通過總結(jié),我們可以更好地認(rèn)識(shí)自己、發(fā)現(xiàn)自己的不足,從而不斷提高自己的能力和水平。創(chuàng)造性的總結(jié)方法可以使我們更好地反思和總結(jié)學(xué)習(xí)過程中的個(gè)人體會(huì)和感悟。以下是一些時(shí)尚搭配的技巧和建議,希望能夠給你的穿衣風(fēng)格增添一些靈感。
數(shù)據(jù)挖掘論文篇一
隨著我國社會(huì)經(jīng)濟(jì)的不斷發(fā)展,人力資源管理也受到越來越多人們的重視,然而在如今激烈的市場競爭下很多企業(yè)依然不重視人力資源管理,從而使得自身的整體工作效率不高。為此,筆者認(rèn)為為了提高礦建人力資源管理的質(zhì)量,應(yīng)采取數(shù)據(jù)挖掘技術(shù)來開展工作,從而讓整個(gè)企業(yè)在激烈的市場競爭中穩(wěn)定、長久發(fā)展下去。
:數(shù)據(jù)挖掘技術(shù);企業(yè)人力資源管理;應(yīng)用。
隨著我國人力資源管理體系的不斷發(fā)展,隱藏在管理工作中的問題也被逐漸顯露出來,雖然很多企業(yè)的高層管理者對人力資源管理這塊已經(jīng)高度重視,但是企業(yè)往往是希望通過運(yùn)用相關(guān)的系統(tǒng)來對人才進(jìn)行管理,基于我國社會(huì)整體經(jīng)濟(jì)實(shí)力的不斷發(fā)展以及互聯(lián)網(wǎng)信息時(shí)代的到來,數(shù)據(jù)挖掘技術(shù)也受到越來越多的企業(yè)多關(guān)注,并紛紛采用該技術(shù)對自身人力資源進(jìn)行管理,同時(shí)也將人力資源管理系統(tǒng)作為整個(gè)信息化建設(shè)過程中的核心部位,就數(shù)據(jù)調(diào)查顯示,數(shù)據(jù)挖掘技術(shù)已經(jīng)被國外很多軟件開放式引入自身的人力資源管理工作中,并使自身內(nèi)部逐步形成了一套完整的人力資源管理系統(tǒng)體系。除此之外,數(shù)據(jù)挖掘技術(shù)也被廣泛應(yīng)用在企業(yè)的基本人力資源檔案管理工作中,隨著信息技術(shù)時(shí)代的到來,以往傳統(tǒng)的計(jì)算機(jī)管理模式對人力資源管理效率往往并不高,為此,數(shù)據(jù)挖掘技術(shù)對企業(yè)人力資管理工作是百利而無一害的。
2、1人才的招聘。
任何企業(yè)在發(fā)展過程中都是離不開新鮮血液注入的,隨著目前我國市場經(jīng)濟(jì)競爭趨勢的不斷增長,企業(yè)要想穩(wěn)固發(fā)展必須要引入人力資源管理,只有這樣才能提高企業(yè)經(jīng)濟(jì)效益以及社會(huì)收益。為此,企業(yè)應(yīng)對人才進(jìn)行招聘,這也是獲取人力資源的重要手段,通過采用數(shù)據(jù)挖掘技術(shù)來吸引社會(huì)中的各類人才,并采取有效的人才管理流程來對人才進(jìn)行篩選,最終選擇質(zhì)量最佳的人才資源。與此同時(shí),企業(yè)對人才招聘質(zhì)量的優(yōu)與良對自身內(nèi)部的員工、人類資源也會(huì)造成一定的影響,換句話來講,人才的招聘往往是企業(yè)人力資源管理工作開展的前期階段,然而在實(shí)際人才招聘過程中很多企業(yè)總是找不到合適的人選,同時(shí)也有大量的優(yōu)質(zhì)人才也很難找的適合自身的工作,這也就加大了企業(yè)人才招聘的難度,也進(jìn)一步加大了招聘的成本,為此,企業(yè)采取數(shù)據(jù)挖掘技術(shù)可以有效降低人才招聘的成本支出,從而使自身獲得更大的經(jīng)濟(jì)收益與社會(huì)利益。
2、2對人才的管理。
隨著社會(huì)對人才需求量的不斷增加,企業(yè)對員工的數(shù)據(jù)記錄和管理方式也逐步優(yōu)化,然而在很多企業(yè)人力資源管理過程中仍然存在著諸多問題,而這些問題的存在對企業(yè)未來發(fā)展也產(chǎn)生阻礙作用。為了企業(yè)在未來發(fā)展道路上穩(wěn)固、長久發(fā)展,應(yīng)采取數(shù)據(jù)挖掘技術(shù)來對人才進(jìn)行管理,以往傳統(tǒng)的管理模式往往是對員工的基本信息以及日常考核進(jìn)行管理,這種管理方式已經(jīng)不適應(yīng)現(xiàn)在時(shí)代發(fā)展的趨勢,為此,礦建企業(yè)必要順應(yīng)當(dāng)下時(shí)代的發(fā)展趨勢來采取有效的措施來對人力資源進(jìn)行管理,現(xiàn)代化的管理模式主要強(qiáng)調(diào)的是對相關(guān)數(shù)據(jù)的分析和整理能力,通過對數(shù)據(jù)的分析來形成具有實(shí)際指導(dǎo)作用的總結(jié),從而為企業(yè)人力資源管理工作提供有價(jià)值的參考依據(jù)。例如,在實(shí)際人力資源管理過程中可以利用數(shù)據(jù)挖掘技術(shù)來對企業(yè)內(nèi)部員工的薪資水平進(jìn)行分析,并對企業(yè)的成本控制提出有效的建議,也可以利用數(shù)據(jù)挖掘技術(shù)對企業(yè)中年紀(jì)較大的員工進(jìn)行分析,并對其進(jìn)行科學(xué)的評判,從而對其提出更有利的參考價(jià)值和依據(jù)。
2、3實(shí)現(xiàn)對企業(yè)人才的合理分配。
隨著我國社會(huì)經(jīng)濟(jì)的不斷發(fā)展,人才的發(fā)展形勢也變得越來越“多元化”“個(gè)體化”。為此,筆者認(rèn)為為了進(jìn)一步提高礦建企業(yè)人力資源管理工作的質(zhì)量,應(yīng)采取數(shù)據(jù)挖掘技術(shù)來對人才進(jìn)行合理分配,并結(jié)合內(nèi)部員工的實(shí)際特點(diǎn)以及具體類型進(jìn)行客觀性的評判,這對企業(yè)的人才資源管理以及未來發(fā)展無疑是百利無一害的。通過采取數(shù)據(jù)挖掘技術(shù)不僅可以實(shí)現(xiàn)對員工的共性以及特點(diǎn)進(jìn)行分析,使每一位員工的信息資源、崗位職責(zé)得到有效劃分,同時(shí)也進(jìn)一步實(shí)現(xiàn)對企業(yè)人才的合理分配。通過對數(shù)據(jù)信息的管理技術(shù)構(gòu)建實(shí)現(xiàn)對人員分組,從而使數(shù)據(jù)挖掘技術(shù)在企業(yè)人力資源管理中得到有效利用,使其發(fā)揮最大的作用與價(jià)值,同時(shí)也進(jìn)一步提高企業(yè)人力資源管理工作的效率和和質(zhì)量,最終推動(dòng)企業(yè)穩(wěn)固、長久的發(fā)展。
綜上所述,隨著社會(huì)經(jīng)濟(jì)的飛速發(fā)展,建設(shè)領(lǐng)域也得到逐步提高,然而在人力資源管理工作中依然存在著諸多問題,這些問題的存在也嚴(yán)重阻礙我國社會(huì)經(jīng)濟(jì)的穩(wěn)固發(fā)展。所以,只有充分采用數(shù)據(jù)挖掘技術(shù)來開展人力資源管理工作,才能提高企業(yè)的人力資源管理水平。
[1]曾巍、數(shù)據(jù)挖掘在人力資源市場中的應(yīng)用與研究[d]。吉林大學(xué),20xx。
數(shù)據(jù)挖掘論文篇二
在電子商務(wù)中運(yùn)用數(shù)據(jù)挖掘技術(shù),對服務(wù)器上的日志數(shù)據(jù)、用戶信息和訪問鏈接信息進(jìn)行數(shù)據(jù)挖掘,有效了解客戶的購買欲望,從而調(diào)整電子商務(wù)平臺(tái),最終實(shí)現(xiàn)利益更大化。本文旨在了解電子商務(wù)中的數(shù)據(jù)源有哪些,發(fā)掘數(shù)據(jù)挖掘在電子商務(wù)中的具體作用,從而為數(shù)據(jù)挖掘的具體設(shè)計(jì)奠定基礎(chǔ)。
一、電子商務(wù)中數(shù)據(jù)挖掘的數(shù)據(jù)源。
1.服務(wù)器日志數(shù)據(jù)客戶在訪問網(wǎng)站時(shí),就會(huì)在服務(wù)器上產(chǎn)生相應(yīng)的服務(wù)器數(shù)據(jù),這些文件主要是日志文件。而日志文件又可分為ser-vicelogs、errorlogs、cookielogs。其中servicelogs文件格式是最常用的標(biāo)準(zhǔn)公用日志文件格式,也是標(biāo)準(zhǔn)組合日志文件格式。標(biāo)準(zhǔn)公用日志文件的格式存儲(chǔ)關(guān)于客戶連接的物理信息。標(biāo)準(zhǔn)組合日志文件格式主要包含關(guān)于日志文件元信息的指令,如版本號,會(huì)話監(jiān)控開始和結(jié)束的日期等。在日志文件中,cookielogs日志文件是很重要的日志文件,是服務(wù)器為了自動(dòng)追蹤網(wǎng)站訪問者,為單個(gè)客戶瀏覽器生成日志[1]。
2.客戶登記信息。
客戶登記信息是指客戶通過web頁輸入的、并提交給服務(wù)器的相關(guān)用戶信息,這些信息通常是關(guān)于用戶的常用特征。
在web的數(shù)據(jù)挖掘中,客戶登記信息需要和訪問日志集成,以提高數(shù)據(jù)挖掘的準(zhǔn)確度,使之能更進(jìn)一步的了解客戶。
頁面的超級鏈接。
輔之以監(jiān)視所有到達(dá)服務(wù)器的數(shù)據(jù),提取其中的http請求信息。此部分?jǐn)?shù)據(jù)主要來自瀏覽者的點(diǎn)擊流,用于考察用戶的行為表現(xiàn)。網(wǎng)絡(luò)底層信息監(jiān)聽過濾指監(jiān)聽整個(gè)網(wǎng)絡(luò)的所有信息流量,并根據(jù)信息源主機(jī)、目標(biāo)主機(jī)、服務(wù)協(xié)議端口等信息過濾掉垃圾數(shù)據(jù),然后進(jìn)行進(jìn)一步的處理,如關(guān)鍵字的搜索等,最終將用戶感興趣的數(shù)據(jù)發(fā)送到給定的數(shù)據(jù)接受程序存儲(chǔ)到數(shù)據(jù)庫中進(jìn)行分析統(tǒng)計(jì)。
二、web數(shù)據(jù)挖掘在電子商務(wù)中的應(yīng)用通過對數(shù)據(jù)源的原始積累、仔細(xì)分析,再利用數(shù)據(jù)發(fā)掘技術(shù),最終達(dá)到為企業(yè)為用戶服務(wù)的目的,而這些服務(wù)主要有以下幾種。
1.改進(jìn)站點(diǎn)設(shè)計(jì),提高客戶訪問的興趣對客戶來說,傳統(tǒng)客戶與銷售商之間的空間距離在電子商務(wù)中已經(jīng)不存在了,在internet上,每一個(gè)銷售商對于客戶來說都是一樣的,那么如何使客戶在自己的銷售站點(diǎn)上駐留更長的時(shí)間,對銷售商來說將是一個(gè)挑戰(zhàn)。為了使客戶在自己的網(wǎng)站上駐留更長的時(shí)間,就應(yīng)該對客戶的訪問信息進(jìn)行挖掘,通過挖掘就能知道客戶的瀏覽行為,從而了解客戶的興趣及需求所在,并根據(jù)需求動(dòng)態(tài)地調(diào)整頁面,向客戶展示一個(gè)特殊的頁面,提供特有的一些商品信息和廣告,以使客戶能繼續(xù)保持對訪問站點(diǎn)的興趣。
2.發(fā)現(xiàn)潛在客戶。
在對web的客戶訪問信息的挖掘中,利用分類技術(shù)可以在internet上找到未來的潛在客戶。獲得這些潛在的客戶通常的市場策略是:先對已經(jīng)存在的訪問者進(jìn)行分類。對于一個(gè)新的訪問者,通過在web上的分類發(fā)現(xiàn),識(shí)別出這個(gè)客戶與已經(jīng)分類的老客戶的一些公共的描述,從而對這個(gè)新客戶進(jìn)行正確的歸類。然后從它所屬類判斷這個(gè)新客戶是否為潛在的購買者,決定是否要把這個(gè)新客戶作為潛在的客戶來對待。
客戶的類型確定后,就可以對客戶動(dòng)態(tài)地展示web頁面,頁面的內(nèi)容取決于客戶與銷售商提供的產(chǎn)品和服務(wù)之間的關(guān)聯(lián)。
對于一個(gè)新的客戶,如果花了一段時(shí)間瀏覽市場站點(diǎn),就可以把此客戶作為潛在的客戶并向這個(gè)客戶展示一些特殊的頁面內(nèi)容。
3.個(gè)性化服務(wù)。
根據(jù)網(wǎng)站用戶的訪問情況,為用戶提供個(gè)性化信息服務(wù),這是許多互聯(lián)網(wǎng)應(yīng)用,尤其是互聯(lián)網(wǎng)信息服務(wù)或電子商務(wù)(網(wǎng)站)所追求的目標(biāo)。根據(jù)用戶的訪問行為和檔案向使用者進(jìn)行動(dòng)態(tài)的推薦,對許多應(yīng)用都有很大的吸引力。web日志挖掘是一個(gè)能夠出色地完成這個(gè)目標(biāo)的方式。通過web數(shù)據(jù)挖掘,可以理解訪問者的動(dòng)態(tài)行為,據(jù)此優(yōu)化電子商務(wù)網(wǎng)站的經(jīng)營模式。通過把所掌握的大量客戶分成不同的類,對不同類的客戶提供個(gè)性化服務(wù)來提高客戶的滿意度,從而保住老客戶;通過對具有相似瀏覽行為的客戶進(jìn)行分組,提取組中客戶的共同特征,從而實(shí)現(xiàn)客戶的聚類,這可以幫助電子商務(wù)企業(yè)更好地了解客戶的興趣、消費(fèi)習(xí)慣和消費(fèi)傾向,預(yù)測他們的需求,有針對性地向他們推薦特定的商品并實(shí)現(xiàn)交叉銷售,可以提高交易成功率和交易量,提高營銷效果。
例如全球最大中文購物網(wǎng)站淘寶網(wǎng)。當(dāng)你購買一件商品后,淘寶網(wǎng)會(huì)自動(dòng)提示你“購買過此商品的人也購買過……”類似的信息,這就是個(gè)性化服務(wù)的代表。
4.交易評價(jià)。
現(xiàn)在幾乎每一個(gè)電子商務(wù)網(wǎng)站都增加了交易評價(jià)功能,交易評價(jià)功能主要就是為了降低交易中的信息不對稱問題。
電子商務(wù)交易平臺(tái)設(shè)計(jì)了在線信譽(yù)評價(jià)系統(tǒng),對買賣雙方的交易歷史及其評價(jià)進(jìn)行記錄。在聲譽(yù)效應(yīng)的影響下,賣家也更加重視買家的交易滿意度,并且也形成了為獲取好評減少差評而提高服務(wù)質(zhì)量的良好風(fēng)氣。交易中的不滿意(或者成為糾紛)是產(chǎn)生非好評(包括中評和差評)的直接原因。那么,交易中一般會(huì)產(chǎn)生哪些交易糾紛,這些交易糾紛的存在會(huì)如何影響交易評價(jià)結(jié)果,這些問題的解決對賣家的經(jīng)營具有重要的指導(dǎo)價(jià)值。
總結(jié)。
數(shù)據(jù)挖掘是當(dāng)今世界研究的熱門領(lǐng)域,其研究具有廣闊的應(yīng)用前景和巨大的現(xiàn)實(shí)意義。借助數(shù)據(jù)挖掘可以改進(jìn)企業(yè)的電子商務(wù)平臺(tái),增加企業(yè)的經(jīng)營業(yè)績,拓寬企業(yè)的經(jīng)營思路,最終提高企業(yè)的競爭力。
參考文獻(xiàn):
數(shù)據(jù)挖掘論文篇三
數(shù)據(jù)挖掘技術(shù)在金融業(yè)、醫(yī)療保健業(yè)、市場業(yè)、零售業(yè)和制造業(yè)等很多領(lǐng)域都得到了很好的應(yīng)用。針對交通安全領(lǐng)域中交通事故數(shù)據(jù)利用率低的現(xiàn)狀,可以通過數(shù)據(jù)挖掘?qū)ο嚓P(guān)交通事故數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,從而發(fā)現(xiàn)其中的關(guān)聯(lián),這對提升交通安全水平具有非常重要的意義。
數(shù)據(jù)挖掘(datamining)即對大量數(shù)據(jù)進(jìn)行有效的分類統(tǒng)計(jì),從而整理出有規(guī)律的、有價(jià)值的、潛在的未知信息。一般來講,這些數(shù)據(jù)存在極大的隨機(jī)性和不完全性,其包括各行各業(yè)各個(gè)方面的數(shù)據(jù)。數(shù)據(jù)挖掘是一個(gè)結(jié)合了數(shù)據(jù)庫、人工智能、機(jī)器學(xué)習(xí)的學(xué)科,涉及統(tǒng)計(jì)數(shù)據(jù)和技術(shù)理論等領(lǐng)域。
