(xué)生思考,引出課題。
復(fù)習(xí)舊知的目的是喚起學(xué)生已有的知識經(jīng)驗,把握好教學(xué)的起點,抓住方程的根和函數(shù)零點間的關(guān)系,引起學(xué)生學(xué)習(xí)新知的欲望。
(二)探索新知。
接下來是最重要的探索新知環(huán)節(jié)。在這一部分,我會做好教師的引導(dǎo)者的角色,啟發(fā)引導(dǎo)學(xué)生自主思考、探索、交流,形成知識,從而鍛煉學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題、解決問題的能力。
將本文的word文檔下載到電腦,方便收藏和打印。
函數(shù)與方程的說課稿篇十一
本節(jié)課安排了兩個內(nèi)容:一是探索一次函數(shù)與二元一次方程(組)的關(guān)系,這是本節(jié)的重點;二是綜合運用函數(shù)與方程、不等式的關(guān)系解決簡單的實際問題,這是本節(jié)的難點。
教師先讓學(xué)生把一個具體的二元一次方程轉(zhuǎn)化成一次函數(shù),再通過畫圖來揭示二元一次方程與一次函數(shù)之間的關(guān)系,然后在同一坐標系中畫出另一條直線,觀察、思考得到二元一次方程組與一次函數(shù)之間的關(guān)系,進而得到二元一次方程組的解與兩條直線交點坐標之間的關(guān)系,這些都為從函數(shù)的觀點認識解方程組作好了鋪墊。學(xué)生經(jīng)歷了前面的探究學(xué)習(xí)后,很自然從“形”的角度來認識解方程組。為了幫助學(xué)生從“數(shù)”的角度來認識解方程組,教師設(shè)計一個練習(xí),先讓學(xué)生體驗再引導(dǎo)學(xué)生歸納結(jié)論,使學(xué)生的思維活躍起來。這種呈現(xiàn)知識的形式符合學(xué)生的認知規(guī)律。
在例題的教學(xué)中,教師引導(dǎo)學(xué)生分析題意,建立函數(shù)模型,然后讓學(xué)生討論交流比較大小的方法.對于利用圖象比較大小的兩種方法,第一種是教師讓學(xué)生獨立畫圖,分析比較,然后強調(diào)自變量的取值范圍;對于第二種方法,教師著重引導(dǎo)學(xué)生作差得到一個新函數(shù),并把要解決的`問題設(shè)計成填空的形式,讓學(xué)生結(jié)合畫圖分析完成。
這節(jié)課較好地體現(xiàn)了教材的編寫意圖,結(jié)合實際,不誤時機地對學(xué)生進行“數(shù)形結(jié)合”思想方法的教學(xué),并讓學(xué)生在動口、動手、動腦的過程中體會四個“一次”之間的關(guān)系。教師注重知識形成過程的教學(xué),突出學(xué)生活動這條主線,多媒體輔助教學(xué)應(yīng)用自然,師生互動、生生互動,較好地體現(xiàn)了“以人為本”的教學(xué)理念。
函數(shù)與方程的說課稿篇十二
各位專家,各位老師,大家好!
今天我說課的課題是“義務(wù)教育課程標準實驗教科書”八年級上冊第六章第五節(jié)《一次函數(shù)圖象的應(yīng)用》第二課時,我將分以下幾個方面進行分析:
一,教材分析。
新的課程標準將初中學(xué)段的數(shù)學(xué)知識分為四個領(lǐng)域,“數(shù)與代數(shù)”“空間與圖形”“統(tǒng)計與概率”“實踐與綜和”,每個領(lǐng)域在三個年級里都是螺旋上升的,由于學(xué)生在七年級下冊學(xué)習(xí)了變量之間的關(guān)系,學(xué)生對函數(shù)——研究世界變化規(guī)律的一個重要模型,已經(jīng)有了一定的感性認識。而且通過“一次函數(shù)圖象的應(yīng)用”第一節(jié)的學(xué)習(xí),學(xué)生的識圖能力增強了,通過識圖解決實際問題的求知欲望更迫切了,同時本節(jié)也滲透了數(shù)形結(jié)合,形象思維能力的培養(yǎng),為以后學(xué)習(xí)其他函數(shù)奠定了興趣基礎(chǔ)和能力基礎(chǔ),因此,本節(jié)課在整個教材中起到了承上啟下的作用,由于本節(jié)內(nèi)容針對的學(xué)習(xí)者是八年級上的學(xué)生,已經(jīng)具備了一定的生活經(jīng)驗和初步教學(xué)活動體驗,樂意并能夠與同伴進行合作交流共享,為此確定目標如下:
二,教學(xué)目標。
(一)知識與技能目標。
1,經(jīng)歷利用一次函數(shù)及其圖象解決實際問題的過程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。
2,經(jīng)歷函數(shù)圖象信息的識別與應(yīng)用過程,發(fā)展學(xué)生的形象思維能力。
3,更進一步培養(yǎng)學(xué)生的識圖能力,即從“形”的方面解決問題。
(二)情感與態(tài)度目標。
1,進一步形成利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。
2,通過學(xué)生自主探索研究生活中的事例,如“臺風(fēng)麥莎”對島城的影響,促進學(xué)生的思考認知能力,激發(fā)學(xué)數(shù)學(xué)用數(shù)學(xué)的興趣,培養(yǎng)團隊協(xié)作意識和關(guān)心時事的意識。
3,豐富學(xué)生數(shù)學(xué)學(xué)習(xí)的成功體驗。
三,教學(xué)重點和難點及關(guān)鍵。
本節(jié)課的教學(xué)重點是進一步培養(yǎng)學(xué)生良好的識圖能力,更深層的體會數(shù)形結(jié)合,
難點是富有挑戰(zhàn)性的數(shù)學(xué)史料。
四,教學(xué)理念和教學(xué)方式。
本節(jié)課將采用“教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線,思維為核心”的教學(xué)理念,以人的“興趣學(xué)習(xí)”和“可持續(xù)發(fā)展”為關(guān)注目標,來體現(xiàn)教學(xué)方式中的“新意”。
教學(xué)中將采用合作交流和自主探究的教學(xué)策略,重視培養(yǎng)學(xué)生的獨立思考能力,“數(shù)形結(jié)合”分析問題的能力,鼓勵學(xué)生大膽里利用圖形解決問題,培養(yǎng)創(chuàng)新精神。
評價方式體現(xiàn)多元化和人性化,關(guān)注思維,即解決問題的過程,淡化對知識的機械記憶,針對個人和小組進行及時的贊賞和肯定。
五,教學(xué)媒體和教學(xué)技術(shù)選用。
為使教學(xué)活動更有效,符合八年級上學(xué)生的年齡特點,需要教學(xué)媒體技術(shù)的支持,豐富學(xué)生的認知資源,拓展學(xué)生的思維空間。
六,教學(xué)和活動過程。
(一)教學(xué)準備:1,提前一天了解“麥莎”的有關(guān)內(nèi)容。
(二)教學(xué)過程。
全課分為五個教學(xué)環(huán)節(jié)。
1,情景引入學(xué)習(xí)新知。2分鐘。
2,議一議探索新知。8分鐘。
3,練一練鞏固新知。10分鐘。
4,試一試開闊思路。5分鐘。
5,讀一讀培養(yǎng)興趣。7分鐘。
6,練一練鞏固新知。8分鐘。
7,想一想感悟收獲。4分鐘。
8,布置作業(yè)。1分鐘。
具體過程如下:(多媒體課件)。
將本文的word文檔下載到電腦,方便收藏和打印。
函數(shù)與方程的說課稿篇十三