關(guān)聯(lián)分析作為數(shù)據(jù)挖掘中的重要組成部分,其主要作用就是通過數(shù)據(jù)之間的相互關(guān)聯(lián)從而發(fā)現(xiàn)數(shù)據(jù)集中某種未知的聯(lián)系。關(guān)聯(lián)分析最初是在20世紀(jì)90年代初被提出來的,一直備受關(guān)注。已被廣泛應(yīng)用于各行各業(yè),包括醫(yī)療體檢、電子商務(wù)、商業(yè)金融等各個(gè)領(lǐng)域。關(guān)聯(lián)規(guī)則的挖掘一般可分成兩個(gè)步驟[1]:
(1)找出頻繁項(xiàng)集,不小于最小支持度的項(xiàng)集;
(2)生成強(qiáng)關(guān)聯(lián)規(guī)則,不小于最小置信度的關(guān)聯(lián)規(guī)則。相對于生成強(qiáng)關(guān)聯(lián)規(guī)則,找出頻繁項(xiàng)集這一步比較麻煩。l等人在1994年提出的apriori算法是生成頻繁項(xiàng)集的經(jīng)典算法[2]。apriori算法使用了level-wise搜索的迭代方法,即用k-項(xiàng)集探索(k+1)-項(xiàng)集。apriori算法在整體上可分為兩個(gè)部分。
(1)發(fā)現(xiàn)頻集。這個(gè)部分是最重要的,開銷相繼產(chǎn)生了各種各樣的頻集算法,專門用于發(fā)現(xiàn)頻集,以降低其復(fù)雜度、提高發(fā)現(xiàn)頻集的效率。
(2)利用所獲得的頻繁項(xiàng)集各種算法主要致力產(chǎn)生強(qiáng)關(guān)聯(lián)規(guī)則。當(dāng)然頻集構(gòu)成的聯(lián)規(guī)則未必是強(qiáng)關(guān)聯(lián)規(guī)則,還要檢驗(yàn)構(gòu)成的關(guān)聯(lián)規(guī)則的支持度和支持度是否超過它們的閾值。apriori算法找出頻繁項(xiàng)集分為兩步:連接和剪枝。
(1)連接。集合lk-1為頻繁k-1項(xiàng)集的集合,它通過與自身連接就可以生成候選k項(xiàng)集的集合,記作ck。
(2)剪枝。頻繁k項(xiàng)集的集合lk是ck的子集。剪枝首先利用apriori算法的性質(zhì)(頻繁項(xiàng)集的所有非空子集都是頻繁的,如果不滿足這個(gè)條件,就從候選集合ck中刪除)對ck進(jìn)行壓縮;然后,通過掃描所有的事務(wù),確定壓縮后ck中的每個(gè)候選的支持度;最后與設(shè)定的最小支持度進(jìn)行比較,如果支持度不小于最小支持度,則認(rèn)為該候選項(xiàng)是頻繁的。目前,在互聯(lián)網(wǎng)技術(shù)及科學(xué)技術(shù)的快速發(fā)展下,人工智能、機(jī)器識(shí)別等技術(shù)興起,關(guān)聯(lián)分析也被越來越多應(yīng)用其中,并在不斷發(fā)展中提出了大量的改進(jìn)算法。
近年來,我國越來越多的學(xué)者將數(shù)據(jù)挖掘關(guān)聯(lián)分析應(yīng)用于道路交通事故的研究中,主要是分析道路、車輛、行人以及環(huán)境等因素與交通事故之間的某種聯(lián)系。pande和abdel-aty[3]通過關(guān)聯(lián)分析研究了美國佛羅里達(dá)州20xx年非交叉口發(fā)生的道路交通事故,重點(diǎn)分析了各個(gè)不同的影響因素與交通事故之間的內(nèi)在聯(lián)系,通過研究得出如下結(jié)論,道路照明條件不足是引發(fā)道路交通事故的主要因素,除此之外,還發(fā)現(xiàn)天氣惡劣的環(huán)境下道路彎道的直線段也極易發(fā)生交通事故。graves[4]利用數(shù)據(jù)挖掘技術(shù)中的關(guān)聯(lián)規(guī)則對歐洲道路交通事故進(jìn)行了分析,主要研究了交通事故與道路設(shè)施狀況之間的關(guān)聯(lián),通過研究發(fā)現(xiàn)了易導(dǎo)致交通事故發(fā)生的各個(gè)道路設(shè)施狀況因素,此研究為歐洲路面建設(shè)及投資提供了強(qiáng)大的決策支持。我國學(xué)者董立巖在研究道路交通事故數(shù)據(jù)的文獻(xiàn)中,將粗糙集與關(guān)聯(lián)分析進(jìn)行了融合,提出了基于偏好信息的決策規(guī)則簡約算法并將其應(yīng)用其中,通過分析發(fā)現(xiàn)了道路交通事故的未知規(guī)律。王艷玲通過關(guān)聯(lián)分析中的因子關(guān)聯(lián)樹模型重點(diǎn)分析了影響道路交通事故最重要的因子,發(fā)現(xiàn)在道路交通事故常見的誘因人、車、路及環(huán)境中對事故影響最大的因子是環(huán)境。許卉瑩等利用關(guān)聯(lián)分析、聚類分析以及決策樹分析三種數(shù)據(jù)挖掘技術(shù)對道路交通事故數(shù)據(jù)進(jìn)行分析,最終得出了科學(xué)的道路交通事故預(yù)防和交通安全管理決策依據(jù)。尚威等在研究中,對大量的道路交通數(shù)據(jù)進(jìn)行了有效整合,并在此基礎(chǔ)上按照交通事故相關(guān)因素的不同特點(diǎn)整理出與事故發(fā)生有關(guān)的字段數(shù)據(jù),形成新的事故數(shù)據(jù)記錄表,然后再根據(jù)多維關(guān)聯(lián)規(guī)則對記錄的相關(guān)數(shù)據(jù)進(jìn)行分析,從而發(fā)現(xiàn)了事故誘導(dǎo)因素記錄字段值和事故結(jié)果字段值組成的道路交通事故頻繁字段的組合。張聽等在充分掌握聚類數(shù)據(jù)挖掘理論與方法的基礎(chǔ)上,提出了多目標(biāo)聚類分析框架和一個(gè)啟發(fā)式的聚類算法k-wanmi,并將其用在道路交通事故的聚類研究中對不同權(quán)重的屬性進(jìn)行了多目標(biāo)分析。同樣,許宏科也利用該方法對公路隧道交通流數(shù)據(jù)進(jìn)行了聚類分析,其在研究中不僅明確了隧道交通流的峰值規(guī)律,而且還根據(jù)這種規(guī)律制訂了隧道監(jiān)控設(shè)備的不同控制方案,對提高隧道交通安全的水平做了極大的貢獻(xiàn)。徐磊和方源敏在研究中,提出了由簡化信息熵構(gòu)造的改進(jìn)c4.5決策樹算法,并將其應(yīng)用在交通事故數(shù)據(jù)的研究中,對交通數(shù)據(jù)進(jìn)行了正確分類,發(fā)現(xiàn)了一些隱藏的規(guī)則和知識(shí),為交通管理提供了依據(jù)。劉軍、艾力斯木吐拉、馬曉松運(yùn)用多維關(guān)聯(lián)規(guī)則分析交通事故記錄,從而找到導(dǎo)致交通事故發(fā)生次數(shù)多的主要原因,并且指導(dǎo)相關(guān)部門作出相應(yīng)的決策。楊希剛運(yùn)用關(guān)聯(lián)規(guī)則為現(xiàn)實(shí)中的交通事故的預(yù)防提供依據(jù)。吉林大學(xué)的吳昊等人,基于關(guān)聯(lián)規(guī)則的理論基礎(chǔ),定義了公路交通事故屬性模型,并結(jié)合改進(jìn)后的apriori算法,分析了交通事故歷史數(shù)據(jù)信息,為有關(guān)單位和用戶尋找道路黑點(diǎn)(即事故多發(fā)點(diǎn))提供了技術(shù)支援和決策幫助。
通過數(shù)據(jù)挖掘中的關(guān)聯(lián)分析方法雖然能夠?qū)Φ缆方煌ㄊ鹿实南嚓P(guān)因素進(jìn)行清晰的分析,但是目前在這一方面的研究仍有不足之處。因?yàn)殛P(guān)聯(lián)分析在道路交通事故的研究中往往只能片面發(fā)現(xiàn)某一種或幾種因素影響交通事故的規(guī)律,很難將所有影響因素結(jié)合起來進(jìn)行全面系統(tǒng)的分析。然而道路交通事故的發(fā)生通常都是由相應(yīng)因素導(dǎo)致,而后事故當(dāng)事人意識(shí)到危險(xiǎn)源的存在并采取措施,直到事故發(fā)生的連續(xù)過程,整體來看體現(xiàn)了時(shí)序性。也就是說,道路交通事故是受到一系列按照時(shí)間先后順序排列的影響因素組合共同作用而發(fā)生的,從整體的角度出發(fā)研究事故發(fā)生機(jī)理更加科學(xué)。
數(shù)據(jù)挖掘論文篇四
摘要:大數(shù)據(jù)和智游都是當(dāng)下的熱點(diǎn),沒有大數(shù)據(jù)的智游無從談“智慧”,數(shù)據(jù)挖掘是大數(shù)據(jù)應(yīng)用于智游的核心,文章探究了在智游應(yīng)用中,目前大數(shù)據(jù)挖掘存在的幾個(gè)問題。
隨著人民生活水平的進(jìn)一步提高,旅游消費(fèi)的需求進(jìn)一步上升,在云計(jì)算、互聯(lián)網(wǎng)、物聯(lián)網(wǎng)以及移動(dòng)智能終端等信息通訊技術(shù)的飛速發(fā)展下,智游應(yīng)運(yùn)而生。大數(shù)據(jù)作為當(dāng)下的熱點(diǎn)已經(jīng)成了智游發(fā)展的有力支撐,沒有大數(shù)據(jù)提供的有利信息,智游無法變得“智慧”。
旅游業(yè)是信息密、綜合性強(qiáng)、信息依存度高的產(chǎn)業(yè)[1],這讓其與大數(shù)據(jù)自然產(chǎn)生了交匯。2010年,江蘇省鎮(zhèn)江市首先提出“智游”的概念,雖然至今國內(nèi)外對于智游還沒有一個(gè)統(tǒng)一的學(xué)術(shù)定義,但在與大數(shù)據(jù)相關(guān)的描述中,有學(xué)者從大數(shù)據(jù)挖掘在智游中的作用出發(fā),把智游描述為:通過充分收集和管理所有類型和來源的旅游數(shù)據(jù),并深入挖掘這些數(shù)據(jù)的潛在重要價(jià)值信息,然后利用這些信息為相關(guān)部門或?qū)ο筇峁┓?wù)[2]。這一定義充分肯定了在發(fā)展智游中,大數(shù)據(jù)挖掘所起的至關(guān)重要的作用,指出了在智游的過程中,數(shù)據(jù)的收集、儲(chǔ)存、管理都是為數(shù)據(jù)挖掘服務(wù),智游最終所需要的是利用挖掘所得的有用信息。
2011年,我國提出用十年時(shí)間基本實(shí)現(xiàn)智游的目標(biāo)[3],過去幾年,國家旅游局的相關(guān)動(dòng)作均為了實(shí)現(xiàn)這一目標(biāo)。但是,在借助大數(shù)據(jù)推動(dòng)智游的可持續(xù)性發(fā)展中,大數(shù)據(jù)所產(chǎn)生的價(jià)值卻亟待提高,原因之一就是在收集、儲(chǔ)存了大量數(shù)據(jù)后,對它們深入挖掘不夠,沒有發(fā)掘出數(shù)據(jù)更多的價(jià)值。
智游的發(fā)展離不開移動(dòng)網(wǎng)絡(luò)、物聯(lián)網(wǎng)、云平臺(tái)。隨著大數(shù)據(jù)的不斷發(fā)展,國內(nèi)許多景區(qū)已經(jīng)實(shí)現(xiàn)wi-fi覆蓋,部分景區(qū)也已實(shí)現(xiàn)人與人、人與物、人與景點(diǎn)之間的實(shí)時(shí)互動(dòng),多省市已建有旅游產(chǎn)業(yè)監(jiān)測平臺(tái)或旅游大數(shù)據(jù)中心以及數(shù)據(jù)可視化平臺(tái),從中進(jìn)行數(shù)據(jù)統(tǒng)計(jì)、行為分析、監(jiān)控預(yù)警、服務(wù)質(zhì)量監(jiān)督等。通過這些平臺(tái),已基本能掌握跟游客和景點(diǎn)相關(guān)的數(shù)據(jù),可以實(shí)現(xiàn)更好旅游監(jiān)控、產(chǎn)業(yè)宏觀監(jiān)控,對該地的旅游管理和推廣都能發(fā)揮重要作用。
但從智慧化的發(fā)展來看,我國的信息化建設(shè)還需加強(qiáng)。雖然通訊網(wǎng)絡(luò)已基本能保證,但是大部分景區(qū)還無法實(shí)現(xiàn)對景區(qū)全面、透徹、及時(shí)的感知,更為困難的是對平臺(tái)的建設(shè)。在數(shù)據(jù)共享平臺(tái)的建設(shè)上,除了必備的硬件設(shè)施,大數(shù)據(jù)實(shí)驗(yàn)平臺(tái)還涉及大量部門,如政府管理部門、氣象部門、交通、電子商務(wù)、旅行社、旅游網(wǎng)站等。如此多的部門相關(guān)聯(lián),要想建立一個(gè)完整全面的大數(shù)據(jù)實(shí)驗(yàn)平臺(tái),難度可想而知。
大數(shù)據(jù)時(shí)代缺的不是數(shù)據(jù),而是方法。大數(shù)據(jù)在旅游行業(yè)的應(yīng)用前景非常廣闊,但是面對大量的數(shù)據(jù),不懂如何收集有用的數(shù)據(jù)、不懂如何對數(shù)據(jù)進(jìn)行挖掘和利用,那么“大數(shù)據(jù)”猶如礦山之中的廢石。旅游行業(yè)所涉及的結(jié)構(gòu)化與非結(jié)構(gòu)化數(shù)據(jù),通過云計(jì)算技術(shù),對數(shù)據(jù)的收集、存儲(chǔ)都較為容易,但對數(shù)據(jù)的挖掘分析則還在不斷探索中。大數(shù)據(jù)的挖掘常用的方法有關(guān)聯(lián)分析,相似度分析,距離分析,聚類分析等等,這些方法從不同的角度對數(shù)據(jù)進(jìn)行挖掘。其中,相關(guān)性分析方法通過關(guān)聯(lián)多個(gè)數(shù)據(jù)來源,挖掘數(shù)據(jù)價(jià)值。但針對旅游數(shù)據(jù),采用這些方法挖掘數(shù)據(jù)的價(jià)值信息,難度也很大,因?yàn)槁糜螖?shù)據(jù)中冗余數(shù)據(jù)很多,數(shù)據(jù)存在形式很復(fù)雜。在旅游非結(jié)構(gòu)化數(shù)據(jù)中,一張圖片、一個(gè)天氣變化、一次輿情評價(jià)等都將會(huì)對游客的旅行計(jì)劃帶來影響。對這些數(shù)據(jù)完全挖掘分析,對游客“行前、行中、行后”大數(shù)據(jù)的實(shí)時(shí)性挖掘都是很大的挑戰(zhàn)。
2017年,數(shù)據(jù)安全事件屢見不鮮,伴著大數(shù)據(jù)而來的數(shù)據(jù)安全問題日益凸顯出來。在大數(shù)據(jù)時(shí)代,無處不在的數(shù)據(jù)收集技術(shù)使我們的個(gè)人信息在所關(guān)聯(lián)的數(shù)據(jù)中心留下痕跡,如何保證這些信息被合法合理使用,讓數(shù)據(jù)“可用不可見”[4],這是亟待解決的問題。同時(shí),在大數(shù)據(jù)資源的開放性和共享性下,個(gè)人隱私和公民權(quán)益受到嚴(yán)重威脅。這一矛盾的存在使數(shù)據(jù)共享程度與數(shù)據(jù)挖掘程度成反比。此外,經(jīng)過大數(shù)據(jù)技術(shù)的分析、挖掘,個(gè)人隱私更易被發(fā)現(xiàn)和暴露,從而可能引發(fā)一系列社會(huì)問題。
大數(shù)據(jù)背景下的旅游數(shù)據(jù)當(dāng)然也避免不了數(shù)據(jù)的安全問題。如果游客“吃、住、行、游、娛、購”的數(shù)據(jù)被放入數(shù)據(jù)庫,被完全共享、挖掘、分析,那游客的人身財(cái)產(chǎn)安全將會(huì)受到嚴(yán)重影響,最終降低旅游體驗(yàn)。所以,數(shù)據(jù)的安全管理是進(jìn)行大數(shù)據(jù)挖掘的前提。
大數(shù)據(jù)背景下的智游離不開人才的創(chuàng)新活動(dòng)及技術(shù)支持,然而與專業(yè)相銜接的大數(shù)據(jù)人才培養(yǎng)未能及時(shí)跟上行業(yè)需求,加之創(chuàng)新型人才的外流,以及數(shù)據(jù)統(tǒng)計(jì)未來3~5年大數(shù)據(jù)行業(yè)將面臨全球性的人才荒,國內(nèi)智游的構(gòu)建還缺乏大量人才。
在信息化建設(shè)上,加大政府投入,加強(qiáng)基礎(chǔ)設(shè)施建設(shè),整合結(jié)構(gòu)化數(shù)據(jù),抓取非結(jié)構(gòu)化數(shù)據(jù),打通各數(shù)據(jù)壁壘,建設(shè)旅游大數(shù)據(jù)實(shí)驗(yàn)平臺(tái);在挖掘方法上,對旅游大數(shù)據(jù)實(shí)時(shí)性數(shù)據(jù)的挖掘應(yīng)該被放在重要位置;在數(shù)據(jù)安全上,從加強(qiáng)大數(shù)據(jù)安全立法、監(jiān)管執(zhí)法及強(qiáng)化技術(shù)手段建設(shè)等幾個(gè)方面著手,提升大數(shù)據(jù)環(huán)境下數(shù)據(jù)安全保護(hù)水平。加強(qiáng)人才的培養(yǎng)與引進(jìn),加強(qiáng)產(chǎn)學(xué)研合作,培養(yǎng)智游大數(shù)據(jù)人才。
參考文獻(xiàn)。
數(shù)據(jù)挖掘論文篇五
隨著我國的旅游業(yè)的迅猛發(fā)展,旅游產(chǎn)業(yè)正邁向國際化的軌道,傳統(tǒng)旅游業(yè)積累的海量數(shù)據(jù),沒有被有效利用,資源被極大浪費(fèi)。將數(shù)據(jù)挖掘引入到旅游產(chǎn)業(yè)是大勢所趨。當(dāng)前數(shù)據(jù)挖掘在旅游信息化建設(shè)中的應(yīng)用與研究情況主要集中在高校理論界的研究,大多數(shù)研究僅僅是學(xué)術(shù)研究,真正運(yùn)用到旅游行業(yè)的文章多是從某個(gè)具體的方面出發(fā),針對個(gè)別應(yīng)用進(jìn)行數(shù)據(jù)挖掘的融合。筆者主要研究決策樹方法在旅游信息化建設(shè)中的應(yīng)用。目前,決策樹算法有cls算法、id3算法、c4.5算法、cart算法、sliq算法、z統(tǒng)計(jì)算法、并行決策樹算法和sprint算法等。不同算法在執(zhí)行效率、輸出結(jié)果、可擴(kuò)容性、可理解性、預(yù)測的準(zhǔn)確性等方面各不相同??偟膩碚f,這么多決策樹算法各有優(yōu)缺點(diǎn),真正將數(shù)據(jù)挖掘運(yùn)用到整個(gè)旅游信息化建設(shè)中還有很多問題需要解決。
數(shù)據(jù)挖掘中常用的基本分類算法有決策樹、貝葉斯、基于規(guī)則的算法等等。其中,決策樹是目前主流的分類技術(shù),己經(jīng)成功的應(yīng)用于更多行業(yè)的數(shù)據(jù)分析。在關(guān)聯(lián)規(guī)則挖掘研究中,最重要的是apriori算法,這個(gè)算法后來成為絕大多數(shù)關(guān)聯(lián)規(guī)則分類的基礎(chǔ)。聚類算法也是數(shù)據(jù)挖掘技術(shù)中極為重要的組成部分。與分類技術(shù)不同的是,聚類不要求對數(shù)據(jù)進(jìn)行事先標(biāo)定,就數(shù)據(jù)挖掘功能而言,聚類能夠可以針對數(shù)據(jù)的相異度來分析評估數(shù)據(jù),可以作為其他對發(fā)現(xiàn)的簇運(yùn)行的數(shù)據(jù)挖掘算法的預(yù)處理步驟。各種算法分類模型建立有所不同,但原理是大致相同的。筆者考慮決策樹算法結(jié)構(gòu)簡單,便于理解,且很擅長處理非數(shù)值型數(shù)據(jù),建模效率高,分類速度快,特別適合大規(guī)模的數(shù)據(jù)處理的優(yōu)點(diǎn),結(jié)合旅游產(chǎn)業(yè)數(shù)據(jù)特點(diǎn),故作重點(diǎn)分析。
旅游業(yè)數(shù)據(jù)挖掘系統(tǒng)的基本特點(diǎn)如下:統(tǒng)計(jì)旅游興趣;購物消費(fèi)趨向;推薦其感興趣的旅游景點(diǎn);在后臺(tái)管理中,通過決策樹算法對游客數(shù)量、平均年齡、景點(diǎn)收費(fèi)、游客來自地區(qū)等進(jìn)行分析總結(jié),為旅游消費(fèi)者和旅游管理者提供服務(wù):為消費(fèi)者提供吃住行購?qiáng)蕵诽鞖飧鞣矫嫘畔⒉樵?、機(jī)票、車船票、酒店、景區(qū)門票、餐飲等方面的預(yù)定與現(xiàn)金支付、第三方支付、消費(fèi)者評價(jià)、在線咨詢等方面的便利、快捷服務(wù)。為管理者提供推薦、游客管理、線路管理、景點(diǎn)管理、特色服務(wù)管理、機(jī)票管理、在線咨詢管理、旅游客戶關(guān)系管理等服務(wù),提高整體服務(wù)效率和水平。
旅游業(yè)信息管理系統(tǒng)包括游客信息管理與游客信息分析兩個(gè)子模塊。根據(jù)系統(tǒng)日常運(yùn)行出現(xiàn)的問題及時(shí)對系統(tǒng)進(jìn)行維護(hù),如添加或者刪除某個(gè)模塊功能,系統(tǒng)整體運(yùn)行速度的更近等。系統(tǒng)運(yùn)用數(shù)據(jù)庫層、持久化層、業(yè)務(wù)邏輯層、表示層四層體系結(jié)構(gòu),主要利用id3算法達(dá)到旅游數(shù)據(jù)信息的快速、準(zhǔn)確分類??紤]了游客與酒店之間的關(guān)系、游客與旅游路線之間的關(guān)系、游客與旅游景點(diǎn)之間的關(guān)系、游客與機(jī)票、車票之間的關(guān)系、管理員與游客之間的關(guān)系、邏輯結(jié)構(gòu)設(shè)計(jì)。程序之間的獨(dú)立性增加,易于擴(kuò)展,規(guī)范化得到保證的同時(shí)提高了系統(tǒng)的安全性。詳細(xì)功能設(shè)計(jì)包括:用戶登錄、用戶查詢、預(yù)定及支付、后臺(tái)管理、旅游客戶管理和數(shù)據(jù)分析等方面。本系統(tǒng)中主要運(yùn)用java語言就行邏輯上的處理。系統(tǒng)主要使用struts2和hibernate這兩個(gè)框架來進(jìn)行整個(gè)系統(tǒng)的搭建。其中struts2主要處理業(yè)務(wù)邏輯,而hibernate主要是處理數(shù)據(jù)存儲(chǔ)、查詢等操作。系統(tǒng)采用tomcat服務(wù)器。系統(tǒng)模塊需要實(shí)現(xiàn)酒店推薦實(shí)現(xiàn)、景點(diǎn)推薦實(shí)現(xiàn)、天氣預(yù)報(bào)實(shí)現(xiàn)、旅游線路實(shí)現(xiàn)、特產(chǎn)推薦、數(shù)據(jù)分析展現(xiàn)功能、報(bào)表數(shù)據(jù)獲取、景區(qū)客流量變化分析實(shí)現(xiàn)等。需要進(jìn)行后臺(tái)信息管理等功能測試以及時(shí)間測試、數(shù)據(jù)測試等性能測試。
在對數(shù)據(jù)挖掘的基本方法與技術(shù)進(jìn)行總結(jié)的基礎(chǔ)上,結(jié)合當(dāng)今數(shù)據(jù)挖掘的發(fā)展方向和研究熱點(diǎn),可以發(fā)現(xiàn)旅游業(yè)數(shù)據(jù)挖掘算法系統(tǒng)有待進(jìn)一步完善之處:訂票系統(tǒng)尚待完善。界面美化需要進(jìn)一步改進(jìn)。數(shù)據(jù)表之間的結(jié)構(gòu)關(guān)系需要優(yōu)化,以提高數(shù)據(jù)處理能力和效率。數(shù)據(jù)挖掘工具及算法有待精細(xì)化改進(jìn)。
作者:朱暉單位:河南職業(yè)技術(shù)學(xué)院。
數(shù)據(jù)挖掘論文篇六
摘要:在本科高年級學(xué)生中開設(shè)符合學(xué)術(shù)研究和工業(yè)應(yīng)用熱點(diǎn)的進(jìn)階課程是十分必要的。以數(shù)據(jù)挖掘課程為例,本科高年級學(xué)生了解并掌握數(shù)據(jù)挖掘的相關(guān)技術(shù),對于其今后的工作、學(xué)習(xí)不無裨益。著重闡述數(shù)據(jù)挖掘等進(jìn)階課程在本科高年級學(xué)生中的教學(xué)方法,基于本科高年級學(xué)生的實(shí)際情況,以及進(jìn)階課程的知識(shí)體系特點(diǎn),提出有針對性的教學(xué)方法參考,從而提高進(jìn)階課程的教學(xué)效果。
關(guān)鍵詞:數(shù)據(jù)挖掘;進(jìn)階課程;教學(xué)方法研究;本科高年級。
學(xué)生在本科高年級學(xué)生中開設(shè)數(shù)據(jù)挖掘等進(jìn)階課程是十分必要的,以大數(shù)據(jù)、數(shù)據(jù)挖掘?yàn)槔湎嚓P(guān)技術(shù)不僅是當(dāng)前學(xué)術(shù)界的研究熱點(diǎn),也是各家企事業(yè)單位招聘中重要崗位的要求之一。對于即將攻讀碩士或博士學(xué)位的學(xué)生,對于即將走上工作崗位的學(xué)生,了解并掌握一些大數(shù)據(jù)相關(guān)技術(shù),尤其是數(shù)據(jù)挖掘技術(shù),都是不無裨益的。在目前本科教學(xué)中,對于數(shù)據(jù)挖掘等課程的教學(xué),由于前序課程的要求,往往是放在本科四年級進(jìn)行。如何激發(fā)本科四年級學(xué)生在考研,找工作等繁雜事務(wù)中的學(xué)習(xí)興趣,從而更好地掌握數(shù)據(jù)挖掘的相關(guān)技術(shù)是本課程面臨的主要挑戰(zhàn),也是所有本科進(jìn)階課程所面臨的難題之一。
1數(shù)據(jù)挖掘等進(jìn)階課程所面臨的問題。
1.1進(jìn)階課程知識(shí)體系的綜合性。
進(jìn)階課程由于其理論與技術(shù)的先進(jìn)性,往往是學(xué)術(shù)研究的前沿,工業(yè)應(yīng)用的熱點(diǎn),是綜合多方面知識(shí)的課程。以數(shù)據(jù)挖掘課程為例,其中包括數(shù)據(jù)庫、機(jī)器學(xué)習(xí)、模式識(shí)別、統(tǒng)計(jì)、可視化、高性能技術(shù),算法等多方面的知識(shí)內(nèi)容。雖然學(xué)生在前期的本科學(xué)習(xí)中已經(jīng)掌握了部分相關(guān)內(nèi)容,如數(shù)據(jù)庫、統(tǒng)計(jì)、算法等,但對于其他內(nèi)容如機(jī)器學(xué)習(xí)、人工智能、模式識(shí)別、可視化等,有的是與數(shù)據(jù)挖掘課程同時(shí)開設(shè)的進(jìn)階課程,有的已經(jīng)是研究生的教學(xué)內(nèi)容。對于進(jìn)階課程繁雜的知識(shí)體系,應(yīng)該如何把握廣度和深度的關(guān)系尤為重要。
1.2進(jìn)階課程的教學(xué)的目的要求。
進(jìn)階課程的知識(shí)體系的綜合性體現(xiàn)在知識(shí)點(diǎn)過多、技術(shù)特征復(fù)雜。從教學(xué)效益的角度出發(fā),進(jìn)階課程的教學(xué)目的是在有限的課時(shí)內(nèi)最大化學(xué)生的知識(shí)收獲。從教學(xué)結(jié)果的可測度出發(fā),進(jìn)階課程的教學(xué)需要能夠有效驗(yàn)證學(xué)生掌握重點(diǎn)知識(shí)的.學(xué)習(xí)成果。1.3本科高年級學(xué)生的實(shí)際情況本科高年級學(xué)生需要處理考研復(fù)習(xí),找工作等繁雜事務(wù),往往對于剩余本科階段的學(xué)習(xí)不重視,存在得過且過的心態(tài)。進(jìn)階課程往往是專業(yè)選修課程,部分學(xué)分已經(jīng)修滿的學(xué)生往往放棄這部分課程的學(xué)習(xí),一來沒有時(shí)間,二來怕拖累學(xué)分。
2數(shù)據(jù)挖掘等進(jìn)階課程的具體教學(xué)方法。
進(jìn)階課程的教學(xué)理念是在有限的課時(shí)內(nèi),盡可能地提高課程的廣度,增加介紹性內(nèi)容,在授課中著重講解1~2個(gè)關(guān)鍵技術(shù),如在數(shù)據(jù)挖掘課程中,著重講解分類中的決策樹算法,聚類中的k-means算法等復(fù)雜度一般,應(yīng)用廣泛的重要知識(shí)點(diǎn),并利用實(shí)踐來檢驗(yàn)學(xué)習(xí)成果。
2.1進(jìn)階課程的課堂教學(xué)。
數(shù)據(jù)挖掘等進(jìn)階課程所涉及的知識(shí)點(diǎn)眾多,在課堂上則采用演示和講授相結(jié)合的方法,對大部分知識(shí)點(diǎn)做廣度介紹,而對需要重點(diǎn)掌握知識(shí)點(diǎn)具體講授,結(jié)合實(shí)踐案例及板書。在介紹工業(yè)實(shí)踐案例的過程中,對于具體數(shù)據(jù)挖掘任務(wù)的來龍去脈解釋清楚,尤其是對于問題的歸納,數(shù)據(jù)的處理,算法的選擇等步驟,并在不同的知識(shí)點(diǎn)的教學(xué)中重復(fù)介紹和總結(jié)數(shù)據(jù)挖掘的一般性流程,可以加深學(xué)生對于數(shù)據(jù)挖掘的深入理解。對于一些需要記憶的知識(shí)點(diǎn),在課堂上采用隨機(jī)問答的方式,必要的時(shí)候可以在每堂課的開始重復(fù)提問,提高學(xué)習(xí)的效果。
2.2進(jìn)階課程的課后教學(xué)。
對于由于時(shí)間限制無法在課上深入討論的知識(shí)點(diǎn),只能依靠學(xué)生在課后自學(xué)掌握。本科高年級學(xué)生的課后自學(xué)的動(dòng)力不像低年級學(xué)生那么充足,可以布置需要?jiǎng)邮謱?shí)踐并涵蓋相關(guān)知識(shí)點(diǎn)的課后實(shí)踐,但盡量降低作業(yè)的工程量。鼓勵(lì)學(xué)生利用開源軟件和框架,基于提供的數(shù)據(jù)集,實(shí)際解決一些簡單的數(shù)據(jù)挖掘任務(wù),讓學(xué)生掌握相關(guān)算法技術(shù)的使用,并對算法有一定的了解。利用學(xué)院與大數(shù)據(jù)相關(guān)企業(yè)建立的合作關(guān)系,在課后通過參觀,了解大數(shù)據(jù)技術(shù)在當(dāng)前企業(yè)實(shí)踐中是如何應(yīng)用的,激發(fā)學(xué)生的學(xué)習(xí)興趣。
2.3進(jìn)階課程的教學(xué)效果考察進(jìn)階課程的考察不宜采取考試的形式,可以采用大作業(yè)的形式。從具體的數(shù)據(jù)挖掘?qū)嵺`中檢驗(yàn)教學(xué)的成果,力求是學(xué)生在上完本課程后可以解決一些簡單的數(shù)據(jù)挖掘任務(wù),將較復(fù)雜的數(shù)據(jù)挖掘技術(shù)的學(xué)習(xí)留給學(xué)生自己。
3結(jié)語。
數(shù)據(jù)挖掘是來源于實(shí)踐的科學(xué),學(xué)習(xí)完本課程的學(xué)生需要真正理解,掌握相關(guān)的數(shù)據(jù)挖掘技術(shù),并能夠在實(shí)際數(shù)據(jù)挖掘任務(wù)中應(yīng)用相關(guān)算法解決問題。這也對教師的教學(xué)水平提出了挑戰(zhàn),并直接與教師的科研水平相關(guān)。在具體的教學(xué)過程中,發(fā)現(xiàn)往往是在講授實(shí)際科研中遇到的問題時(shí),學(xué)生的興趣較大,對于書本上的例子則反映一般。進(jìn)階課程在注重教學(xué)方法的基礎(chǔ)上,對于教師的科研水平提出了新的要求,這也是對于教師科研的反哺,使教學(xué)過程變成了教學(xué)相長的過程。
參考文獻(xiàn):
[1]孫宇,梁俊斌,鐘淑瑛.面向工程的《數(shù)據(jù)挖掘》課程教學(xué)方法探討[j].現(xiàn)代計(jì)算機(jī),2014(13).