函數(shù)、方程和不等式都是人們刻畫現(xiàn)實世界的重要數(shù)學(xué)模型。用函數(shù)的觀點看方程(組)與不等式,使學(xué)生不僅能加深對方程(組)、不等式的理解,提高認識問題的水平,而且能從函數(shù)的角度將三者統(tǒng)一起來,感受數(shù)學(xué)的統(tǒng)一美。本節(jié)課是學(xué)生學(xué)習(xí)完一次函數(shù)、一元一次方程及一元一次不等式的聯(lián)系后對一次函數(shù)和二元一次方程(組)關(guān)系的探究,學(xué)生在探索過程中體驗數(shù)形結(jié)合的思想方法和數(shù)學(xué)模型的應(yīng)用價值,這對今后的學(xué)習(xí)有著十分重要的意義。
2、教學(xué)重難點。
重點:一次函數(shù)與二元一次方程(組)關(guān)系的探索。
難點:綜合運用方程(組)、不等式和函數(shù)的知識解決實際問題。
3、教學(xué)目標。
知識技能:理解一次函數(shù)與二元一次方程(組)的關(guān)系,會用圖象法解二元一次方程組。
數(shù)學(xué)思考:經(jīng)歷一次函數(shù)與二元一次方程(組)關(guān)系的探索及相關(guān)實際問題的解決過程,學(xué)會用函數(shù)的觀點去認識問題。
解決問題:能綜合應(yīng)用一次函數(shù)、一元一次方程、一元一次不等式、二元一次方程(組)解決相關(guān)實際問題。
情感態(tài)度:在探究活動中培養(yǎng)學(xué)生嚴謹?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動中,學(xué)會與人合作,學(xué)會傾聽、欣賞和感悟,體驗數(shù)學(xué)的價值,建立自信心。
二、教法說明。
對于認知主體學(xué)生來說,他們已經(jīng)具備了初步探究問題的能力,但是對知識的主動遷移能力較弱,為使學(xué)生更好地構(gòu)建新的認知結(jié)構(gòu),促進學(xué)生的發(fā)展,我將在教學(xué)中采用探究式教學(xué)法。以學(xué)生為中心,使其在生動活潑、民主開放、主動探索的氛圍中愉快地學(xué)習(xí)。
(一)感知身邊數(shù)學(xué)。
學(xué)生已經(jīng)學(xué)習(xí)過列方程(組)解應(yīng)用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結(jié)合前面對一次函數(shù)與一元一次方程、一元一次不等式之間關(guān)系的探究,我自然地提出問題:一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?,從而揭示課題。
[設(shè)計意圖]建構(gòu)主義認為,在實際情境中學(xué)習(xí)可以激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,用上網(wǎng)收費這一生活實際創(chuàng)設(shè)情境,并用問題啟發(fā)學(xué)生去思、鼓勵學(xué)生去探、激勵學(xué)生去說,努力給學(xué)生造成心求通而未能得,口欲言而不能說的情勢,從而喚起學(xué)生強烈的求知欲,使他們以躍躍欲試的姿態(tài)投入到探索活動中來。
(二)享受探究樂趣。
1、探究一次函數(shù)與二元一次方程的關(guān)系。
[設(shè)計意圖]用一連串的問題引導(dǎo)學(xué)生發(fā)現(xiàn)一次函數(shù)與二元一次方程在數(shù)與形兩個方面的關(guān)系,為探索二元一次方程組的解與直線交點坐標的關(guān)系作好鋪墊。
2、探究一次函數(shù)與二元一次方程組的關(guān)系。
[設(shè)計意圖]學(xué)生經(jīng)過自主探索、合作交流,從數(shù)和形兩個角度認識一次函數(shù)與二元一次方程組的關(guān)系,真正掌握本節(jié)課的重點知識,從而在頭腦中再現(xiàn)知識的形成過程,避免單純地記憶,使學(xué)習(xí)過程成為一種再創(chuàng)造的過程。此時教師及時對學(xué)生進行鼓勵,充分肯定學(xué)生的探究成果,關(guān)注學(xué)生的情感體驗。
(三)乘坐智慧快車。
[設(shè)計意圖]為培養(yǎng)學(xué)生的發(fā)散思維和規(guī)范解題的習(xí)慣,引導(dǎo)學(xué)生將上網(wǎng)問題延伸為例題,并用問題:你家選擇的上網(wǎng)收費方式好嗎?再次激起學(xué)生強烈的求知欲望和主人翁的學(xué)習(xí)姿態(tài)。通過此問題的探究,使學(xué)生有效地理解本節(jié)課的難點,體會數(shù)形結(jié)合這一思想方法的應(yīng)用。
(四)體驗成功喜悅。
1、搶答題。
2、旅游問題。
[設(shè)計意圖]抓住學(xué)生對競爭充滿興趣的心理特征,用搶答題使學(xué)生的眼、耳、腦、口得到充分的調(diào)動,并在搶答中品味成功的快樂,提高思維的速度。在學(xué)生感興趣的旅游問題中,進一步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識,更好地促進學(xué)生對本節(jié)課難點的理解和應(yīng)用,幫助學(xué)生不斷完善新的認知結(jié)構(gòu)。
(五)分享你我收獲。
在課堂臨近尾聲時,向?qū)W生提出:通過今天的學(xué)習(xí),你有什么收獲?你印象最深的是什么?
[設(shè)計意圖]培養(yǎng)學(xué)生歸納和語言表達能力,鼓勵學(xué)生從數(shù)學(xué)知識、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進行自我評價。
(六)開拓嶄新天地。
1、數(shù)學(xué)日記。
2、布置作業(yè)。
[設(shè)計意圖]新課程強調(diào)發(fā)展學(xué)生數(shù)學(xué)交流的能力,用數(shù)學(xué)日記給學(xué)生提供一種表達數(shù)學(xué)思想方法和情感的方式,以體現(xiàn)評價體系的多元化,并使學(xué)生嘗試用數(shù)學(xué)的眼睛觀察事物,體驗數(shù)學(xué)的價值。作業(yè)由必做題和選做題組成,體現(xiàn)分層教學(xué),讓不同的人在數(shù)學(xué)上得到不同的發(fā)展。
四、教學(xué)設(shè)計反思。
1、貫穿一個原則以學(xué)生為主體的原則。
2、突出一個思想數(shù)形結(jié)合的思想。
3、體現(xiàn)一個價值數(shù)學(xué)建模的價值。
4、滲透一個意識應(yīng)用數(shù)學(xué)的意識。
《一次函數(shù)與二元一次方程(組)》教案。
教學(xué)目標。
知識技能:理解一次函數(shù)與二元一次方程(組)的關(guān)系,會用圖象法解二元一次方程組。
情感態(tài)度:在探究活動中培養(yǎng)學(xué)生嚴謹?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動中,學(xué)會與人合作,學(xué)會傾聽、欣賞和感悟,體驗數(shù)學(xué)的價值,建立自信心。
教學(xué)重難點。
重點:一次函數(shù)與二元一次方程(組)關(guān)系的探索。
難點:綜合運用方程(組)、不等式和函數(shù)的知識解決實際問題。
教學(xué)過程。
學(xué)生已經(jīng)學(xué)習(xí)過列方程(組)解應(yīng)用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結(jié)合前面對一次函數(shù)與一元一次方程、一元一次不等式之間關(guān)系的探究,我自然地提出問題:一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?,從而揭示課題。
(二)進行新課。
1、探究一次函數(shù)與二元一次方程的關(guān)系。
填空:二元一次方程可以轉(zhuǎn)化為________。
(3)是否直線上任意一點的坐標都是它所對應(yīng)的二元一次方程的解?