[2]蔣盛益,李霞,鄭琪.研究性學(xué)習(xí)和研究性教學(xué)的實(shí)證研究———以數(shù)據(jù)挖掘課程為例[j].計(jì)算機(jī)教育,2014(24).
[3]張曉芳,王芬,黃曉.國內(nèi)外大數(shù)據(jù)課程體系與專業(yè)建設(shè)調(diào)查研究[c].2ndinternationalconferenceoneducation,managementandsocialscience(icemss2014),2014.
[4]郝潔.《無線傳感器網(wǎng)絡(luò)》課程特點(diǎn)、挑戰(zhàn)和解決方案[j].現(xiàn)代計(jì)算機(jī),2016(35).
[5]王永紅.計(jì)算機(jī)類專業(yè)剖析中課程分析探討[j].現(xiàn)代計(jì)算機(jī),2011(04).
數(shù)據(jù)挖掘論文篇七
我國中央經(jīng)濟(jì)會(huì)議明確指出解決“三農(nóng)”問題是現(xiàn)階段工作中的重點(diǎn)內(nèi)容,這進(jìn)一步體現(xiàn)出我國對農(nóng)村旅游發(fā)展的重視?;跁r(shí)代背景給予農(nóng)村旅游發(fā)展的支持,進(jìn)一步促進(jìn)了農(nóng)村產(chǎn)業(yè)結(jié)構(gòu)的調(diào)整與農(nóng)村經(jīng)濟(jì)的良好發(fā)展。在時(shí)代的背景下,農(nóng)業(yè)旅游這種新興的旅游模式順應(yīng)市場的需求得以產(chǎn)生和發(fā)展。不僅能夠切實(shí)的促進(jìn)農(nóng)民的收入取得相應(yīng)的提高,還能夠進(jìn)一步促進(jìn)農(nóng)村地區(qū)的全面發(fā)展。農(nóng)業(yè)資源作為農(nóng)業(yè)旅游發(fā)展的主要資源,農(nóng)村旅游的開發(fā)能夠有效的保障農(nóng)村土地的經(jīng)濟(jì)性質(zhì),進(jìn)而對耕地?cái)?shù)量的保護(hù)起著強(qiáng)有力的保障作用。
一、探討農(nóng)業(yè)旅游開發(fā)管理的模式。
1、農(nóng)戶分散經(jīng)營模式。
目前,在我國農(nóng)業(yè)旅游發(fā)展的基礎(chǔ)階段是由農(nóng)戶作為農(nóng)業(yè)旅游開發(fā)的主體,農(nóng)業(yè)旅游的經(jīng)營模式主要是以分散式經(jīng)營模式為主。以農(nóng)戶為主體進(jìn)行經(jīng)營直接具有一定的弊端,一是開發(fā)的規(guī)模相對較小并且分散,而一些農(nóng)戶為了追求短期的利益沒有對農(nóng)業(yè)旅游資源進(jìn)行合理的開發(fā),而相應(yīng)附屬農(nóng)產(chǎn)品的開發(fā)也因?yàn)槿狈茖W(xué)理論支持出現(xiàn)單一缺乏吸引力的情況。二是農(nóng)戶缺乏雄厚的經(jīng)濟(jì)實(shí)力,在農(nóng)業(yè)旅游開發(fā)中沒有足夠的資金投入。這直接影響著產(chǎn)品的開發(fā)和宣傳。除此之外,經(jīng)營者缺乏統(tǒng)一的規(guī)劃,對原有的田園風(fēng)光進(jìn)行過度的修建,從而導(dǎo)致環(huán)境污染更加嚴(yán)重[1]。
2、企業(yè)主導(dǎo)經(jīng)營模式。
分散的農(nóng)戶經(jīng)營模式為農(nóng)業(yè)旅游開發(fā)和經(jīng)營帶來嚴(yán)重的外部問題。而通過引進(jìn)有經(jīng)濟(jì)實(shí)力和市場經(jīng)營能力的企業(yè)進(jìn)行農(nóng)業(yè)旅游的開發(fā),能夠在一定程度上解決這些外部問題。但引進(jìn)的企業(yè)作為外來者很難考慮到鄉(xiāng)村公共資源對后代具有的重要作用,因此仍然可能導(dǎo)致對農(nóng)業(yè)資源進(jìn)行過度的開發(fā)利用和破壞[2]。
3、村民自主開發(fā)模式。
以村民自主開發(fā)模式作為農(nóng)業(yè)旅游經(jīng)營模式中的主體,主要基于具有一定規(guī)模的社區(qū)內(nèi),村民自發(fā)聯(lián)合形成的農(nóng)業(yè)旅游開發(fā)組組織。一般情況下,會(huì)成立相應(yīng)的管理委員會(huì)對農(nóng)業(yè)旅游資源的占用、供應(yīng)等活動(dòng)進(jìn)行組織和監(jiān)督。并結(jié)合相應(yīng)的規(guī)章制度對農(nóng)業(yè)旅游資源和鄉(xiāng)村整體文化環(huán)境進(jìn)行合理的使用和維護(hù)。這一經(jīng)營模式是目前比較符合我國農(nóng)業(yè)旅游開發(fā)的模式[3]。
二、分析農(nóng)業(yè)旅游開發(fā)管理現(xiàn)存問題及形成原因。
1、農(nóng)業(yè)旅游開發(fā)管理現(xiàn)存的問題。
我國農(nóng)業(yè)旅游發(fā)展相對較晚,大部分地區(qū)都處在基礎(chǔ)發(fā)展階段。對于現(xiàn)階段農(nóng)業(yè)旅游開發(fā)中普遍存在的問題主要有三種,一是農(nóng)民的收入提高效果不明顯。二是農(nóng)村的鄉(xiāng)土民俗和自然資源環(huán)境遭到嚴(yán)重的破壞,三是對于農(nóng)業(yè)旅游資源很難實(shí)現(xiàn)可持續(xù)發(fā)展。
通過對現(xiàn)階段我國農(nóng)業(yè)旅游開發(fā)管理中存在問題的分析可以總結(jié)出,形成這些問題的原因主要有四個(gè)方面。一是經(jīng)營者的思想觀念沒有跟隨時(shí)代的發(fā)展進(jìn)行及時(shí)的更新,這直接導(dǎo)致產(chǎn)品類型較少。二是對農(nóng)業(yè)旅游開發(fā)和管理沒有進(jìn)行長期的規(guī)劃,缺乏相應(yīng)的品牌產(chǎn)品和足夠的營銷力度。三是人才和資金的短缺導(dǎo)致旅游市場淡季和旺季差距較大。四是相關(guān)的基礎(chǔ)設(shè)施和配套設(shè)施不完善,并且缺乏相應(yīng)的體制,導(dǎo)致市場形成嚴(yán)重的無序競爭。
三、探究農(nóng)業(yè)旅游開發(fā)管理相關(guān)對策。
1、正確認(rèn)識(shí)農(nóng)業(yè)旅游。
農(nóng)業(yè)旅游的開發(fā)和管理要以正確的思想觀念作為前提指導(dǎo),因此要想確保農(nóng)業(yè)旅游能夠保持正確的發(fā)展方向就要對其具有正確的認(rèn)識(shí)。農(nóng)業(yè)旅游的開發(fā)和管理一定要樹立正確的旅游資源觀念,打破傳統(tǒng)觀念的限制,對農(nóng)業(yè)旅游資源存在的本質(zhì)內(nèi)涵和具有的重要價(jià)值進(jìn)行充分的認(rèn)識(shí),改進(jìn)和創(chuàng)新農(nóng)業(yè)旅游開發(fā)和管理意識(shí)。相關(guān)部門和所涉及人員應(yīng)該投入更多的精力對于農(nóng)業(yè)旅游進(jìn)行合理的開發(fā)和科學(xué)的管理,從而為農(nóng)業(yè)旅游發(fā)展質(zhì)量提供強(qiáng)有力的基礎(chǔ)保障。
2、農(nóng)業(yè)旅游規(guī)劃開發(fā)。
農(nóng)業(yè)旅游主要是向游客展示出農(nóng)村生產(chǎn)生活的整體,讓游客能夠感受到傳統(tǒng)的鄉(xiāng)土民俗文化和農(nóng)業(yè)資源。這也要求我們要通過有效的開發(fā)和管理形成一個(gè)綜合的資源系統(tǒng),必須要從整體上對農(nóng)業(yè)旅游進(jìn)行合理的規(guī)劃和科學(xué)的開發(fā)。對于農(nóng)業(yè)旅游的規(guī)劃和開發(fā)不僅要保護(hù)地區(qū)生物多樣性好農(nóng)村生態(tài)系統(tǒng),還要重視農(nóng)業(yè)科學(xué)配置,保證農(nóng)業(yè)旅游資源的完整性和合理性。
3、加強(qiáng)相應(yīng)制度規(guī)范。
現(xiàn)階段,我國農(nóng)業(yè)旅游開發(fā)管理十分需要建立相關(guān)的制度規(guī)范。這不僅有利于農(nóng)業(yè)旅游開發(fā)主體在使用公共資源時(shí)能夠主動(dòng)考慮社會(huì)成本,進(jìn)而對公共資源的消費(fèi)數(shù)量進(jìn)行合理的限制。還能夠在一定程度上保證農(nóng)業(yè)旅游經(jīng)營組織在進(jìn)行科學(xué)健康的可持續(xù)發(fā)展。
4、加強(qiáng)旅游人才培養(yǎng)。
加強(qiáng)對農(nóng)村旅游人才的培養(yǎng)可以從三個(gè)方面入手,一是組織相應(yīng)的旅游知識(shí)培訓(xùn)。二是要與相應(yīng)的旅游企業(yè)和高等院校建立緊密的合作,為農(nóng)村旅游人才提供更多的培訓(xùn)機(jī)會(huì)。三是要充分結(jié)合現(xiàn)代化信息技術(shù)手段,一方面要利用現(xiàn)代化網(wǎng)絡(luò)信息技術(shù)拓寬農(nóng)村旅游人才的知識(shí)面,另一方面還要利用網(wǎng)絡(luò)信息技術(shù)倡導(dǎo)農(nóng)民不斷加強(qiáng)自身的學(xué)習(xí),從而使農(nóng)民的整體素質(zhì)取得提高。
四、結(jié)語。
農(nóng)業(yè)旅游作為新農(nóng)村建設(shè)和發(fā)展的重要內(nèi)容,推動(dòng)著人民生活水平的提高和國家經(jīng)濟(jì)的發(fā)展,要想更好的進(jìn)行農(nóng)業(yè)旅游的開發(fā)和管理,我們要明確目前我國農(nóng)業(yè)旅游發(fā)展管理模式存在的不足,正確的認(rèn)識(shí)農(nóng)業(yè)旅游的重要性。要加強(qiáng)對其規(guī)劃開發(fā),并建立相應(yīng)的制度規(guī)范對旅游人才的培養(yǎng),從而促進(jìn)農(nóng)業(yè)旅游的可持續(xù)發(fā)展。
數(shù)據(jù)挖掘論文篇八
隨著互聯(lián)網(wǎng)技術(shù)的迅速發(fā)展,尤其移動(dòng)互聯(lián)網(wǎng)的爆發(fā)性發(fā)展,越來越多的公司憑借其備受歡迎的系統(tǒng)和app如雨后春筍般發(fā)展起來,如滴滴打車、共享單車等。海量數(shù)據(jù)自此不再是google等大公司的專利,越來越多的中小型企業(yè)也可以擁有海量數(shù)據(jù)。如何從浩如煙海的數(shù)據(jù)中挖掘出令人感興趣和有用的知識(shí),成為越來越多的公司急需解決的問題。因此,他們對數(shù)據(jù)挖掘分析師求賢若渴。在這一社會(huì)需求下,培養(yǎng)出優(yōu)秀的數(shù)據(jù)挖掘分析師,是各個(gè)高校目前急需完成的一項(xiàng)任務(wù)。
目前,各大高等院校本科階段爭相開設(shè)數(shù)據(jù)挖掘課程。然而,該課程是一門相對較新的交叉學(xué)科,涵蓋了概率統(tǒng)計(jì)、機(jī)器學(xué)習(xí)、數(shù)據(jù)庫等學(xué)科的知識(shí)內(nèi)容,難度較大。因此,大部分高校一般將此課程開設(shè)在研究生階段,在本科生中開設(shè)此課程的學(xué)校相對較少。另外,不同的學(xué)校將其歸入不同的專業(yè)中,如計(jì)算機(jī)專業(yè)、信息管理專業(yè)、統(tǒng)計(jì)學(xué)、醫(yī)學(xué)等??梢哉f,這一課程基本上處于探索的過程中。我院災(zāi)害信息系于20xx年在信息管理與信息系統(tǒng)本科學(xué)生中首次開設(shè)了該課程。通過開設(shè)此課程,學(xué)生能夠掌握數(shù)據(jù)挖掘的基本原理和各種挖掘算法等,掌握數(shù)據(jù)分析和處理、高級數(shù)據(jù)庫編程等技能,達(dá)到數(shù)據(jù)聚類、分類、關(guān)聯(lián)分析的目的。然而,通過前期教學(xué)過程,我們發(fā)現(xiàn)教學(xué)效果不理想,存在很多問題。
1、數(shù)據(jù)內(nèi)驅(qū)力差。
以往數(shù)據(jù)挖掘課程重點(diǎn)講授數(shù)據(jù)挖掘算法,對數(shù)據(jù)源的獲取和處理極少獲取。目前各大教材都在使用一些公共數(shù)據(jù)資源,這些數(shù)據(jù)資源有些已經(jīng)非常陳舊了,比如20世紀(jì)80年代的加州房價(jià)數(shù)據(jù)。這些數(shù)據(jù)脫離現(xiàn)實(shí),分析這些數(shù)據(jù),學(xué)生沒有任何興趣和學(xué)習(xí)動(dòng)力,也就無法發(fā)現(xiàn)價(jià)值。
大量具有難度的數(shù)據(jù)挖掘算法的學(xué)習(xí),使學(xué)生喪失了學(xué)習(xí)興趣,學(xué)完即忘,不知所用。
3、忽視對數(shù)據(jù)預(yù)處理過程的學(xué)習(xí)。
以往所使用的公共數(shù)據(jù)源或軟件自帶數(shù)據(jù)源,數(shù)據(jù)量小,需要的預(yù)處理工作比較少;這部分內(nèi)容基本只安排一次理論課、一次實(shí)驗(yàn)課。而實(shí)際通過爬蟲獲取的數(shù)據(jù)源數(shù)據(jù)量大;這部分工作量比較大,需要占到整個(gè)數(shù)據(jù)挖掘工作量的一半以上。因此,一次理論課和一次實(shí)驗(yàn)課是無法讓學(xué)生掌握數(shù)據(jù)預(yù)處理技能的。
4、算法編程實(shí)現(xiàn)難度較大。
要求學(xué)生學(xué)習(xí)一門新的編程語言,如r語言、python語言,對本科非計(jì)算機(jī)專業(yè)的學(xué)生來說難度是非常大的,尤其是課時(shí)安排只有48課時(shí)。
學(xué)生能夠理解課堂案例,但在實(shí)際應(yīng)用中,無法完成整個(gè)數(shù)據(jù)分析流程。
該課程的教學(xué)對象是信息管理與信息系統(tǒng)專業(yè)本科大四學(xué)生。因此,培養(yǎng)實(shí)際應(yīng)用人才,使其完成整個(gè)實(shí)際數(shù)據(jù)挖掘分析流程是教師的教學(xué)目的。筆者對智聯(lián)招聘、中華英才網(wǎng)、51job等幾個(gè)大型招聘網(wǎng)站的幾百個(gè)數(shù)據(jù)挖掘分析師相關(guān)職位進(jìn)行分析,主要分析了相關(guān)職位的工作內(nèi)容、職位要求以及需求企業(yè)。數(shù)據(jù)分析師主要利用數(shù)據(jù)挖掘工具對運(yùn)營數(shù)據(jù)等多種數(shù)據(jù)源進(jìn)行預(yù)處理、建模、挖掘、分析及優(yōu)化。該職位是受業(yè)務(wù)驅(qū)動(dòng)的,特點(diǎn)是將現(xiàn)有數(shù)據(jù)與業(yè)務(wù)相結(jié)合,最大程度地變現(xiàn)數(shù)據(jù)價(jià)值。該職位對計(jì)算機(jī)編程等相關(guān)技術(shù)不作要求,但是需要有深厚的數(shù)據(jù)挖掘理論基礎(chǔ),熟練使用主流的數(shù)據(jù)挖掘(或統(tǒng)計(jì)分析)工具。基于此,教師可以采取以下策略進(jìn)行教學(xué)改革。
1、加強(qiáng)對業(yè)務(wù)數(shù)據(jù)的理解。
數(shù)據(jù)挖掘分析師是受業(yè)務(wù)驅(qū)動(dòng)的,所以要理解實(shí)際業(yè)務(wù),明確本次數(shù)據(jù)挖掘要解決什么問題。教師可以構(gòu)建案例庫,包括教師案例庫、學(xué)生討論案例庫。教師案例庫由教師構(gòu)建,可用于課堂講授。學(xué)生案例庫由學(xué)生分組構(gòu)建,并安排討論課,由學(xué)生講述、討論并提交報(bào)告。
2、加強(qiáng)對數(shù)據(jù)的獲取。
對學(xué)生感興趣的數(shù)據(jù)源進(jìn)行挖掘,這樣才能更好地幫助學(xué)生理解吸收知識(shí)。因此,可以教授學(xué)生爬蟲技術(shù),編寫爬蟲程序,使其自主獲取感興趣的數(shù)據(jù)。
3、加強(qiáng)對數(shù)據(jù)的預(yù)處理工作。
在數(shù)據(jù)挖掘之前使用數(shù)據(jù)預(yù)處理技術(shù),能夠顯著提高數(shù)據(jù)挖掘模式的質(zhì)量,降低實(shí)際挖掘所需要的時(shí)間,應(yīng)將其作為整門課程的重點(diǎn)進(jìn)行學(xué)習(xí)。增加理論課程和實(shí)驗(yàn)課時(shí),使學(xué)生掌握數(shù)據(jù)清理、數(shù)據(jù)集成、數(shù)據(jù)變換、數(shù)據(jù)歸納等數(shù)據(jù)預(yù)處理技術(shù),并能夠應(yīng)對各種復(fù)雜數(shù)據(jù)源,最終利用爬蟲程序獲取的各種數(shù)據(jù)源進(jìn)行預(yù)處理工作。
教師可以選擇spssmodeler這款所見即所得的數(shù)據(jù)挖掘軟件作為配套實(shí)驗(yàn)平臺(tái)。該軟件具有必需的數(shù)據(jù)預(yù)處理工具及預(yù)設(shè)的挖掘算法,學(xué)生可以把注意力放在要挖掘的數(shù)據(jù)及相關(guān)需求上,設(shè)定挖掘的主題,然后通過鼠標(biāo)的點(diǎn)擊拖拉即可完成相關(guān)主題的數(shù)據(jù)挖掘過程。學(xué)生最終可對自己獲取并已處理過的數(shù)據(jù)進(jìn)行挖掘分析。
5、加強(qiáng)教師外出培訓(xùn)學(xué)習(xí)。
數(shù)據(jù)挖掘技術(shù)以及大數(shù)據(jù)技術(shù)是近來比較新穎而且發(fā)展迅速的技術(shù)。教師長期身處三尺講臺(tái)之上,遠(yuǎn)離了新技術(shù),脫離了實(shí)際。因此,需派遣教師到知名高校學(xué)習(xí)數(shù)據(jù)挖掘教學(xué)技術(shù),到培訓(xùn)機(jī)構(gòu)進(jìn)行系統(tǒng)學(xué)習(xí),到企業(yè)進(jìn)行實(shí)戰(zhàn)學(xué)習(xí)。
基于以上分析,形成了新的數(shù)據(jù)挖掘理論課程內(nèi)容和實(shí)踐課程內(nèi)容,安排如表1和表2所示。共安排48學(xué)時(shí),其中理論課24學(xué)時(shí),實(shí)驗(yàn)課24學(xué)時(shí)。理論課重點(diǎn)講授數(shù)據(jù)的獲取、數(shù)據(jù)的理解、數(shù)據(jù)的預(yù)處理以及常用挖掘算法。實(shí)驗(yàn)課重點(diǎn)學(xué)習(xí)基于spssmodeler的數(shù)據(jù)挖掘,對理論課的內(nèi)容進(jìn)行實(shí)踐。整個(gè)學(xué)習(xí)以工程項(xiàng)目為載體,該工程貫穿整個(gè)學(xué)習(xí)過程。學(xué)生通過爬蟲程序獲取自己感興趣的數(shù)據(jù)源,根據(jù)課程進(jìn)度,逐步完成后續(xù)數(shù)據(jù)的理解,再進(jìn)行預(yù)處理,建模分析,評估整個(gè)過程。在課程結(jié)束時(shí),完成整個(gè)項(xiàng)目,并提交報(bào)告。
在數(shù)字時(shí)代,越來越多的企業(yè)急需數(shù)據(jù)挖掘分析人才。教師應(yīng)以培養(yǎng)實(shí)際應(yīng)用人才為目的,充分培養(yǎng)學(xué)生對數(shù)據(jù)挖掘的學(xué)習(xí)興趣,以工程項(xiàng)目為載體,貫穿整個(gè)課程周期。在教學(xué)中,打牢數(shù)據(jù)獲取、理解預(yù)處理這一基石,加強(qiáng)建模挖掘分析,弱化對晦澀算法的編程學(xué)習(xí),使學(xué)生真正掌握數(shù)據(jù)挖掘技術(shù),滿足社會(huì)需求。
數(shù)據(jù)挖掘論文篇九
[1]劉瑩。基于數(shù)據(jù)挖掘的商品銷售預(yù)測分析[j].科技通報(bào)。20xx(07)。
[2]姜曉娟,郭一娜?;诟倪M(jìn)聚類的電信客戶流失預(yù)測分析[j].太原理工大學(xué)學(xué)報(bào)。20xx(04)。
[3]李欣海。隨機(jī)森林模型在分類與回歸分析中的應(yīng)用[j].應(yīng)用昆蟲學(xué)報(bào)。20xx(04)。
[4]朱志勇,徐長梅,劉志兵,胡晨剛?;谪惾~斯網(wǎng)絡(luò)的客戶流失分析研究[j].計(jì)算機(jī)工程與科學(xué)。20xx(03)。
[5]翟健宏,李偉,葛瑞海,楊茹。基于聚類與貝葉斯分類器的網(wǎng)絡(luò)節(jié)點(diǎn)分組算法及評價(jià)模型[j].電信科學(xué)。20xx(02)。
[6]王曼,施念,花琳琳,楊永利。成組刪除法和多重填補(bǔ)法對隨機(jī)缺失的二分類變量資料處理效果的比較[j].鄭州大學(xué)學(xué)報(bào)(醫(yī)學(xué)版).20xx(05)。
[7]黃杰晟,曹永鋒。挖掘類改進(jìn)決策樹[j].現(xiàn)代計(jì)算機(jī)(專業(yè)版).20xx(01)。
[8]李凈,張范,張智江。數(shù)據(jù)挖掘技術(shù)與電信客戶分析[j].信息通信技術(shù)。20xx(05)。
[9]武曉巖,李康?;虮磉_(dá)數(shù)據(jù)判別分析的隨機(jī)森林方法[j].中國衛(wèi)生統(tǒng)計(jì)。20xx(06)。
[10]張璐。論信息與企業(yè)競爭力[j].現(xiàn)代情報(bào)。20xx(01)。
[13]俞馳。基于網(wǎng)絡(luò)數(shù)據(jù)挖掘的客戶獲取系統(tǒng)研究[d].西安電子科技大學(xué)20xx。
[14]馮軍。數(shù)據(jù)挖掘在自動(dòng)外呼系統(tǒng)中的應(yīng)用[d].北京郵電大學(xué)20xx。
[15]于寶華。基于數(shù)據(jù)挖掘的高考數(shù)據(jù)分析[d].天津大學(xué)20xx。
[16]王仁彥。數(shù)據(jù)挖掘與網(wǎng)站運(yùn)營管理[d].華東師范大學(xué)20xx。
[19]賈治國。數(shù)據(jù)挖掘在高考填報(bào)志愿上的應(yīng)用[d].內(nèi)蒙古大學(xué)20xx。
[22]阮偉玲。面向生鮮農(nóng)產(chǎn)品溯源的基層數(shù)據(jù)庫建設(shè)[d].成都理工大學(xué)20xx。
[23]明慧。復(fù)合材料加工工藝數(shù)據(jù)庫構(gòu)建及數(shù)據(jù)集成[d].大連理工大學(xué)20xx。
[25]岳雪。基于海量數(shù)據(jù)挖掘關(guān)聯(lián)測度工具的設(shè)計(jì)[d].西安財(cái)經(jīng)學(xué)院20xx。
[28]張曉東。全序模塊模式下范式分解問題研究[d].哈爾濱理工大學(xué)20xx。
[30]王化楠。一種新的混合遺傳的基因聚類方法[d].大連理工大學(xué)20xx。
[33]俞馳?;诰W(wǎng)絡(luò)數(shù)據(jù)挖掘的客戶獲取系統(tǒng)研究[d].西安電子科技大學(xué)20xx。
[34]馮軍。數(shù)據(jù)挖掘在自動(dòng)外呼系統(tǒng)中的應(yīng)用[d].北京郵電大學(xué)20xx。
[35]于寶華。基于數(shù)據(jù)挖掘的高考數(shù)據(jù)分析[d].天津大學(xué)20xx。
[36]王仁彥。數(shù)據(jù)挖掘與網(wǎng)站運(yùn)營管理[d].華東師范大學(xué)20xx。
[39]賈治國。數(shù)據(jù)挖掘在高考填報(bào)志愿上的應(yīng)用[d].內(nèi)蒙古大學(xué)20xx。
數(shù)據(jù)挖掘論文篇十
數(shù)據(jù)挖掘是用于發(fā)現(xiàn)隱藏于大量數(shù)據(jù)中的有用信息的過程。在現(xiàn)代商業(yè)中,數(shù)據(jù)挖掘已經(jīng)成為了決策制定中不可或缺的工具。對于學(xué)習(xí)數(shù)據(jù)挖掘的人來說,寫論文是一個(gè)很好的鍛煉機(jī)會(huì)。本文將介紹我在撰寫數(shù)據(jù)挖掘論文過程中得到的心得和體會(huì)。
一、數(shù)據(jù)收集和準(zhǔn)備
在進(jìn)行數(shù)據(jù)挖掘和撰寫論文之前,首先需要進(jìn)行數(shù)據(jù)收集和準(zhǔn)備。這個(gè)過程非常費(fèi)時(shí)間和精力。它需要你花費(fèi)大量的時(shí)間研究和了解你想要分析的數(shù)據(jù),并且要確保其質(zhì)量和可靠性。當(dāng)你收集到充足的數(shù)據(jù)后,你需要對其進(jìn)行清洗和加工,以確保它符合你的研究和分析要求。
二、尋找合適的算法
對于不同的數(shù)據(jù)類型和研究目的,使用不同的算法是非常必要的。在進(jìn)行數(shù)據(jù)分析前,我們需要先研究和了解有哪些算法可以使用,并確定哪個(gè)算法最適合你的數(shù)據(jù)和問題。此外,認(rèn)真閱讀一些經(jīng)典的數(shù)據(jù)挖掘論文,了解如何使用不同類型的算法來處理和分析數(shù)據(jù),對于指導(dǎo)你的研究和撰寫論文有很大的幫助。
三、數(shù)據(jù)可視化
數(shù)據(jù)可視化是通過圖表、示意圖和圖像等方式將數(shù)據(jù)表達(dá)出來。它可以使得復(fù)雜的數(shù)據(jù)變得更加容易理解和使用。當(dāng)你分析完你的數(shù)據(jù)后,你需要進(jìn)行可視化操作,以幫助你更好地理解和展示數(shù)據(jù)。此外,數(shù)據(jù)可視化還能使你的論文更加引人注目,視覺效果更加優(yōu)美。
四、語言表達(dá)
語言表達(dá)能力在論文寫作中是至關(guān)重要的。你需要清晰而有條理地表達(dá)你的研究思路和分析結(jié)果,并將其用通俗易懂的語言表現(xiàn)出來。此外,精確的描述和清晰的句子結(jié)構(gòu)有助于閱讀者理解你的思考過程。
五、多次修改和校對
寫作是一個(gè)不斷完善和改進(jìn)的過程。你需要對論文進(jìn)行多次修改和校對,以確保你的研究思路和結(jié)果清晰明了,沒有錯(cuò)別字和語法錯(cuò)誤。此外,還需要注意引用來源的正確性和格式的一致性。
數(shù)據(jù)挖掘論文撰寫是一個(gè)需要良好耐心和細(xì)心的工作。在整個(gè)過程中,我們需要持續(xù)學(xué)習(xí)和完善自己,才能寫出高質(zhì)量、有科學(xué)價(jià)值的論文。對于近期對數(shù)據(jù)挖掘領(lǐng)域有深入接觸的讀者來說,我們要虛心學(xué)習(xí),勤奮鉆研,不斷提高自己的寫作技巧。
數(shù)據(jù)挖掘論文篇十一
[1]劉瑩?;跀?shù)據(jù)挖掘的商品銷售預(yù)測分析[j].科技通報(bào)。2014(07)。
[2]姜曉娟,郭一娜?;诟倪M(jìn)聚類的電信客戶流失預(yù)測分析[j].太原理工大學(xué)學(xué)報(bào)。2014(04)。
[3]李欣海。隨機(jī)森林模型在分類與回歸分析中的應(yīng)用[j].應(yīng)用昆蟲學(xué)報(bào)。2013(04)。
[4]朱志勇,徐長梅,劉志兵,胡晨剛?;谪惾~斯網(wǎng)絡(luò)的客戶流失分析研究[j].計(jì)算機(jī)工程與科學(xué)。2013(03)。
[5]翟健宏,李偉,葛瑞海,楊茹。基于聚類與貝葉斯分類器的網(wǎng)絡(luò)節(jié)點(diǎn)分組算法及評價(jià)模型[j].電信科學(xué)。2013(02)。
[6]王曼,施念,花琳琳,楊永利。成組刪除法和多重填補(bǔ)法對隨機(jī)缺失的二分類變量資料處理效果的比較[j].鄭州大學(xué)學(xué)報(bào)(醫(yī)學(xué)版).2012(05)。
[7]黃杰晟,曹永鋒。挖掘類改進(jìn)決策樹[j].現(xiàn)代計(jì)算機(jī)(專業(yè)版).2010(01)。
[8]李凈,張范,張智江。數(shù)據(jù)挖掘技術(shù)與電信客戶分析[j].信息通信技術(shù)。2009(05)。
[9]武曉巖,李康?;虮磉_(dá)數(shù)據(jù)判別分析的隨機(jī)森林方法[j].中國衛(wèi)生統(tǒng)計(jì)。2006(06)。
[10]張璐。論信息與企業(yè)競爭力[j].現(xiàn)代情報(bào)。2003(01)。
[13]俞馳?;诰W(wǎng)絡(luò)數(shù)據(jù)挖掘的客戶獲取系統(tǒng)研究[d].西安電子科技大學(xué)2009。
[14]馮軍。數(shù)據(jù)挖掘在自動(dòng)外呼系統(tǒng)中的應(yīng)用[d].北京郵電大學(xué)2009。
[15]于寶華?;跀?shù)據(jù)挖掘的高考數(shù)據(jù)分析[d].天津大學(xué)2009。
[16]王仁彥。數(shù)據(jù)挖掘與網(wǎng)站運(yùn)營管理[d].華東師范大學(xué)2010。
[19]賈治國。數(shù)據(jù)挖掘在高考填報(bào)志愿上的應(yīng)用[d].內(nèi)蒙古大學(xué)2005。
[22]阮偉玲。面向生鮮農(nóng)產(chǎn)品溯源的基層數(shù)據(jù)庫建設(shè)[d].成都理工大學(xué)2015。
[23]明慧。復(fù)合材料加工工藝數(shù)據(jù)庫構(gòu)建及數(shù)據(jù)集成[d].大連理工大學(xué)2014。
[25]岳雪。基于海量數(shù)據(jù)挖掘關(guān)聯(lián)測度工具的設(shè)計(jì)[d].西安財(cái)經(jīng)學(xué)院2014。
[28]張曉東。全序模塊模式下范式分解問題研究[d].哈爾濱理工大學(xué)2015。