2、探究一次函數(shù)圖像與二元一次方程組的關(guān)系。
此時教師留給學(xué)生充分探索交流的時間與空間,對學(xué)生可能出現(xiàn)的疑問給予幫助,師生共同歸納出:從形的角度看,解方程組相當于確定兩條直線交點的坐標。
進一步歸納出:從數(shù)的角度看,解方程組相當于考慮自變量為何值時兩個函數(shù)的值相等,以及這個函數(shù)值是何值。
3、列一元二次不等式。
解法1:設(shè)上網(wǎng)時間為分,若按方式a則收元;若按方式b則收元。然后在同一坐標系中分別畫出這兩個函數(shù)的圖象,計算出交點坐標,結(jié)合圖象,利用直線上點位置的高低直觀地比較函數(shù)值的大小,得到當一個月內(nèi)上網(wǎng)時間少于400分時,選擇方式a省錢;當上網(wǎng)時間等于400分時,選擇方式a、b沒有區(qū)別;當上網(wǎng)時間多于400分時,選擇方式b省錢。
解法2:設(shè)上網(wǎng)時間為分,方式b與方式a兩種計費的差額為元,得到一次函數(shù):,即,然后畫出函數(shù)的圖象,計算出直線與軸的交點坐標,類似地用點位置的高低直觀地找到答案。
注意:所畫的函數(shù)圖象都是射線。
4、習(xí)題。
(1)、以方程的解為坐標的所有點都在一次函數(shù)_____的圖象上。
(2)、方程組的解是________,由此可知,一次函數(shù)與的圖象必有一個交點,且交點坐標是________。
5、旅游問題。
古城荊州歷史悠久,文化燦爛。
函數(shù)與方程的說課稿篇十四
2、教學(xué)目標的確定及依據(jù)。
根據(jù)教學(xué)大綱要求,結(jié)合教材,考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征,我制定了如下的教學(xué)目標:
(1)知識目標:理解對數(shù)函數(shù)的意義;掌握對數(shù)函數(shù)的圖像與性質(zhì);初步學(xué)會用。
(2)能力目標:滲透類比、數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、
分析、歸納等邏輯思維能力.。
(3)情感目標:通過指數(shù)函數(shù)和對數(shù)函數(shù)在圖像與性質(zhì)上的對比,使學(xué)生欣賞數(shù)。
學(xué)的精確和美妙之處,調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.。
3、教學(xué)重點與難點。
重點:對數(shù)函數(shù)的意義、圖像與性質(zhì).。
難點:對數(shù)函數(shù)性質(zhì)中對于在與兩種情況函數(shù)值的不同變化.。
學(xué)生在整個教學(xué)過程中始終是認知的主體和發(fā)展的主體,教師作為學(xué)生學(xué)習(xí)的指導(dǎo)者,應(yīng)充分地調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性,有效地滲透數(shù)學(xué)思想方法.根據(jù)這樣的原則和所要完成的教學(xué)目標,對于本節(jié)課我主要考慮了以下兩個方面:
1、教學(xué)方法:
(1)啟發(fā)引導(dǎo)學(xué)生實驗、觀察、聯(lián)想、思考、分析、歸納;
(2)采用“從特殊到一般”、“從具體到抽象”的方法;
(3)滲透類比、數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法.。
2、教學(xué)手段:
計算機多媒體輔助教學(xué).。
“授之以魚,不如授之以漁”,方法的掌握,思想的形成,才能使學(xué)生受益終身.本節(jié)課注重調(diào)動學(xué)生積極思考、主動探索,盡可能地增加學(xué)生參與教學(xué)活動的時間和空間,我進行了以下學(xué)法指導(dǎo):
(1)類比學(xué)習(xí):與指數(shù)函數(shù)類比學(xué)習(xí)對數(shù)函數(shù)的圖像與性質(zhì).。
(2)探究定向性學(xué)習(xí):學(xué)生在教師建立的情境下,通過思考、分析、操作、探索,
(3)主動合作式學(xué)習(xí):學(xué)生在歸納得出對數(shù)函數(shù)的圖像與性質(zhì)時,通過小組討論,
使問題得以圓滿解決.。
1、溫故知新。
設(shè)計意圖:既復(fù)習(xí)了指數(shù)函數(shù)和反函數(shù)的有關(guān)知識,又與本節(jié)內(nèi)容有密切關(guān)系,
有利于引出新課.為學(xué)生理解新知清除了障礙,有意識地培養(yǎng)學(xué)生。
分析問題的能力.。
2、探求新知。
設(shè)計意圖:教師建立了一個有助于學(xué)生進行獨立探究的情境,學(xué)生通過動手操作、
觀察、聯(lián)想、類比、思考、分析、探索,在此過程中,通過小組討論,
協(xié)作構(gòu)建起新的知識.這充分體現(xiàn)了基于建構(gòu)主義學(xué)習(xí)理論的探究定。
向性學(xué)習(xí)和主動合作式學(xué)習(xí).。
3、課堂研究,鞏固應(yīng)用。
設(shè)計意圖:通過這個環(huán)節(jié)學(xué)生可以加深對本節(jié)知識的理解和運用,在此過程中充。
分體現(xiàn)了數(shù)形結(jié)合和分類討論的數(shù)學(xué)思想方法.同時為課外研究題的。
解決提供了必要條件,為學(xué)生今后進一步學(xué)習(xí)對數(shù)不等式埋下伏筆.。
4、課外研究。
5、課堂小結(jié)。
引導(dǎo)學(xué)生進行知識回顧,使學(xué)生對本節(jié)課有一個整體把握.從三方面進行小結(jié):
(2)掌握對數(shù)函數(shù)的圖像與性質(zhì),體會類比、數(shù)形結(jié)合的思想方法;
(3)會利用對數(shù)函數(shù)的性質(zhì)比較兩個同底對數(shù)值的大小,初步學(xué)會對數(shù)不等式的。
解法,體會分類討論的思想方法.。
6、課外作業(yè)。
公式無法顯示,完整word文檔點擊下載此文件。
函數(shù)與方程的說課稿篇十五
本課的內(nèi)容是華師大版八年級數(shù)學(xué)下冊第18章第3節(jié)第2課時,一次函數(shù)在許多方面與正比例函數(shù)的圖象和性質(zhì)有著緊密聯(lián)系,是本章中的重點。本章中關(guān)于一次函數(shù)的知識結(jié)構(gòu)如圖:
本節(jié)課安排在正比例函數(shù)的圖象與一次函數(shù)的概念之后。通過這一節(jié)課的學(xué)習(xí)使學(xué)生掌握一次函數(shù)圖象的畫法和一次函數(shù)的性質(zhì)。它既是正比例函數(shù)的圖象和性質(zhì)的拓展,又是今后繼續(xù)學(xué)習(xí)"用函數(shù)觀點看方程(組)與不等式"的基礎(chǔ),在本章中起著承上啟下的作用。本節(jié)教學(xué)內(nèi)容還是學(xué)生進一步學(xué)習(xí)"數(shù)形結(jié)合"這一數(shù)學(xué)思想方法的很好素材。作為一種數(shù)學(xué)模型,一次函數(shù)在日常生活中也有著極其廣泛的應(yīng)用。
(二)教學(xué)目標。
基于以上的教材分析,結(jié)合新課程標準的新理念,確立如下教學(xué)目標:
知識目標:
1、理解直線y=kx+b與y=kx之間的位置關(guān)系;
2、會利用兩個合適的點畫出一次函數(shù)的圖象;
能力目標。
2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
情感態(tài)度目標:
2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
(三)教學(xué)重點難點。
教學(xué)難點:由一次函數(shù)的圖象歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
1、教學(xué)方法。
1、自學(xué)體驗法——利用學(xué)生描點作圖經(jīng)歷體驗并發(fā)現(xiàn)問題,分析問題進一步歸納總結(jié)。
目的:通過這種教學(xué)方式來激發(fā)學(xué)生學(xué)習(xí)的積極主動性,培養(yǎng)學(xué)生獨立思考能力和創(chuàng)新意識。
2、直觀教學(xué)法——利用多媒體現(xiàn)代教學(xué)手段。
目的:通過圖片和材料的展示來激發(fā)學(xué)生學(xué)習(xí)興趣,把抽象的知識直觀的展現(xiàn)在學(xué)生面前,逐步將他們的感性認識引領(lǐng)到理性的思考。
2、學(xué)法指導(dǎo)。
1、應(yīng)用自主探究,培養(yǎng)學(xué)生獨立思考能力,閱讀能力和自主探究的學(xué)習(xí)習(xí)慣。
2、指導(dǎo)學(xué)生觀察圖象,分析材料。培養(yǎng)觀察總結(jié)能力。
(一)、創(chuàng)設(shè)情境,導(dǎo)入新課。
活動1:觀察:
展示學(xué)生作的函數(shù)圖象(課本p41做一做),強調(diào)列表及圖象上的點的對應(yīng)關(guān)系。
1.課前讓兩名學(xué)生將圖像畫到黑板上,以備上課時應(yīng)用。
2、課上展示學(xué)生函數(shù)圖像作業(yè),既為學(xué)生完成作業(yè)情況檢查,又為本節(jié)課打下基礎(chǔ)。
這樣安排的目的:
1、學(xué)生經(jīng)歷畫圖象進而感悟它的形狀及與正比例函數(shù)圖象的異同,為后面的發(fā)現(xiàn)規(guī)律作了準備。
2、教師對學(xué)生有了更深層次的了解,能更好地把握課堂。
(二)嘗試探索、體驗新知:
活動2、觀察探索:
比較兩個函數(shù)圖象的相同點與不同點?