[30]王化楠。一種新的混合遺傳的基因聚類方法[d].大連理工大學(xué)2014。
“大數(shù)據(jù)”到底有多大?根據(jù)研究機(jī)構(gòu)統(tǒng)計(jì),僅在2011年,全球數(shù)據(jù)增量就達(dá)到了1.8zb(即1.8萬億gb),相當(dāng)于全世界每個(gè)人產(chǎn)生200gb以上的數(shù)據(jù)。這種增長趨勢仍在加速,據(jù)保守預(yù)計(jì),接下來幾年中,數(shù)據(jù)將始終保持每年50%的增長速度。
縱觀人類歷史,每一次劃時(shí)代的變革都是以新工具的出現(xiàn)和應(yīng)用為標(biāo)志的。蒸汽機(jī)把人們從農(nóng)業(yè)時(shí)代帶入了工業(yè)時(shí)代,計(jì)算機(jī)和互聯(lián)網(wǎng)把人們從工業(yè)時(shí)代帶入了信息時(shí)代,而如今大數(shù)據(jù)時(shí)代已經(jīng)到來,它源自信息時(shí)代,又是信息時(shí)代全方位的深化應(yīng)用與延伸。大數(shù)據(jù)時(shí)代的生產(chǎn)原材料是數(shù)據(jù),生產(chǎn)工具則是大數(shù)據(jù)技術(shù),是對信息時(shí)代所產(chǎn)生的海量數(shù)據(jù)的挖掘和分析,從而快速地獲取有價(jià)值信息的技術(shù)和應(yīng)用。
概括來講,大數(shù)據(jù)有三個(gè)特征,可總結(jié)歸納為“3v”,即量(volume)、類(variety)、時(shí)(velocity)。量,數(shù)據(jù)容量大,現(xiàn)在數(shù)據(jù)單位已經(jīng)躍升至zb級別。類,數(shù)據(jù)種類多,主要來自業(yè)務(wù)系統(tǒng),例如社交網(wǎng)絡(luò)、電子商務(wù)和物聯(lián)網(wǎng)應(yīng)用。時(shí),處理速度快,時(shí)效性要求高,從傳統(tǒng)的事務(wù)性數(shù)據(jù)到實(shí)時(shí)或準(zhǔn)實(shí)時(shí)數(shù)據(jù)。
數(shù)據(jù)挖掘,又稱為知識(shí)發(fā)現(xiàn)(knowledgediscovery),是通過分析每個(gè)數(shù)據(jù),從大量數(shù)據(jù)中尋找其規(guī)律的技術(shù)。知識(shí)發(fā)現(xiàn)過程通常由數(shù)據(jù)準(zhǔn)備、規(guī)律尋找和規(guī)律表示3個(gè)階段組成。數(shù)據(jù)準(zhǔn)備是從數(shù)據(jù)中心存儲(chǔ)的數(shù)據(jù)中選取所需數(shù)據(jù)并整合成用于數(shù)據(jù)挖掘的數(shù)據(jù)集;規(guī)律尋找是用某種方法將數(shù)據(jù)集所含規(guī)律找出來;規(guī)律表示則是盡可能以用戶可理解的方式(如可視化)將找出的規(guī)律表示出來。
“數(shù)據(jù)海量、信息缺乏”是相當(dāng)多企業(yè)在數(shù)據(jù)大集中之后面臨的尷尬問題。目前,大多數(shù)事物型數(shù)據(jù)庫僅實(shí)現(xiàn)了數(shù)據(jù)錄入、查詢和統(tǒng)計(jì)等較低層次的功能,無法發(fā)現(xiàn)數(shù)據(jù)中存在的有用信息,更無法進(jìn)一步通過數(shù)據(jù)分析發(fā)現(xiàn)更高的價(jià)值。如果能夠?qū)@些數(shù)據(jù)進(jìn)行分析,探尋其數(shù)據(jù)模式及特征,進(jìn)而發(fā)現(xiàn)某個(gè)客戶、群體或組織的興趣和行為規(guī)律,專業(yè)人員就可以預(yù)測到未來可能發(fā)生的變化趨勢。這樣的數(shù)據(jù)挖掘過程,將極大拓展企業(yè)核心競爭力。例如,在網(wǎng)上購物時(shí)遇到的提示“瀏覽了該商品的人還瀏覽了如下商品”,就是在對大量的購買者“行為軌跡”數(shù)據(jù)進(jìn)行記錄和挖掘分析的基礎(chǔ)上,捕捉總結(jié)購買者共性習(xí)慣行為,并針對性地利用每一次購買機(jī)會(huì)而推出的銷售策略。
隨著社會(huì)的進(jìn)步和信息通信技術(shù)的發(fā)展,信息系統(tǒng)在各行業(yè)、各領(lǐng)域快速拓展。這些系統(tǒng)采集、處理、積累的數(shù)據(jù)越來越多,數(shù)據(jù)量增速越來越快,以至用“海量、爆炸性增長”等詞匯已無法形容數(shù)據(jù)的增長速度。
2011年5月,全球知名咨詢公司麥肯錫全球研究院發(fā)布了一份題為《大數(shù)據(jù):創(chuàng)新、競爭和生產(chǎn)力的。下一個(gè)新領(lǐng)域》的報(bào)告。報(bào)告中指出,數(shù)據(jù)已經(jīng)滲透到每一個(gè)行業(yè)和業(yè)務(wù)職能領(lǐng)域,逐漸成為重要的生產(chǎn)因素;而人們對于大數(shù)據(jù)的運(yùn)用預(yù)示著新一波生產(chǎn)率增長和消費(fèi)者盈余浪潮的到來。2012年3月29日,美國政府在白宮網(wǎng)站上發(fā)布了《大數(shù)據(jù)研究和發(fā)展倡議》,表示將投資2億美元啟動(dòng)“大數(shù)據(jù)研究和發(fā)展計(jì)劃”,增強(qiáng)從大數(shù)據(jù)中分析萃取信息的能力。
在電力行業(yè),堅(jiān)強(qiáng)智能電網(wǎng)的迅速發(fā)展使信息通信技術(shù)正以前所未有的廣度、深度與電網(wǎng)生產(chǎn)、企業(yè)管理快速融合,信息通信系統(tǒng)已經(jīng)成為智能電網(wǎng)的“中樞神經(jīng)”,支撐新一代電網(wǎng)生產(chǎn)和管理發(fā)展。目前,國家電網(wǎng)公司已初步建成了國內(nèi)領(lǐng)先、國際一流的信息集成平臺(tái)。隨著三地集中式數(shù)據(jù)中心的陸續(xù)投運(yùn),一級部署業(yè)務(wù)應(yīng)用范圍的拓展,結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)中心的上線運(yùn)行,電網(wǎng)業(yè)務(wù)數(shù)據(jù)從總量和種類上都已初具規(guī)模。隨著后續(xù)智能電表的逐步普及,電網(wǎng)業(yè)務(wù)數(shù)據(jù)將從時(shí)效性層面進(jìn)一步豐富和拓展。大數(shù)據(jù)的“量類時(shí)”特性,已在海量、實(shí)時(shí)的電網(wǎng)業(yè)務(wù)數(shù)據(jù)中進(jìn)一步凸顯,電力大數(shù)據(jù)分析迫在眉睫。
當(dāng)前,電網(wǎng)業(yè)務(wù)數(shù)據(jù)大致分為三類:一是電力企業(yè)生產(chǎn)數(shù)據(jù),如發(fā)電量、電壓穩(wěn)定性等方面的數(shù)據(jù);二是電力企業(yè)運(yùn)營數(shù)據(jù),如交易電價(jià)、售電量、用電客戶等方面的數(shù)據(jù);三是電力企業(yè)管理數(shù)據(jù),如erp、一體化平臺(tái)、協(xié)同辦公等方面的數(shù)據(jù)。如能充分利用這些基于電網(wǎng)實(shí)際的數(shù)據(jù),對其進(jìn)行深入分析,便可以提供大量的高附加值服務(wù)。這些增值服務(wù)將有利于電網(wǎng)安全檢測與控制(包括大災(zāi)難預(yù)警與處理、供電與電力調(diào)度決策支持和更準(zhǔn)確的用電量預(yù)測),客戶用電行為分析與客戶細(xì)分,電力企業(yè)精細(xì)化運(yùn)營管理等等,實(shí)現(xiàn)更科學(xué)的需求側(cè)管理。
例如,在電力營銷環(huán)節(jié),針對“大營銷”體系建設(shè),以客戶和市場為導(dǎo)向,省級集中的95598客戶服務(wù)、計(jì)量檢定配送業(yè)務(wù)屬地化管理的營銷管理體系和24小時(shí)面向客戶的營銷服務(wù)系統(tǒng),可通過數(shù)據(jù)分析改善服務(wù)模式,提高營銷能力和服務(wù)質(zhì)量;以分析型數(shù)據(jù)為基礎(chǔ),優(yōu)化現(xiàn)有營銷組織模式,科學(xué)配置計(jì)量、收費(fèi)和服務(wù)資源,構(gòu)建營銷稽查數(shù)據(jù)監(jiān)控分析模型;建立各種針對營銷的系統(tǒng)性算法模型庫,發(fā)現(xiàn)數(shù)據(jù)中存在的隱藏關(guān)系,為各級決策者提供多維的、直觀的、全面的、深入的分析預(yù)測性數(shù)據(jù),進(jìn)而主動(dòng)把握市場動(dòng)態(tài),采取適當(dāng)?shù)臓I銷策略,獲得更大的企業(yè)效益,更好地服務(wù)于社會(huì)和經(jīng)濟(jì)發(fā)展。此外,還可以考慮在電力生產(chǎn)環(huán)節(jié),利用數(shù)據(jù)挖掘技術(shù),在線計(jì)算輸送功率極限,并考慮電壓等因素對功率極限的影響,從而合理設(shè)置系統(tǒng)輸出功率,有效平衡系統(tǒng)的安全性和經(jīng)濟(jì)性。
公司具備非常好的從數(shù)據(jù)運(yùn)維角度實(shí)現(xiàn)更大程度信息、知識(shí)發(fā)現(xiàn)的條件和基礎(chǔ),完全可以立足數(shù)據(jù)運(yùn)維服務(wù),創(chuàng)造數(shù)據(jù)增值價(jià)值,提供并衍生多種服務(wù)。以數(shù)據(jù)中心為紐帶,新型數(shù)據(jù)運(yùn)維的成果將有可能作為一種新的消費(fèi)形態(tài)與交付方式,給客戶帶來全新的使用體驗(yàn),打破傳統(tǒng)業(yè)務(wù)系統(tǒng)間各自為陣的局面,進(jìn)一步推動(dòng)電網(wǎng)生產(chǎn)和企業(yè)管理,從數(shù)據(jù)運(yùn)維角度對企業(yè)生產(chǎn)經(jīng)營、管理以及堅(jiān)強(qiáng)智能電網(wǎng)建設(shè)提供更有力、更長遠(yuǎn)、更深入的支撐。
這個(gè)問題太籠統(tǒng),基本上算法和應(yīng)用是兩個(gè)人來做的,可能是數(shù)據(jù)挖掘職位。做算法的比較少,也比較高級。
其實(shí)所謂做算法大多數(shù)時(shí)候都不是設(shè)計(jì)新的算法(這個(gè)可以寫論文了),更多的是技術(shù)選型,特征工程抽取,最多是實(shí)現(xiàn)一些已經(jīng)有論文但是還沒有開源模塊的算法等,還是要求扎實(shí)的算法和數(shù)據(jù)結(jié)構(gòu)功底,以及豐富的分布式計(jì)算的知識(shí)的,以及不錯(cuò)的英文閱讀和寫作能力。但即使是這樣也是百里挑一的,很難找到。
絕大讀書數(shù)據(jù)挖掘崗位都是做應(yīng)用,數(shù)據(jù)清洗,用現(xiàn)成的庫建模,如果你自己不往算法或者架構(gòu)方面繼續(xù)提升,和其他的開發(fā)崗位的性質(zhì)基本沒什么不同,只要會(huì)編程都是很容易入門的。
實(shí)際情況不太清楚,由于數(shù)據(jù)挖掘和大數(shù)據(jù)這個(gè)概念太火了,肯定到處都有人招聘響應(yīng)的崗位,但是二線城市可能僅僅是停留在概念上,很多實(shí)際的工作并沒有接觸到足夠大的數(shù)據(jù),都是生搬硬套框架(從我面試的人的工作經(jīng)驗(yàn)上看即使是在北上廣深這種情況也比較多見)。
只是在北上廣深,可能接觸到大數(shù)據(jù)的機(jī)會(huì)多一些。而且做數(shù)據(jù)挖掘現(xiàn)在熱點(diǎn)的技術(shù)比如python,spark,scala,r這些技術(shù)除了在一線城市之外基本上沒有足夠的市場(因?yàn)闀?huì)的人太少了,二線城市的公司找不到掌握這些技術(shù)的人,不招也沒人學(xué))。
所以我推測二線城市最多的還是用java+hadoop,或者用java寫一些spark程序。北上廣深和二線城市程序員比待遇是欺負(fù)人,就不討論了。
和傳統(tǒng)的前后端程序員相比,最主要的去別就是對編程水平的要求。從我招聘的情況來看,做數(shù)據(jù)挖掘的人編程水平要求可以降低一個(gè)檔次,甚至都不用掌握面向?qū)ο蟆?/p>
但是要求技術(shù)全面,編程、sql,linux,正則表達(dá)式,hadoop,spark,爬蟲,機(jī)器學(xué)習(xí)模型等技術(shù)都要掌握一些。前后端可能是要求精深,數(shù)據(jù)挖掘更強(qiáng)調(diào)廣博,有架構(gòu)能力更好。
打基礎(chǔ)是最重要的,學(xué)習(xí)一門數(shù)據(jù)挖掘常用的語言,比如python,scala,r;學(xué)習(xí)足夠的linux經(jīng)驗(yàn),能夠通過awk,grep等linux命令快速的處理文本文件。掌握sql,mysql或者postgresql都是比較常用的關(guān)系型數(shù)據(jù)庫,搞數(shù)據(jù)的別跟我說不會(huì)用數(shù)據(jù)庫。
補(bǔ)充的一些技能,比如nosql的使用,elasticsearch的使用,分詞(jieba等模塊的使用),算法的數(shù)據(jù)結(jié)構(gòu)的知識(shí)。
我覺得應(yīng)當(dāng)學(xué)習(xí),首先hadoop和hive很簡單(如果你用aws的話你可以開一臺(tái)emr,上面直接就有hadoop和hive,可以直接從使用學(xué)起)。
我覺得如果不折騰安裝和部署,還有l(wèi)inux和mysql的經(jīng)驗(yàn),只要半天到一天就能熟悉hadoop和hive的使用(當(dāng)然你得有l(wèi)inux和mysql的基礎(chǔ),如果沒有就先老老實(shí)實(shí)的學(xué)linux和mysql,這兩個(gè)都可以在自己的pc上安裝,自己折騰)。
spark對很多人來說才是需要學(xué)習(xí)的,如果你有java經(jīng)驗(yàn)大可以從java入門。如果沒有那么還是建議從scala入門,但是實(shí)際上如果沒有java經(jīng)驗(yàn),scala入門也會(huì)有一定難度,但是可以慢慢補(bǔ)。
所以總的來說spark才足夠難,以至于需要學(xué)習(xí)。
如果上面任何一個(gè)問題的答案是no,我都不建議直接轉(zhuǎn)行或者申請高級的數(shù)據(jù)挖掘職位(因?yàn)槟愫茈y找到一個(gè)正經(jīng)的數(shù)據(jù)挖掘崗位,頂多是一些打擦邊球的崗位,無論是實(shí)際干的工作還是未來的成長可能對你的幫助都不大)。
無論你現(xiàn)在是學(xué)生還是已經(jīng)再做一些前段后端、運(yùn)維之類的工作你都有足夠的時(shí)間補(bǔ)齊這些基礎(chǔ)知識(shí)。