第一步;根據(jù)你的觀察結(jié)果回答問題。(書中原問題1、2、3)。
目的:這樣在學(xué)生已經(jīng)知道正比例函數(shù)的圖象是一條直線的基礎(chǔ)上,通過對應(yīng)描點法來畫出了圖象,讓學(xué)生通過操作體驗感悟兩者之間的關(guān)系,問題變得直觀形象,學(xué)生們非常容易地完成平移。
目的:這樣通過啟發(fā)學(xué)生視覺見到的兩點,即與坐標軸的交點{(0,b),和(-b/k,0)兩點};此交點的求法(學(xué)生易從填表中的數(shù)據(jù)發(fā)現(xiàn)),再反之引導(dǎo)學(xué)生抓住這兩點畫圖象。就此題體驗一次函數(shù)圖象的兩點確定;同時也教會了學(xué)生用兩點法畫一次函數(shù)圖象。
活動3:知識再體驗:在同一直角坐標系中畫出四個k值不同的一次函數(shù)圖象,并觀察分析。
目的:進一步鞏固兩點作圖法,為探究一次函數(shù)的性質(zhì)作準備。
活動4:展示"上下坡"材料,解決象限問題。(多媒體展示)。
目的:讓學(xué)生觸發(fā)漫畫中"上下坡"的情景,引導(dǎo)思考k、b對圖象的影響——設(shè)置化抽象為形象,化枯燥為生動,同時學(xué)生對這種直觀的知識易接受,易理解,記憶深刻。從而突出了重點,攻破了難點。
活動5:師生互動(師生角色互換),提高拓展。(多媒體展出內(nèi)容)。
目的:通過這種師生互動角色轉(zhuǎn)換形式,不但能盡快烘起課堂氣憤,而且復(fù)習(xí)了本課的重點內(nèi)容,對一次函數(shù)的性質(zhì)理解的更透徹。
(三)課堂小結(jié)。
引導(dǎo)學(xué)生回憶所學(xué)知識。通過這節(jié)課的學(xué)習(xí)你得到什么啟示和收獲?談?wù)勀愕母惺堋?/p>
目的:總結(jié)回顧學(xué)習(xí)內(nèi)容,有助于學(xué)生養(yǎng)成整理知識的習(xí)慣;有助于學(xué)生在剛剛理解了新知識的基礎(chǔ)上,及時把知識系統(tǒng)化、條理化。
(四)。作業(yè)布置。
加強"教、學(xué)"反思,進一步提高"教與學(xué)"效果,
做課本42頁44頁習(xí)題。
函數(shù)與方程的說課稿篇十六
本節(jié)主要內(nèi)容為:經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行含有30°、45°、60°角的三角函數(shù)值的計算。
1、經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行有關(guān)推理,進一步體會三角函數(shù)的意義。
2、能夠進行含有30°、45°、60°角的三角函數(shù)值的計算。
3、能夠根據(jù)30°、45°、60°角的三角函數(shù)值,說出相應(yīng)的銳角的大小。
重點:進行含有30°、45°、60°角的三角函數(shù)值的計算。
難點:記住30°、45°、60°角的三角函數(shù)值。
教師準備。
預(yù)先準備教材、教參以及多媒體課件。
學(xué)生準備。
教材、同步練習(xí)冊、作業(yè)本、草稿紙、作圖工具等。
教學(xué)流程設(shè)計。
教師指導(dǎo)學(xué)生活動。
1.新章節(jié)開場白.1.進入學(xué)習(xí)狀態(tài).
2.進行教學(xué).2.配合學(xué)習(xí).
3.總結(jié)和指導(dǎo)學(xué)生練習(xí).3記錄相關(guān)內(nèi)容,完成練習(xí).
教學(xué)過程設(shè)計。
1、從學(xué)生原有的認知結(jié)構(gòu)提出問題。
2、師生共同研究形成概念。
3、隨堂練習(xí)。
4、小結(jié)。
5、作業(yè)。
板書設(shè)計。
3、例題。
本節(jié)課基本上能夠突出重點、弱化難點,在時間上也能掌控得比較合理,學(xué)生也比較積極投入學(xué)習(xí)中,但是學(xué)生好像并不是掌握得很好,在今后的教學(xué)中應(yīng)該再加強關(guān)于這方面的學(xué)習(xí)。
函數(shù)與方程的說課稿篇十七
本次說課主要從五個部分進行,分別是教材分析、學(xué)情分析、教學(xué)目標分析、教學(xué)重難點分析和教學(xué)設(shè)計。
我所使用的教材選自人教20xx年版的《全日制普通高級中學(xué)教科書數(shù)學(xué)第一冊(上)》,《反函數(shù)》函數(shù)部分的一個重難點,也是研究兩個函數(shù)相互關(guān)系的重要內(nèi)容,而反函數(shù)的概念又是其中的抽象難理解部分,因此反函數(shù)概念的學(xué)習(xí)有助于學(xué)生進一步加深對函數(shù)的認識和理解。
高一的學(xué)生在學(xué)習(xí)反函數(shù)之前,已經(jīng)對函數(shù)的概念、表示法,映射等內(nèi)容有了一定的認識和了解,那么有了這些儲備知識,學(xué)生在本節(jié)課的學(xué)習(xí)中可以在教師的引導(dǎo)下進行思考和理解,從而能較好地完成對本節(jié)課的學(xué)習(xí)。
知識與技能:讓學(xué)生學(xué)生了解反函數(shù)的概念;通過本節(jié)課的學(xué)習(xí)會求一些簡單函數(shù)的反函數(shù)過程與方法:教學(xué)上使用引導(dǎo)、發(fā)現(xiàn)法,這主要通過從具體到抽象、從特殊到一般的過渡方式來實現(xiàn)。
情感與態(tài)度(也就是德育目標):通過本節(jié)課的學(xué)習(xí),能使學(xué)生發(fā)現(xiàn)函數(shù)內(nèi)部因素相互聯(lián)系,從而培養(yǎng)他們善于發(fā)現(xiàn)分析的能力,使他們學(xué)會以發(fā)現(xiàn)分析的目光去關(guān)注數(shù)學(xué),以聯(lián)系發(fā)展的態(tài)度去學(xué)習(xí)數(shù)學(xué)。
本節(jié)課的教學(xué)重點放在反函數(shù)的概念、反函數(shù)的求法上,而由于反函數(shù)的概念相對抽象難理解,所以教學(xué)難點自然落在了反函數(shù)的概念理解。
下面我對第五部分的教學(xué)設(shè)計進行詳細展開:我的整個教學(xué)過程分成五個環(huán)節(jié)。
一、新課引入。
由于反函數(shù)的概念比較抽象難理解,在概念講解前先以具體例子入手逐步引導(dǎo),這樣比較符合學(xué)生的接受規(guī)律。
聯(lián)系函數(shù)的三要素,通過給出的兩對函數(shù)之間三要素變化的比較,讓學(xué)生對反函數(shù)首先有了一個大概的認識,然后再對反函數(shù)下嚴格的定義并進行詳細的講解。
二、概念講解。
由于教材中給出的反函數(shù)的概念較長且較抽象,會給學(xué)生在理解上產(chǎn)生一定的難度,故引導(dǎo)學(xué)生從另外的角度分三步完成對反函數(shù)概念的理解,這樣較易于學(xué)生接受和理解。
1.由函數(shù)式y(tǒng)f(x)xayc,得到式子x(y)。
2.根據(jù)函數(shù)的概念去說明x(y)是一個函數(shù),其中定義域為c,值域為a.
3.下結(jié)論說明函數(shù)x(y)是函數(shù)yf(x)的反函數(shù),并記作xf1(y),一般互換x和y,寫作yf1(x).
三、通過問題的討論加深學(xué)生對反函數(shù)的認識和理解。
1.所有函數(shù)都有反函數(shù)嗎?
通過兩個具體的函數(shù)(在講課的課件中有詳細給出)的異同,引導(dǎo)分析發(fā)現(xiàn)并不是所有的函數(shù)都有反函數(shù)。
2.互為反函數(shù)的函數(shù)有什么關(guān)系?
通過引入部分例子分析,結(jié)合反函數(shù)的概念,引導(dǎo)學(xué)生從從函數(shù)的三要素出發(fā)去描述互為反函數(shù)的兩函數(shù)之間的'關(guān)系:
(1)對應(yīng)法則互逆(2)1(x)的反函數(shù)是什么?