補(bǔ)齊了這些知識(shí)之后,第一件事就是了解大數(shù)據(jù)生態(tài),hadoop生態(tài)圈,spark生態(tài)圈,機(jī)器學(xué)習(xí),深度學(xué)習(xí)(后兩者需要高等數(shù)學(xué)和線性代數(shù)基礎(chǔ),如果你的大學(xué)專業(yè)學(xué)這些不要混)。
數(shù)據(jù)挖掘論文篇十二
摘要:大數(shù)據(jù)和智游都是當(dāng)下的熱點(diǎn),沒有大數(shù)據(jù)的智游無從談“智慧”,數(shù)據(jù)挖掘是大數(shù)據(jù)應(yīng)用于智游的核心,文章探究了在智游應(yīng)用中,目前大數(shù)據(jù)挖掘存在的幾個(gè)問題。
隨著人民生活水平的進(jìn)一步提高,旅游消費(fèi)的需求進(jìn)一步上升,在云計(jì)算、互聯(lián)網(wǎng)、物聯(lián)網(wǎng)以及移動(dòng)智能終端等信息通訊技術(shù)的飛速發(fā)展下,智游應(yīng)運(yùn)而生。大數(shù)據(jù)作為當(dāng)下的熱點(diǎn)已經(jīng)成了智游發(fā)展的有力支撐,沒有大數(shù)據(jù)提供的有利信息,智游無法變得“智慧”。
旅游業(yè)是信息密、綜合性強(qiáng)、信息依存度高的產(chǎn)業(yè)[1],這讓其與大數(shù)據(jù)自然產(chǎn)生了交匯。2010年,江蘇省鎮(zhèn)江市首先提出“智游”的概念,雖然至今國內(nèi)外對于智游還沒有一個(gè)統(tǒng)一的學(xué)術(shù)定義,但在與大數(shù)據(jù)相關(guān)的描述中,有學(xué)者從大數(shù)據(jù)挖掘在智游中的作用出發(fā),把智游描述為:通過充分收集和管理所有類型和來源的旅游數(shù)據(jù),并深入挖掘這些數(shù)據(jù)的潛在重要價(jià)值信息,然后利用這些信息為相關(guān)部門或?qū)ο筇峁┓?wù)[2]。這一定義充分肯定了在發(fā)展智游中,大數(shù)據(jù)挖掘所起的至關(guān)重要的作用,指出了在智游的過程中,數(shù)據(jù)的收集、儲(chǔ)存、管理都是為數(shù)據(jù)挖掘服務(wù),智游最終所需要的是利用挖掘所得的有用信息。
2011年,我國提出用十年時(shí)間基本實(shí)現(xiàn)智游的目標(biāo)[3],過去幾年,國家旅游局的相關(guān)動(dòng)作均為了實(shí)現(xiàn)這一目標(biāo)。但是,在借助大數(shù)據(jù)推動(dòng)智游的可持續(xù)性發(fā)展中,大數(shù)據(jù)所產(chǎn)生的價(jià)值卻亟待提高,原因之一就是在收集、儲(chǔ)存了大量數(shù)據(jù)后,對它們深入挖掘不夠,沒有發(fā)掘出數(shù)據(jù)更多的價(jià)值。
智游的發(fā)展離不開移動(dòng)網(wǎng)絡(luò)、物聯(lián)網(wǎng)、云平臺(tái)。隨著大數(shù)據(jù)的不斷發(fā)展,國內(nèi)許多景區(qū)已經(jīng)實(shí)現(xiàn)wi-fi覆蓋,部分景區(qū)也已實(shí)現(xiàn)人與人、人與物、人與景點(diǎn)之間的實(shí)時(shí)互動(dòng),多省市已建有旅游產(chǎn)業(yè)監(jiān)測平臺(tái)或旅游大數(shù)據(jù)中心以及數(shù)據(jù)可視化平臺(tái),從中進(jìn)行數(shù)據(jù)統(tǒng)計(jì)、行為分析、監(jiān)控預(yù)警、服務(wù)質(zhì)量監(jiān)督等。通過這些平臺(tái),已基本能掌握跟游客和景點(diǎn)相關(guān)的數(shù)據(jù),可以實(shí)現(xiàn)更好旅游監(jiān)控、產(chǎn)業(yè)宏觀監(jiān)控,對該地的旅游管理和推廣都能發(fā)揮重要作用。
但從智慧化的發(fā)展來看,我國的信息化建設(shè)還需加強(qiáng)。雖然通訊網(wǎng)絡(luò)已基本能保證,但是大部分景區(qū)還無法實(shí)現(xiàn)對景區(qū)全面、透徹、及時(shí)的感知,更為困難的是對平臺(tái)的建設(shè)。在數(shù)據(jù)共享平臺(tái)的建設(shè)上,除了必備的硬件設(shè)施,大數(shù)據(jù)實(shí)驗(yàn)平臺(tái)還涉及大量部門,如政府管理部門、氣象部門、交通、電子商務(wù)、旅行社、旅游網(wǎng)站等。如此多的部門相關(guān)聯(lián),要想建立一個(gè)完整全面的大數(shù)據(jù)實(shí)驗(yàn)平臺(tái),難度可想而知。
大數(shù)據(jù)時(shí)代缺的不是數(shù)據(jù),而是方法。大數(shù)據(jù)在旅游行業(yè)的應(yīng)用前景非常廣闊,但是面對大量的數(shù)據(jù),不懂如何收集有用的數(shù)據(jù)、不懂如何對數(shù)據(jù)進(jìn)行挖掘和利用,那么“大數(shù)據(jù)”猶如礦山之中的廢石。旅游行業(yè)所涉及的結(jié)構(gòu)化與非結(jié)構(gòu)化數(shù)據(jù),通過云計(jì)算技術(shù),對數(shù)據(jù)的收集、存儲(chǔ)都較為容易,但對數(shù)據(jù)的挖掘分析則還在不斷探索中。大數(shù)據(jù)的挖掘常用的方法有關(guān)聯(lián)分析,相似度分析,距離分析,聚類分析等等,這些方法從不同的角度對數(shù)據(jù)進(jìn)行挖掘。其中,相關(guān)性分析方法通過關(guān)聯(lián)多個(gè)數(shù)據(jù)來源,挖掘數(shù)據(jù)價(jià)值。但針對旅游數(shù)據(jù),采用這些方法挖掘數(shù)據(jù)的價(jià)值信息,難度也很大,因?yàn)槁糜螖?shù)據(jù)中冗余數(shù)據(jù)很多,數(shù)據(jù)存在形式很復(fù)雜。在旅游非結(jié)構(gòu)化數(shù)據(jù)中,一張圖片、一個(gè)天氣變化、一次輿情評價(jià)等都將會(huì)對游客的旅行計(jì)劃帶來影響。對這些數(shù)據(jù)完全挖掘分析,對游客“行前、行中、行后”大數(shù)據(jù)的實(shí)時(shí)性挖掘都是很大的挑戰(zhàn)。
2017年,數(shù)據(jù)安全事件屢見不鮮,伴著大數(shù)據(jù)而來的數(shù)據(jù)安全問題日益凸顯出來。在大數(shù)據(jù)時(shí)代,無處不在的數(shù)據(jù)收集技術(shù)使我們的個(gè)人信息在所關(guān)聯(lián)的數(shù)據(jù)中心留下痕跡,如何保證這些信息被合法合理使用,讓數(shù)據(jù)“可用不可見”[4],這是亟待解決的問題。同時(shí),在大數(shù)據(jù)資源的開放性和共享性下,個(gè)人隱私和公民權(quán)益受到嚴(yán)重威脅。這一矛盾的存在使數(shù)據(jù)共享程度與數(shù)據(jù)挖掘程度成反比。此外,經(jīng)過大數(shù)據(jù)技術(shù)的分析、挖掘,個(gè)人隱私更易被發(fā)現(xiàn)和暴露,從而可能引發(fā)一系列社會(huì)問題。
大數(shù)據(jù)背景下的旅游數(shù)據(jù)當(dāng)然也避免不了數(shù)據(jù)的安全問題。如果游客“吃、住、行、游、娛、購”的數(shù)據(jù)被放入數(shù)據(jù)庫,被完全共享、挖掘、分析,那游客的人身財(cái)產(chǎn)安全將會(huì)受到嚴(yán)重影響,最終降低旅游體驗(yàn)。所以,數(shù)據(jù)的安全管理是進(jìn)行大數(shù)據(jù)挖掘的前提。
大數(shù)據(jù)背景下的智游離不開人才的創(chuàng)新活動(dòng)及技術(shù)支持,然而與專業(yè)相銜接的大數(shù)據(jù)人才培養(yǎng)未能及時(shí)跟上行業(yè)需求,加之創(chuàng)新型人才的外流,以及數(shù)據(jù)統(tǒng)計(jì)未來3~5年大數(shù)據(jù)行業(yè)將面臨全球性的人才荒,國內(nèi)智游的構(gòu)建還缺乏大量人才。
在信息化建設(shè)上,加大政府投入,加強(qiáng)基礎(chǔ)設(shè)施建設(shè),整合結(jié)構(gòu)化數(shù)據(jù),抓取非結(jié)構(gòu)化數(shù)據(jù),打通各數(shù)據(jù)壁壘,建設(shè)旅游大數(shù)據(jù)實(shí)驗(yàn)平臺(tái);在挖掘方法上,對旅游大數(shù)據(jù)實(shí)時(shí)性數(shù)據(jù)的挖掘應(yīng)該被放在重要位置;在數(shù)據(jù)安全上,從加強(qiáng)大數(shù)據(jù)安全立法、監(jiān)管執(zhí)法及強(qiáng)化技術(shù)手段建設(shè)等幾個(gè)方面著手,提升大數(shù)據(jù)環(huán)境下數(shù)據(jù)安全保護(hù)水平。加強(qiáng)人才的培養(yǎng)與引進(jìn),加強(qiáng)產(chǎn)學(xué)研合作,培養(yǎng)智游大數(shù)據(jù)人才。
參考文獻(xiàn)。
數(shù)據(jù)挖掘論文篇十三
數(shù)據(jù)挖掘的概念和應(yīng)用已經(jīng)滲透到社會(huì)生活和工業(yè)生產(chǎn)的各個(gè)領(lǐng)域。作為數(shù)據(jù)挖掘的實(shí)踐者,本人在讀數(shù)學(xué)專業(yè)的同時(shí),也興趣盎然地涉足了數(shù)據(jù)科學(xué)和機(jī)器學(xué)習(xí)領(lǐng)域。在一次數(shù)據(jù)挖掘課程中,我完成了一篇論文,能讓我對數(shù)據(jù)挖掘這個(gè)領(lǐng)域有更深入的認(rèn)識(shí)和體驗(yàn)。這篇論文讓我深入了解了數(shù)據(jù)挖掘的思路,技術(shù)和應(yīng)用,并且讓我體會(huì)到寫論文不僅僅是理論知識(shí),更需要實(shí)踐的動(dòng)手能力,思維的掌握能力,和成果演示的表達(dá)能力。在這篇心得體會(huì)中,我想分享我的經(jīng)驗(yàn),和大家一起探究數(shù)據(jù)挖掘的獨(dú)特之處。
第一段:學(xué)習(xí)數(shù)據(jù)挖掘的信念
數(shù)據(jù)挖掘作為一個(gè)復(fù)雜的技術(shù)領(lǐng)域,它的研究對象可以是已有的數(shù)據(jù)集合,經(jīng)修正的數(shù)據(jù)對象或者真實(shí)的數(shù)據(jù)。要想在這個(gè)領(lǐng)域獲得成功,首先需要有學(xué)習(xí)數(shù)據(jù)挖掘的信念。學(xué)習(xí)數(shù)據(jù)挖掘,不僅需要具有信息學(xué)、數(shù)學(xué)、統(tǒng)計(jì)、計(jì)算機(jī)等領(lǐng)域的基本素養(yǎng),還要具備探索、創(chuàng)新、思維、推理能力等本質(zhì)要素。當(dāng)我們深入學(xué)習(xí)數(shù)據(jù)挖掘技術(shù)時(shí),我們不僅需要明``確各項(xiàng)技術(shù)特征,還需要全面了解不同類型的數(shù)據(jù)分析流程。
第二段:學(xué)習(xí)數(shù)據(jù)挖掘的方法
一般來說,學(xué)習(xí)數(shù)據(jù)挖掘的方法包括:學(xué)習(xí)關(guān)于數(shù)據(jù)挖掘的各種知識(shí)點(diǎn)、探索分享“開源”資源、通過訓(xùn)練理論模型以及掌握不同實(shí)際應(yīng)用場景下的數(shù)據(jù)挖掘流程等。這些方法都非常必要,同時(shí)也大大豐富了我們的數(shù)據(jù)挖掘知識(shí)儲(chǔ)備。
第三段:論文的核心內(nèi)容
在畢業(yè)論文寫作之中,我寫了一篇關(guān)于“基于樹模型的數(shù)據(jù)挖掘方法研究與應(yīng)用”的論文。本文利用樹形神經(jīng)網(wǎng)絡(luò)模型,并通過對數(shù)據(jù)源進(jìn)行預(yù)處理和特征選擇,把語音呼叫數(shù)據(jù)與樣本數(shù)據(jù)進(jìn)行匹配,并提出了樹形神經(jīng)網(wǎng)絡(luò)模型的性能檢驗(yàn)。同時(shí),本文探討了該模型的實(shí)際應(yīng)用場景以及對未來語音識(shí)別的發(fā)展具有重要的參考價(jià)值。該論文的相關(guān)資料、數(shù)據(jù)等都經(jīng)過了極為詳盡的研究和討論。通過數(shù)據(jù)挖掘的方法,該論文配備有附錄和數(shù)據(jù)模型的詳細(xì)數(shù)據(jù)分析。
第四段:論文的收獲
通過這篇論文的寫作,我除了掌握數(shù)據(jù)挖掘的基本技能,如預(yù)處理、分析等,更重要的是鍛煉了自己的學(xué)習(xí)能力、團(tuán)隊(duì)溝通協(xié)作能力和美術(shù)設(shè)計(jì)等多方面的能力。通過論文的撰寫和演示,我更加深入地認(rèn)識(shí)了數(shù)據(jù)挖掘應(yīng)用的深度、挑戰(zhàn)和前景。
第五段:未來展望
在未來的學(xué)習(xí)和工作中,我希望能夠不斷強(qiáng)化自己數(shù)據(jù)挖掘領(lǐng)域方面的知識(shí)儲(chǔ)備,加速自身的魅力和資質(zhì)提升,成為引領(lǐng)行業(yè)的新一代人才,并在日后的實(shí)踐中不斷總結(jié)經(jīng)驗(yàn),挖掘新的理論問題,依托技術(shù)優(yōu)勢和網(wǎng)絡(luò)平臺(tái),推動(dòng)數(shù)據(jù)挖掘與科技創(chuàng)新的合理發(fā)展,并為行業(yè)的創(chuàng)新與發(fā)展做出重要的貢獻(xiàn)。
數(shù)據(jù)挖掘論文篇十四
摘要:大數(shù)據(jù)和智游都是當(dāng)下的熱點(diǎn),沒有大數(shù)據(jù)的智游無從談“智慧”,數(shù)據(jù)挖掘是大數(shù)據(jù)應(yīng)用于智游的核心,文章探究了在智游應(yīng)用中,目前大數(shù)據(jù)挖掘存在的幾個(gè)問題。
隨著人民生活水平的進(jìn)一步提高,旅游消費(fèi)的需求進(jìn)一步上升,在云計(jì)算、互聯(lián)網(wǎng)、物聯(lián)網(wǎng)以及移動(dòng)智能終端等信息通訊技術(shù)的飛速發(fā)展下,智游應(yīng)運(yùn)而生。大數(shù)據(jù)作為當(dāng)下的熱點(diǎn)已經(jīng)成了智游發(fā)展的有力支撐,沒有大數(shù)據(jù)提供的有利信息,智游無法變得“智慧”。