1在回答了第二個問題的基礎(chǔ)上,引導(dǎo)學(xué)生利用以上結(jié)論發(fā)現(xiàn)yf(x)的反函數(shù)恰好是yf(x),即有yf(x)與yf1(x)互為反函數(shù)。
四、例題、聯(lián)系相結(jié)合,歸納求反函數(shù)的方法。
首先分析講解例題中的(1)、(2),再讓學(xué)生結(jié)合反函數(shù)概念的分步理解思考歸納,嘗試從解題過程中總結(jié)出求已知函數(shù)反函數(shù)的一般方法。
1.找原函數(shù)的值域;
2.由原函數(shù)式解出x(y);
3.互換x和y的位置;
4.標注反函數(shù)的定義域。
簡化為一句話:一找、二解、三換、四標。
本次課堂不再安排別的練習(xí)題,而讓學(xué)生對照求法步驟,自行完成(3)、(4)的求解作為課堂練習(xí)。
五、課堂小結(jié)、布置作業(yè)。
本節(jié)課所布置的作業(yè)是求已知函數(shù)的反函數(shù),主要為了鞏固學(xué)生對本節(jié)課知識的學(xué)習(xí)并加強對反函數(shù)求法的使用。
本節(jié)課的整個課堂設(shè)計,希望能從從新課引入到概念講解、從概念學(xué)習(xí)到深入學(xué)習(xí)理解,實現(xiàn)從從具體到抽象、從特殊到一般的過渡方式。我覺得這樣的設(shè)計,符合學(xué)生學(xué)習(xí)的循序漸進的接受規(guī)律,在教學(xué)過程中可以貫穿著教師引導(dǎo)學(xué)生討論學(xué)習(xí)的主線,體現(xiàn)了教師教學(xué)的輔助作用與學(xué)生學(xué)習(xí)的主體地位。
函數(shù)與方程的說課稿篇十八
本課的內(nèi)容是華師大版八年級數(shù)學(xué)下冊第18章第3節(jié)第2課時,一次函數(shù)在許多方面與正比例函數(shù)的.圖象和性質(zhì)有著緊密聯(lián)系,是本章中的重點。本章中關(guān)于一次函數(shù)的知識結(jié)構(gòu)如圖:
本節(jié)課安排在正比例函數(shù)的圖象與一次函數(shù)的概念之后。通過這一節(jié)課的學(xué)習(xí)使學(xué)生掌握一次函數(shù)圖象的畫法和一次函數(shù)的性質(zhì)。它既是正比例函數(shù)的圖象和性質(zhì)的拓展,又是今后繼續(xù)學(xué)習(xí)"用函數(shù)觀點看方程(組)與不等式"的基礎(chǔ),在本章中起著承上啟下的作用。本節(jié)教學(xué)內(nèi)容還是學(xué)生進一步學(xué)習(xí)"數(shù)形結(jié)合"這一數(shù)學(xué)思想方法的很好素材。作為一種數(shù)學(xué)模型,一次函數(shù)在日常生活中也有著極其廣泛的應(yīng)用。
(二)教學(xué)目標。
基于以上的教材分析,結(jié)合新課程標準的新理念,確立如下教學(xué)目標:
知識目標:
1、理解直線y=kx+b與y=kx之間的位置關(guān)系;
2、會利用兩個合適的點畫出一次函數(shù)的圖象;
能力目標。
2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
情感態(tài)度目標:
2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
(三)教學(xué)重點難點。
教學(xué)難點:由一次函數(shù)的圖象歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
1、教學(xué)方法。
1、自學(xué)體驗法——利用學(xué)生描點作圖經(jīng)歷體驗并發(fā)現(xiàn)問題,分析問題進一步歸納總結(jié)。
目的:通過這種教學(xué)方式來激發(fā)學(xué)生學(xué)習(xí)的積極主動性,培養(yǎng)學(xué)生獨立思考能力和創(chuàng)新意識。
2、直觀教學(xué)法——利用多媒體現(xiàn)代教學(xué)手段。
目的:通過圖片和材料的展示來激發(fā)學(xué)生學(xué)習(xí)興趣,把抽象的知識直觀的展現(xiàn)在學(xué)生面前,逐步將他們的感性認識引領(lǐng)到理性的思考。
2、學(xué)法指導(dǎo)。
1、應(yīng)用自主探究,培養(yǎng)學(xué)生獨立思考能力,閱讀能力和自主探究的學(xué)習(xí)習(xí)慣。
2、指導(dǎo)學(xué)生觀察圖象,分析材料。培養(yǎng)觀察總結(jié)能力。
(一)、創(chuàng)設(shè)情境,導(dǎo)入新課。
活動1:觀察:
展示學(xué)生作的函數(shù)圖象(課本p41做一做),強調(diào)列表及圖象上的點的對應(yīng)關(guān)系。
1.課前讓兩名學(xué)生將圖像畫到黑板上,以備上課時應(yīng)用。
2、課上展示學(xué)生函數(shù)圖像作業(yè),既為學(xué)生完成作業(yè)情況檢查,又為本節(jié)課打下基礎(chǔ)。
這樣安排的目的:
1、學(xué)生經(jīng)歷畫圖象進而感悟它的形狀及與正比例函數(shù)圖象的異同,為后面的發(fā)現(xiàn)規(guī)律作了準備。
2、教師對學(xué)生有了更深層次的了解,能更好地把握課堂。
(二)嘗試探索、體驗新知:
活動2、觀察探索:
比較兩個函數(shù)圖象的相同點與不同點?
第一步;根據(jù)你的觀察結(jié)果回答問題。(書中原問題1、2、3)。
目的:這樣在學(xué)生已經(jīng)知道正比例函數(shù)的圖象是一條直線的基礎(chǔ)上,通過對應(yīng)描點法來畫出了圖象,讓學(xué)生通過操作體驗感悟兩者之間的關(guān)系,問題變得直觀形象,學(xué)生們非常容易地完成平移。
目的:這樣通過啟發(fā)學(xué)生視覺見到的兩點,即與坐標軸的交點{(0,b),和(-b/k,0)兩點};此交點的求法(學(xué)生易從填表中的數(shù)據(jù)發(fā)現(xiàn)),再反之引導(dǎo)學(xué)生抓住這兩點畫圖象。就此題體驗一次函數(shù)圖象的兩點確定;同時也教會了學(xué)生用兩點法畫一次函數(shù)圖象。
活動3:知識再體驗:在同一直角坐標系中畫出四個k值不同的一次函數(shù)圖象,并觀察分析。
目的:進一步鞏固兩點作圖法,為探究一次函數(shù)的性質(zhì)作準備。
活動4:展示"上下坡"材料,解決象限問題。(多媒體展示)。
目的:讓學(xué)生觸發(fā)漫畫中"上下坡"的情景,引導(dǎo)思考k、b對圖象的影響——設(shè)置化抽象為形象,化枯燥為生動,同時學(xué)生對這種直觀的知識易接受,易理解,記憶深刻。從而突出了重點,攻破了難點。
活動5:師生互動(師生角色互換),提高拓展。(多媒體展出內(nèi)容)。
目的:通過這種師生互動角色轉(zhuǎn)換形式,不但能盡快烘起課堂氣憤,而且復(fù)習(xí)了本課的重點內(nèi)容,對一次函數(shù)的性質(zhì)理解的更透徹。
(三)課堂小結(jié)。
引導(dǎo)學(xué)生回憶所學(xué)知識。通過這節(jié)課的學(xué)習(xí)你得到什么啟示和收獲?談?wù)勀愕母惺堋?/p>
目的:總結(jié)回顧學(xué)習(xí)內(nèi)容,有助于學(xué)生養(yǎng)成整理知識的習(xí)慣;有助于學(xué)生在剛剛理解了新知識的基礎(chǔ)上,及時把知識系統(tǒng)化、條理化。
(四)。作業(yè)布置。
加強"教、學(xué)"反思,進一步提高"教與學(xué)"效果,
做課本42頁44頁習(xí)題。
函數(shù)與方程的說課稿篇十九
1說地位:二次函數(shù)是在一次函數(shù),反比例函數(shù)的基礎(chǔ)上,對函數(shù)的認識的完善與提高;也是對方程的理解的補充。而本節(jié)課的內(nèi)容,是對二次函數(shù)y=ax2+bx+c中系數(shù),a,b,c功能的探究,意在深化學(xué)生對二次函數(shù)圖象及其性質(zhì)的進一步理解,在每年中考中,此內(nèi)容都占有一定的分量,不可小視。
2說聯(lián)系:通過對y=ax2+bx+c中a,b,c功能的探究,進一步鞏固前面所學(xué)的圖象及其性質(zhì),為后面學(xué)習(xí)二次函數(shù)的應(yīng)用作基礎(chǔ),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。
3說課標:結(jié)合前后知識,我把這節(jié)課的教學(xué)目標定為兩點,一是熟練掌握y=ax2+bx+c中系數(shù)a,b,c的作用,二是進一步體會函數(shù)里數(shù)形結(jié)合的思想。
4說內(nèi)容:本節(jié)課首先通過學(xué)生對前面所學(xué)知識的掌握,歸納總結(jié)出y=ax2+bx+c中a,b,c不同的取值對其圖象位置的影響,然后通過4個例題,從不同角度,刻畫出a,b,c的取值對函數(shù)圖象位置的影響,每種例題都配有1-2個練習(xí),供鞏固提高,最后小結(jié)。
本節(jié)課書上沒有獨立成節(jié),是我根據(jù)多年教學(xué)經(jīng)驗,積累沉淀下來的。本節(jié)課的.例題是我在前幾年的中考試題中撿拾出來,有些題目還做過刪減,或者改動,最終還剩下4個例題6個配套練習(xí)。學(xué)習(xí)內(nèi)容基本上按先易后難的原則,螺旋上升,循序漸進。
說教學(xué)目標:根據(jù)課標要求,結(jié)合各地中考試題類型,以及學(xué)生認知特點,我把這節(jié)課的教學(xué)目標定為(1)認知目標:根據(jù)a,b,c不同的取值范圍,確定拋物線的大致位置,反過來,根據(jù)拋物線的大致位置,確定a,b,c的取值范圍。(2)通過探究,培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想,掌握學(xué)函數(shù)的基本方法。
說重、難點:根據(jù)這節(jié)課的內(nèi)容,結(jié)合學(xué)生特點,我把這節(jié)課的教學(xué)重點定為:弄清y=ax2+bx+c中a,b,c的取值對函數(shù)圖象的影響。教學(xué)難點定為:體會函數(shù)中數(shù)形結(jié)合的思想。通過圖象求取值,根據(jù)取值找大致的圖象。
1說教法:本節(jié)課通過師生互動探究式教學(xué),以課標為依據(jù),滲透新的教學(xué)理念,遵循教師為主導(dǎo),學(xué)生為主體的原則,結(jié)合九年級學(xué)生的求知心理和已有的認知水平開展教學(xué),形成學(xué)生自動,生生互助,師生互動。教師著眼于引導(dǎo),學(xué)生著眼于探索,側(cè)重于學(xué)生能力的提高,思維的訓(xùn)練。同時考慮到學(xué)生的個體差異,在教學(xué)的各個環(huán)節(jié)中進行分層施教,讓每一個學(xué)生都能獲得知識,能力得到提高。
2說學(xué)法:就課標明確提出要培養(yǎng)可持續(xù)發(fā)展的學(xué)生,因此教師有組織,有目的,有針對性的引導(dǎo)學(xué)生并參入到學(xué)習(xí)活動中,鼓勵學(xué)生采用自主學(xué)習(xí),合作交流的研討式學(xué)習(xí)方法。培養(yǎng)學(xué)生動手,動腦,動口的習(xí)慣與能力,使學(xué)生真正成為學(xué)習(xí)的主人。
本節(jié)課我設(shè)為四個模塊,第一塊是溫故引標,先復(fù)習(xí)拋物線在不同位置情形下時,它的一般解析式,然后引出這節(jié)課的內(nèi)容,探討二次函數(shù)中a,b,c的功能。第二塊是合作交流,歸納總結(jié)。分組活動,歸納總結(jié)出a,b,c的作用。第三塊是例題剖析,鞏固提高,第一個例題配套1-2個練習(xí),增強學(xué)生的解題能力。第四塊是小結(jié),反思。讓學(xué)生對本節(jié)課所學(xué)內(nèi)容有一個清晰的認知。
1說板書設(shè)計:根據(jù)學(xué)生的認知規(guī)律,我把這節(jié)課的內(nèi)容設(shè)為兩大塊,第一塊歸納總結(jié),第二塊分4個例題。中間2個,右邊2個,相互銜接,渾然一體。
2說反思:本節(jié)課既可以說是上新課,也可以說是一節(jié)復(fù)習(xí)課,因而所教內(nèi)容,一部分同學(xué)都有能力獨自完成,還有一部分同學(xué)需要老師引導(dǎo)才能完成。設(shè)計的內(nèi)容比較單一,訓(xùn)練的題目能否多一點,力爭大容量,快節(jié)奏,高效益。
函數(shù)與方程的說課稿篇二十
合作探究2:當函數(shù)與的圖象之間有什么關(guān)系?(在這兒體現(xiàn)"從特殊到一般"、"從具體到抽象"的方法)。
合作探究3:分析你所畫的兩組函數(shù)的圖象,對照指數(shù)函數(shù)的性質(zhì),總結(jié)歸納對數(shù)函數(shù)的性質(zhì)。
(學(xué)生討論并交流各自的發(fā)現(xiàn)成果,教師結(jié)合學(xué)生的交流,適時歸納總結(jié),并板書對數(shù)函數(shù)的性質(zhì))。
問題1:對數(shù)函數(shù)()是否具有奇偶性,為什么?
問題2:對數(shù)函數(shù)(),當時,x取何值,y0,x取何值,y,當呢?
問題3:對數(shù)式的.值的符號與a,b的取值之間有何關(guān)系?請用一句簡潔的話語敘述。
1.例題。
例1:求下列函數(shù)的定義域。
(2)()。
(該題主要考查對數(shù)函數(shù)的定義域這一限制條件根據(jù)函數(shù)的解析式求得不等式,解對應(yīng)的不等式。同時通過本題也可讓學(xué)生總結(jié)求函數(shù)的定義域應(yīng)從哪些方面入手)。
例2:利用對數(shù)函數(shù)的性質(zhì),比較下列各組數(shù)中兩個數(shù)的大?。?/p>
(1),。
(2),。
(3),。
(4),,。
(在這兒要求學(xué)生通過回顧指數(shù)函數(shù)的有關(guān)性質(zhì)比較大小的步驟和方法,完成前3小題,第四題可通過教師的適當點撥完成解答,最后進行歸納總結(jié)比較數(shù)的大小常用的方法)。
合作探究4:已知,比較m,n的大?。ㄔ擃}不僅運用了對數(shù)函數(shù)的圖象和性質(zhì),還培養(yǎng)了學(xué)生數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想。)。
本題可以從以下幾方面加以引導(dǎo)點撥。
1.本題的難點在哪兒?
2.你希望不等式的兩邊的對數(shù)式變成怎樣的形式,你能否找到它們之間的聯(lián)系。
本題也可以從形的角度來思考。
p691,2,3。
由學(xué)生小結(jié)(對數(shù)函數(shù)的概念,對數(shù)函數(shù)的圖象和性質(zhì),利用對數(shù)函數(shù)的性質(zhì)比較大小的一般方法和步驟,求定義域應(yīng)從幾方面考慮等)。
函數(shù)與方程的說課稿篇二十一
在前一段我講了30度、45度、60度特殊角的三角函數(shù)值,它是北師大版九年級數(shù)學(xué)下冊的一節(jié)課,在前一節(jié)剛講過正弦、余弦、正切三角函數(shù)的定義和求法?,F(xiàn)把我對本節(jié)課的做法和想法與大家交流一下,希望能得到同行和專家的指點,以期取得更大的進步。
1、經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行有關(guān)的推理。進一步體會三角函數(shù)的意義;能夠進行30°、45°、60°角的三角函數(shù)值的計算;能夠根據(jù)30°、45°、60°的三角函數(shù)值說明相應(yīng)的銳角的大小。
2、發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)的能力;培養(yǎng)學(xué)生把實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。
3、積極參與數(shù)學(xué)活動,對數(shù)學(xué)產(chǎn)生好奇心。培養(yǎng)學(xué)生獨立思考問題的習(xí)慣。
在引入時我采用創(chuàng)設(shè)情境法,“為了測量一棵大樹的高度,準備了如下測量工具:(1)含30、60度角的直角三角尺(2)皮尺。請你設(shè)計一個方案,來測量一棵大樹的高度。這樣會增強學(xué)生的學(xué)習(xí)欲望,使學(xué)生對本節(jié)內(nèi)容更感興趣。
1、讓學(xué)生自主研習(xí),獨立探究。
(1)觀察一副三角尺,其中有幾個銳角?他們分別等于多少度?
(2)sin30度等于多少呢?你是怎樣得到的?cos30度呢,tan30度呢?
2、讓學(xué)生合作學(xué)習(xí)、生生互動。
(1)請同學(xué)們完成下表:30°、45°、60°角的三角函數(shù)值(表格略)。
(3)同桌之間可互相檢查一下對30°、45°、60°角的三角函數(shù)值的記憶情況。
3、精講細評,師生合作(先由學(xué)生獨立完成)。
(1)計算:sin30°+cos45°;sin260°+cos260°—tan45°。
(2)鐘表上的鐘擺長度為25cm,當鐘擺向兩邊擺動時,擺角恰好為60°,且兩邊的擺動角度相同,求它擺至最高位置時與其擺至最低位置時的高度之差。(結(jié)果精確到0。1cm)。
分析:引導(dǎo)學(xué)生自己根據(jù)題意畫出示意圖,培養(yǎng)學(xué)生把實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。
4、延伸遷移,形成技能。
(1)計算:sin60°—tan45°;cos60°+tan60°;
(2)某商場有一自動扶梯,其傾斜角為30°。高為7m,扶梯的長度是多少?
講課后我讓學(xué)生自主小結(jié)本節(jié)收獲,并給他們提出困惑的時間和機會。
在本節(jié)課中我感覺學(xué)生整體來說收獲不小,有百分之八十的學(xué)生都會進行計算,只是對這些三角函數(shù)值的記憶還有欠缺,課下還需時間加以鞏固。課堂中學(xué)生積極性也很高,能體會到數(shù)學(xué)在生活中的應(yīng)用廣泛,學(xué)習(xí)數(shù)學(xué)對解決實際生活問題的幫助,體會到學(xué)習(xí)數(shù)學(xué)的重要性。
函數(shù)與方程的說課稿篇二十二
本課的內(nèi)容是華師大版八年級數(shù)學(xué)下冊第18章第3節(jié)第2課時,一次函數(shù)在許多方面與正比例函數(shù)的圖象和性質(zhì)有著緊密聯(lián)系,是本章中的重點。本章中關(guān)于一次函數(shù)的知識結(jié)構(gòu)如圖:
本節(jié)課安排在正比例函數(shù)的圖象與一次函數(shù)的概念之后。通過這一節(jié)課的學(xué)習(xí)使學(xué)生掌握一次函數(shù)圖象的畫法和一次函數(shù)的性質(zhì)。它既是正比例函數(shù)的圖象和性質(zhì)的拓展,又是今后繼續(xù)學(xué)習(xí)“用函數(shù)觀點看方程(組)與不等式”的基礎(chǔ),在本章中起著承上啟下的作用。本節(jié)教學(xué)內(nèi)容還是學(xué)生進一步學(xué)習(xí)“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。作為一種數(shù)學(xué)模型,一次函數(shù)在日常生活中也有著極其廣泛的應(yīng)用。
(二)教學(xué)目標。
基于以上的教材分析,結(jié)合新課程標準的新理念,確立如下教學(xué)目標:
知識目標:
1、理解直線y=kx+b與y=kx之間的位置關(guān)系;
2、會利用兩個合適的點畫出一次函數(shù)的圖象;
能力目標。
2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
情感態(tài)度目標:
2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
(三)教學(xué)重點難點。
教學(xué)難點:由一次函數(shù)的圖象歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
二、教法學(xué)法。
1、教學(xué)方法。
1、自學(xué)體驗法——利用學(xué)生描點作圖經(jīng)歷體驗并發(fā)現(xiàn)問題,分析問題進一步歸納總結(jié)。
目的:通過這種教學(xué)方式來激發(fā)學(xué)生學(xué)習(xí)的積極主動性,培養(yǎng)學(xué)生獨立思考能力和創(chuàng)新意識。
2、直觀教學(xué)法——利用多媒體現(xiàn)代教學(xué)手段。
目的:通過圖片和材料的展示來激發(fā)學(xué)生學(xué)習(xí)興趣,把抽象的知識直觀的展現(xiàn)在學(xué)生面前,逐步將他們的感性認識引領(lǐng)到理性的思考。
2、學(xué)法指導(dǎo)。
1、應(yīng)用自主探究,培養(yǎng)學(xué)生獨立思考能力,閱讀能力和自主探究的學(xué)習(xí)習(xí)慣。
2、指導(dǎo)學(xué)生觀察圖象,分析材料。培養(yǎng)觀察總結(jié)能力。
三、教學(xué)程序設(shè)計。
(一)、創(chuàng)設(shè)情境,導(dǎo)入新課。
活動1:觀察:
展示學(xué)生作的函數(shù)圖象(課本p41做一做),強調(diào)列表及圖象上的點的對應(yīng)關(guān)系。
1.課前讓兩名學(xué)生將圖像畫到黑板上,以備上課時應(yīng)用。
2、課上展示學(xué)生函數(shù)圖像作業(yè),既為學(xué)生完成作業(yè)情況檢查,又為本節(jié)課打下基礎(chǔ)。
這樣安排的目的:
1、學(xué)生經(jīng)歷畫圖象進而感悟它的形狀及與正比例函數(shù)圖象的異同,為后面的發(fā)現(xiàn)規(guī)律作了準備。
2、教師對學(xué)生有了更深層次的了解,能更好地把握課堂。
(二)嘗試探索、體驗新知:
活動2、觀察探索:
比較兩個函數(shù)圖象的相同點與不同點?
第一步;根據(jù)你的觀察結(jié)果回答問題。(書中原問題1、2、3)。
目的:這樣在學(xué)生已經(jīng)知道正比例函數(shù)的圖象是一條直線的基礎(chǔ)上,通過對應(yīng)描點法來畫出了圖象,讓學(xué)生通過操作體驗感悟兩者之間的關(guān)系,問題變得直觀形象,學(xué)生們非常容易地完成平移。
目的:這樣通過啟發(fā)學(xué)生視覺見到的兩點,即與坐標軸的交點{(0,b),和(-b/k,0)兩點};此交點的求法(學(xué)生易從填表中的數(shù)據(jù)發(fā)現(xiàn)),再反之引導(dǎo)學(xué)生抓住這兩點畫圖象。就此題體驗一次函數(shù)圖象的兩點確定;同時也教會了學(xué)生用兩點法畫一次函數(shù)圖象。
活動3:知識再體驗:在同一直角坐標系中畫出四個k值不同的一次函數(shù)圖象,并觀察分析。
目的:進一步鞏固兩點作圖法,為探究一次函數(shù)的性質(zhì)作準備。
活動4:展示“上下坡”材料,解決象限問題。(多媒體展示)。
目的:讓學(xué)生觸發(fā)漫畫中“上下坡”的情景,引導(dǎo)思考k、b對圖象的影響——設(shè)置化抽象為形象,化枯燥為生動,同時學(xué)生對這種直觀的知識易接受,易理解,記憶深刻。從而突出了重點,攻破了難點。
活動5:師生互動(師生角色互換),提高拓展。(多媒體展出內(nèi)容)。
目的:通過這種師生互動角色轉(zhuǎn)換形式,不但能盡快烘起課堂氣憤,而且復(fù)習(xí)了本課的重點內(nèi)容,對一次函數(shù)的性質(zhì)理解的更透徹。
(三)課堂小結(jié)。
引導(dǎo)學(xué)生回憶所學(xué)知識。通過這節(jié)課的學(xué)習(xí)你得到什么啟示和收獲?談?wù)勀愕母惺堋?/p>
目的:總結(jié)回顧學(xué)習(xí)內(nèi)容,有助于學(xué)生養(yǎng)成整理知識的習(xí)慣;有助于學(xué)生在剛剛理解了新知識的基礎(chǔ)上,及時把知識系統(tǒng)化、條理化。
(四)。作業(yè)布置。
加強“教、學(xué)”反思,進一步提高“教與學(xué)”效果,
做課本42頁44頁習(xí)題。
函數(shù)與方程的說課稿篇二十三
本節(jié)課是建立在學(xué)生已經(jīng)具備了一元一次方程、一元一次不等式及二元一次方程組知識的基礎(chǔ)上,用函數(shù)的觀點對它們重新進行分析。這不是簡單的復(fù)習(xí)回顧,而是站在更高的角度進行動態(tài)的分析,引導(dǎo)學(xué)生從整體中把握部分。其中滲透了數(shù)形結(jié)合的思想,為后繼學(xué)習(xí)奠定了基礎(chǔ)。
2、教學(xué)目標。
知識與技能目標:
(1)通過函數(shù)圖象,逐步體會一次函數(shù)與一元一次不等式的內(nèi)在聯(lián)系,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想。
(2)感知不等式、函數(shù)、方程的不同作用與內(nèi)在聯(lián)系。
過程與方法目標:
讓學(xué)生自己根據(jù)題意列函數(shù)關(guān)系式,作出函數(shù)圖象,并能把函數(shù)關(guān)系式或函數(shù)圖象與一元一次不等式聯(lián)系起來,通過自主交流合作解決問題,充分發(fā)揮學(xué)生的主體作用。
情感與態(tài)度目標:
讓學(xué)生唱主角,老師任導(dǎo)演,增強學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)、探索數(shù)學(xué)奧秘的愿望,體驗成功的喜悅。
3、教學(xué)重點、難點。
教學(xué)重點:理解一次函數(shù)與一元一次不等式的關(guān)系;
教學(xué)難點:利用函數(shù)圖象確定一元一次不等式的解集。
二、說教法。
1、學(xué)情分析。
我現(xiàn)在所帶班級學(xué)生整體學(xué)習(xí)能力處于中等水平,學(xué)習(xí)新的知識需要較長的理解過程,加上這一學(xué)段的學(xué)生思維處于由具體形象向抽象概括過渡的時期,對事物的認知停留在單一知識點上。他們可能會畫一次函數(shù)的圖像、會解一元一次不等式,但是很難將數(shù)與形結(jié)合起來,通過抽象歸納得出二者的內(nèi)在聯(lián)系。
2、教學(xué)方法。
鑒于以上對教材和學(xué)情的分析,本節(jié)我將采用以啟發(fā)探究式為主線、講練結(jié)合的教學(xué)方法。在教學(xué)過程中,配合使用多媒體輔助教學(xué),直觀呈現(xiàn)教學(xué)素材,從而更好地激發(fā)學(xué)生的學(xué)習(xí)興趣,提高教學(xué)效率。
三、說學(xué)法。
1.學(xué)生自主探索交流,思考問題,獲取知識,真正成為學(xué)習(xí)的主體。
2.學(xué)生在小組學(xué)習(xí)中形成合作交流的良好氛圍,體驗學(xué)習(xí)的快樂,更好地掌握知識,發(fā)展技能。
四、說教學(xué)程序。
(一)創(chuàng)設(shè)問題情境,探究新知。
興趣是最好的老師。為了引起學(xué)生的興趣,本節(jié)課我通過游戲引入。
游戲規(guī)則:準備好寫有各種有理數(shù)的卡片若干張,每人每次從中抽取一張,用卡片上的數(shù)字乘以2再減去4,最后結(jié)果大于零的得1分,等于零的不得分,小于零的扣1分。10次以后,計算每人的得分總和,得分最高者獲勝。
教師提問:。
你希望抽到寫有哪些數(shù)字的卡片?你希望哪些卡片被對方抽走?
設(shè)計游戲的目的有以下幾點:
(1)游戲的內(nèi)容便于學(xué)生列出函數(shù)關(guān)系式y(tǒng)=2x-4;
(2)通過游戲中得分、不得分、扣分規(guī)則的確定來建立函數(shù)與方程、函數(shù)與不等式的關(guān)系,既有對上節(jié)課內(nèi)容的復(fù)習(xí)鞏固,又為本節(jié)課的引入創(chuàng)設(shè)條件。
(二)探討歸納,講解新知。
(1)解不等式2x-40。
(2)觀察函數(shù)y=2x-4圖象,當自變量x為何值時,函數(shù)值大于0?
這一環(huán)節(jié)中,師生共同完成3個任務(wù):教會學(xué)生看圖、建立數(shù)形關(guān)系、歸納總結(jié)圖像法解不等式的步驟。
所以,首先讓學(xué)生畫出引例中函數(shù)y=2x-4的圖像。從y=0入手,然后分組討論圖像上y0和y0的部分。為了幫助學(xué)生理解,我把圖像上y0的部分染色。通過觀察讓學(xué)生發(fā)現(xiàn)圖像上y0的部分也就是x軸上方的部分。相應(yīng)地,y0的部分也就是x軸下方的部分。最后讓學(xué)生找出y0時相應(yīng)的x的值。
通過對以上兩個問題的解決,使學(xué)生認識到解不等式2x-40也就是求函數(shù)y=2x-4圖像上,當y0時相應(yīng)的x的取值范圍,從而建立數(shù)形關(guān)系。
最后引導(dǎo)學(xué)生歸納總結(jié)利用函數(shù)圖像求不等式解集的步驟,這也是本節(jié)課的難點。
(1)把一元一次不等式轉(zhuǎn)化為ax+b0或ax+b0的形式;
(3)一次函數(shù)值大于(或小于)0時相應(yīng)的自變量的取值范圍,實質(zhì)上是一次函數(shù)圖像上x軸上方的點(或下方的點)對應(yīng)的自變量的取值范圍。
(三)應(yīng)用新知。
例2的設(shè)計是讓學(xué)生進一步熟悉圖像法解不等式的一般步驟,這也就是教材上的方法1,要求學(xué)生重點掌握。方法2有一定難度,本節(jié)課不再重點討論。
例2:用畫函數(shù)圖像的方法解不等式5x+42x+10。
方法2:將原不等式的兩邊分別看作兩個一次函數(shù),畫出直線y=5x+4與直線y=2x+10??梢钥闯觯鼈兊慕稽c的橫坐標為2。當x2時,對于同一個x,直線y=5x+4在直線y=2x+10上相應(yīng)點的下方。這時5x+42x+10,所以不等式的解集為x2。
總結(jié):以上兩種方法其實都是把解不等式轉(zhuǎn)化為比較直線上的點的位置的高低。
從上面的兩種解法可以看出,雖然用一次函數(shù)圖象來解不等式未必簡單,但從函數(shù)角度看問題,能發(fā)現(xiàn)一次函數(shù)與一元一次不等式之間的聯(lián)系,直觀的看出怎樣用圖形來表示不等式的解。這種用函數(shù)觀點認識問題的方法不是單純解題,而是加強知識間的融會貫通,用變化和對應(yīng)的眼光分析問題,對于繼續(xù)學(xué)習(xí)數(shù)學(xué)有著重要作用。
(四)隨堂練習(xí)。
1自變量x的取值滿足什么條件時,函數(shù)y=3x+8的值滿足下列條件?
(1)y=0;(2)y=-7;
(3)y0;(4)y2.
設(shè)計意圖:本題學(xué)生很容易想到代值求解,為了突出數(shù)與形的結(jié)合,要求學(xué)生利用圖像解決問題。
2利用函數(shù)圖象解出x:
(1)6x-4=3x-2;(2)6x-43x-2.
設(shè)計意圖:(1)與(2)形式上雖然只是等式與不等式的區(qū)別,但反應(yīng)在圖像上相應(yīng)的x的取值范圍卻不同。
(五)小結(jié)與作業(yè)。
1.歸納反思。
2.利用一次函數(shù)圖像求一元一次不等式解集的步驟。
作業(yè)布置。
必做題:習(xí)題14.3第3、4題。
選做題:已知y1=-x+3,y2=3x-4,求x取得何值時y1y2?
自我反思。
應(yīng)用新知中的方法2是初三數(shù)學(xué)中的重要方法,但考慮到學(xué)生的情況本節(jié)課沒有詳細講。實際教學(xué)中可以根據(jù)學(xué)生的接受情況對本節(jié)內(nèi)容進行適當?shù)耐貜V延伸,嘗試與中招考試銜接。這節(jié)課涉及到利用函數(shù)圖像求解集的問題,采用幾何畫板動態(tài)演示的課堂效果會更好。
【本文地址:http://mlvmservice.com/zuowen/7371362.html】