旅游業(yè)是信息密、綜合性強(qiáng)、信息依存度高的產(chǎn)業(yè)[1],這讓其與大數(shù)據(jù)自然產(chǎn)生了交匯。2010年,江蘇省鎮(zhèn)江市首先提出“智游”的概念,雖然至今國內(nèi)外對于智游還沒有一個(gè)統(tǒng)一的學(xué)術(shù)定義,但在與大數(shù)據(jù)相關(guān)的描述中,有學(xué)者從大數(shù)據(jù)挖掘在智游中的作用出發(fā),把智游描述為:通過充分收集和管理所有類型和來源的旅游數(shù)據(jù),并深入挖掘這些數(shù)據(jù)的潛在重要價(jià)值信息,然后利用這些信息為相關(guān)部門或?qū)ο筇峁┓?wù)[2]。這一定義充分肯定了在發(fā)展智游中,大數(shù)據(jù)挖掘所起的至關(guān)重要的作用,指出了在智游的過程中,數(shù)據(jù)的收集、儲(chǔ)存、管理都是為數(shù)據(jù)挖掘服務(wù),智游最終所需要的是利用挖掘所得的有用信息。
2011年,我國提出用十年時(shí)間基本實(shí)現(xiàn)智游的目標(biāo)[3],過去幾年,國家旅游局的相關(guān)動(dòng)作均為了實(shí)現(xiàn)這一目標(biāo)。但是,在借助大數(shù)據(jù)推動(dòng)智游的可持續(xù)性發(fā)展中,大數(shù)據(jù)所產(chǎn)生的價(jià)值卻亟待提高,原因之一就是在收集、儲(chǔ)存了大量數(shù)據(jù)后,對它們深入挖掘不夠,沒有發(fā)掘出數(shù)據(jù)更多的價(jià)值。
智游的發(fā)展離不開移動(dòng)網(wǎng)絡(luò)、物聯(lián)網(wǎng)、云平臺(tái)。隨著大數(shù)據(jù)的不斷發(fā)展,國內(nèi)許多景區(qū)已經(jīng)實(shí)現(xiàn)wi-fi覆蓋,部分景區(qū)也已實(shí)現(xiàn)人與人、人與物、人與景點(diǎn)之間的實(shí)時(shí)互動(dòng),多省市已建有旅游產(chǎn)業(yè)監(jiān)測平臺(tái)或旅游大數(shù)據(jù)中心以及數(shù)據(jù)可視化平臺(tái),從中進(jìn)行數(shù)據(jù)統(tǒng)計(jì)、行為分析、監(jiān)控預(yù)警、服務(wù)質(zhì)量監(jiān)督等。通過這些平臺(tái),已基本能掌握跟游客和景點(diǎn)相關(guān)的數(shù)據(jù),可以實(shí)現(xiàn)更好旅游監(jiān)控、產(chǎn)業(yè)宏觀監(jiān)控,對該地的旅游管理和推廣都能發(fā)揮重要作用。
但從智慧化的發(fā)展來看,我國的信息化建設(shè)還需加強(qiáng)。雖然通訊網(wǎng)絡(luò)已基本能保證,但是大部分景區(qū)還無法實(shí)現(xiàn)對景區(qū)全面、透徹、及時(shí)的感知,更為困難的是對平臺(tái)的建設(shè)。在數(shù)據(jù)共享平臺(tái)的建設(shè)上,除了必備的硬件設(shè)施,大數(shù)據(jù)實(shí)驗(yàn)平臺(tái)還涉及大量部門,如政府管理部門、氣象部門、交通、電子商務(wù)、旅行社、旅游網(wǎng)站等。如此多的部門相關(guān)聯(lián),要想建立一個(gè)完整全面的大數(shù)據(jù)實(shí)驗(yàn)平臺(tái),難度可想而知。
大數(shù)據(jù)時(shí)代缺的不是數(shù)據(jù),而是方法。大數(shù)據(jù)在旅游行業(yè)的應(yīng)用前景非常廣闊,但是面對大量的數(shù)據(jù),不懂如何收集有用的數(shù)據(jù)、不懂如何對數(shù)據(jù)進(jìn)行挖掘和利用,那么“大數(shù)據(jù)”猶如礦山之中的廢石。旅游行業(yè)所涉及的結(jié)構(gòu)化與非結(jié)構(gòu)化數(shù)據(jù),通過云計(jì)算技術(shù),對數(shù)據(jù)的收集、存儲(chǔ)都較為容易,但對數(shù)據(jù)的挖掘分析則還在不斷探索中。大數(shù)據(jù)的挖掘常用的方法有關(guān)聯(lián)分析,相似度分析,距離分析,聚類分析等等,這些方法從不同的角度對數(shù)據(jù)進(jìn)行挖掘。其中,相關(guān)性分析方法通過關(guān)聯(lián)多個(gè)數(shù)據(jù)來源,挖掘數(shù)據(jù)價(jià)值。但針對旅游數(shù)據(jù),采用這些方法挖掘數(shù)據(jù)的價(jià)值信息,難度也很大,因?yàn)槁糜螖?shù)據(jù)中冗余數(shù)據(jù)很多,數(shù)據(jù)存在形式很復(fù)雜。在旅游非結(jié)構(gòu)化數(shù)據(jù)中,一張圖片、一個(gè)天氣變化、一次輿情評價(jià)等都將會(huì)對游客的旅行計(jì)劃帶來影響。對這些數(shù)據(jù)完全挖掘分析,對游客“行前、行中、行后”大數(shù)據(jù)的實(shí)時(shí)性挖掘都是很大的挑戰(zhàn)。
2017年,數(shù)據(jù)安全事件屢見不鮮,伴著大數(shù)據(jù)而來的數(shù)據(jù)安全問題日益凸顯出來。在大數(shù)據(jù)時(shí)代,無處不在的數(shù)據(jù)收集技術(shù)使我們的個(gè)人信息在所關(guān)聯(lián)的數(shù)據(jù)中心留下痕跡,如何保證這些信息被合法合理使用,讓數(shù)據(jù)“可用不可見”[4],這是亟待解決的問題。同時(shí),在大數(shù)據(jù)資源的開放性和共享性下,個(gè)人隱私和公民權(quán)益受到嚴(yán)重威脅。這一矛盾的存在使數(shù)據(jù)共享程度與數(shù)據(jù)挖掘程度成反比。此外,經(jīng)過大數(shù)據(jù)技術(shù)的分析、挖掘,個(gè)人隱私更易被發(fā)現(xiàn)和暴露,從而可能引發(fā)一系列社會(huì)問題。
大數(shù)據(jù)背景下的旅游數(shù)據(jù)當(dāng)然也避免不了數(shù)據(jù)的安全問題。如果游客“吃、住、行、游、娛、購”的數(shù)據(jù)被放入數(shù)據(jù)庫,被完全共享、挖掘、分析,那游客的人身財(cái)產(chǎn)安全將會(huì)受到嚴(yán)重影響,最終降低旅游體驗(yàn)。所以,數(shù)據(jù)的安全管理是進(jìn)行大數(shù)據(jù)挖掘的前提。
大數(shù)據(jù)背景下的智游離不開人才的創(chuàng)新活動(dòng)及技術(shù)支持,然而與專業(yè)相銜接的大數(shù)據(jù)人才培養(yǎng)未能及時(shí)跟上行業(yè)需求,加之創(chuàng)新型人才的外流,以及數(shù)據(jù)統(tǒng)計(jì)未來3~5年大數(shù)據(jù)行業(yè)將面臨全球性的人才荒,國內(nèi)智游的構(gòu)建還缺乏大量人才。
在信息化建設(shè)上,加大政府投入,加強(qiáng)基礎(chǔ)設(shè)施建設(shè),整合結(jié)構(gòu)化數(shù)據(jù),抓取非結(jié)構(gòu)化數(shù)據(jù),打通各數(shù)據(jù)壁壘,建設(shè)旅游大數(shù)據(jù)實(shí)驗(yàn)平臺(tái);在挖掘方法上,對旅游大數(shù)據(jù)實(shí)時(shí)性數(shù)據(jù)的挖掘應(yīng)該被放在重要位置;在數(shù)據(jù)安全上,從加強(qiáng)大數(shù)據(jù)安全立法、監(jiān)管執(zhí)法及強(qiáng)化技術(shù)手段建設(shè)等幾個(gè)方面著手,提升大數(shù)據(jù)環(huán)境下數(shù)據(jù)安全保護(hù)水平。加強(qiáng)人才的培養(yǎng)與引進(jìn),加強(qiáng)產(chǎn)學(xué)研合作,培養(yǎng)智游大數(shù)據(jù)人才。
參考文獻(xiàn)。
數(shù)據(jù)挖掘論文篇十五
發(fā)現(xiàn)的是用戶感興趣的知識(shí);發(fā)現(xiàn)的知識(shí)應(yīng)當(dāng)能夠被接受、理解和運(yùn)用。也就是發(fā)現(xiàn)全部相對的知識(shí),是具有特定前提與條件,面向既定領(lǐng)域的,同時(shí)還容易被用戶接受。數(shù)據(jù)挖掘?qū)儆谝环N新型的商業(yè)信息處理技術(shù),其特點(diǎn)為抽取、轉(zhuǎn)化、分析商業(yè)數(shù)據(jù)庫中的大規(guī)模業(yè)務(wù)數(shù)據(jù),從中獲得有價(jià)值的商業(yè)數(shù)據(jù)。簡單來說,其實(shí)數(shù)據(jù)挖掘是一種對數(shù)據(jù)進(jìn)行深入分析的方法。因此,可以描述數(shù)據(jù)挖掘?yàn)椋焊鶕?jù)企業(yè)設(shè)定的工作目標(biāo),探索與分析企業(yè)大量數(shù)據(jù),充分揭示隱藏的、未知的規(guī)律性,并且將其轉(zhuǎn)變?yōu)榭茖W(xué)的方法。數(shù)據(jù)挖掘發(fā)現(xiàn)的最常見知識(shí)包括:
1.1.1廣義知識(shí)體現(xiàn)相同事物共同性質(zhì)的知識(shí),是指類別特點(diǎn)的概括描述知識(shí)。按照數(shù)據(jù)的微觀特點(diǎn)對其表征的、具有普遍性的、極高概念層次的知識(shí)積極發(fā)現(xiàn),是對數(shù)據(jù)的高度精煉與抽象。發(fā)現(xiàn)廣義知識(shí)的方法與技術(shù)有很多,例如數(shù)據(jù)立方體和歸約等。
1.1.2關(guān)聯(lián)知識(shí)體現(xiàn)一個(gè)事件與其他事件之間形成的關(guān)聯(lián)知識(shí)。假如兩項(xiàng)或者更多項(xiàng)之間形成關(guān)聯(lián),則其中一項(xiàng)的屬性數(shù)值就能夠借助其他屬性數(shù)值實(shí)行預(yù)測。
1.1.3分類知識(shí)體現(xiàn)相同事物共同特點(diǎn)的屬性知識(shí)與不同事物之間差異特點(diǎn)知識(shí)。
1.2.1明確業(yè)務(wù)對象對業(yè)務(wù)問題清楚定義,了解數(shù)據(jù)挖掘的第一步是數(shù)據(jù)挖掘目的。挖掘結(jié)果是無法預(yù)測的,但是研究的問題是可預(yù)見的,僅為了數(shù)據(jù)挖掘而數(shù)據(jù)挖掘一般會(huì)體現(xiàn)出盲目性,通常也不會(huì)獲得成功?;谟脩籼卣鞯碾娮由虅?wù)數(shù)據(jù)挖掘研究劉芬(惠州商貿(mào)旅游高級職業(yè)技術(shù)學(xué)校,廣東惠州516025)摘要:隨著互聯(lián)網(wǎng)的出現(xiàn),全球范圍內(nèi)電子商務(wù)正在迅速普及與發(fā)展,在這樣的環(huán)境下,電子商務(wù)數(shù)據(jù)挖掘技術(shù)應(yīng)運(yùn)而生。電子商務(wù)數(shù)據(jù)挖掘技術(shù)是近幾年來數(shù)據(jù)挖掘領(lǐng)域中的研究熱點(diǎn),基于用戶特征的電子商務(wù)數(shù)據(jù)挖掘技術(shù)研究將會(huì)解決大量現(xiàn)實(shí)問題,為企業(yè)確定目標(biāo)市場、完善決策、獲得最大競爭優(yōu)勢,其應(yīng)用前景廣闊,促使電子商務(wù)企業(yè)更具有競爭力。主要分析了電子商務(wù)內(nèi)容、數(shù)據(jù)挖掘技術(shù)和過程、用戶細(xì)分理論,以及基于用戶特征的電子商務(wù)數(shù)據(jù)挖掘。
1.2.2數(shù)據(jù)準(zhǔn)備第一選擇數(shù)據(jù):是按照用戶的挖掘目標(biāo),對全部業(yè)務(wù)內(nèi)外部數(shù)據(jù)信息積極搜索,從數(shù)據(jù)源中獲取和挖掘有關(guān)數(shù)據(jù)。第二預(yù)處理數(shù)據(jù):加工選取的數(shù)據(jù),具體對數(shù)據(jù)的完整性和一致性積極檢查,并且處理數(shù)據(jù)中的噪音,找出計(jì)算機(jī)丟失的數(shù)據(jù),清除重復(fù)記錄,轉(zhuǎn)化數(shù)據(jù)類型等。假如數(shù)據(jù)倉庫是數(shù)據(jù)挖掘的對象,則在產(chǎn)生數(shù)據(jù)庫過程中已經(jīng)形成了數(shù)據(jù)預(yù)處理。
1.2.3變換數(shù)據(jù)轉(zhuǎn)換數(shù)據(jù)為一個(gè)分析模型。這一分析模型是相對于挖掘算法構(gòu)建的。構(gòu)建一個(gè)與挖掘算法適合的分析模型是數(shù)據(jù)挖掘獲得成功的重點(diǎn)??梢岳猛队皵?shù)據(jù)庫的相關(guān)操作對數(shù)據(jù)維度有效降低,進(jìn)一步減少數(shù)據(jù)挖掘過程中數(shù)據(jù)量,提升挖掘算法效率。
1.2.4挖掘數(shù)據(jù)挖掘獲得的經(jīng)濟(jì)轉(zhuǎn)化的數(shù)據(jù)。除了對選擇科學(xué)挖掘算法積極完善之外,其余全部工作都自行完成。整體挖掘過程都是相互的,也就是用戶對某些挖掘參數(shù)能夠積極控制。
1.2.5評價(jià)挖掘結(jié)果這個(gè)過程劃分為兩個(gè)步驟:表達(dá)結(jié)果和評價(jià)結(jié)果。第一表達(dá)結(jié)果:用戶能夠理解數(shù)據(jù)挖掘得到的模式,可以通過可視化數(shù)據(jù)促使用戶對挖掘結(jié)果積極理解。第二評價(jià)結(jié)果:用戶與機(jī)器對數(shù)據(jù)挖掘獲得的模式有效評價(jià),對冗余或者無關(guān)的模式及時(shí)刪除。假如用戶不滿意挖掘模式,可以重新挑選數(shù)據(jù)和挖掘算法對挖掘過程科學(xué)執(zhí)行,直到獲得用戶滿意為止。
用戶細(xì)分是指按照不同用戶的屬性劃分用戶集合。目前學(xué)術(shù)界和企業(yè)界一般接受的是基于用戶價(jià)值的細(xì)分理論,其不僅包含了用戶為企業(yè)貢獻(xiàn)歷史利潤,還包含未來利潤,也就是在未來用戶為企業(yè)可能帶來的利潤總和?;谟脩魞r(jià)值的細(xì)分理論選擇客戶當(dāng)前價(jià)值與客戶潛在價(jià)值兩個(gè)因素評價(jià)用戶。用戶當(dāng)前價(jià)值是指截止到目前用戶對企業(yè)貢獻(xiàn)的總體價(jià)值;用戶潛在價(jià)值是指未來用戶可能為企業(yè)創(chuàng)造的價(jià)值總和。每個(gè)因素還能夠劃分為兩個(gè)高低檔次,進(jìn)一步產(chǎn)生一個(gè)二維的矩陣,把用戶劃分為4組,價(jià)值用戶、次價(jià)值用戶、潛在價(jià)值用戶、低價(jià)值用戶。企業(yè)在推廣過程中根據(jù)不同用戶應(yīng)當(dāng)形成對應(yīng)的方法,投入不同的資源。很明顯對于企業(yè)來說價(jià)值用戶最重要,被認(rèn)為是企業(yè)的玉質(zhì)用戶;其次是次價(jià)值用戶,被認(rèn)為是金質(zhì)用戶,雖然數(shù)量有限,卻為企業(yè)創(chuàng)造了絕大部分的利潤;其他則是低價(jià)值用戶,對企業(yè)來說價(jià)值最小,成為鉛質(zhì)用戶,另外一類則是潛在價(jià)值用戶。雖然這兩類用戶擁有較多的數(shù)量,但是為企業(yè)創(chuàng)造的價(jià)值有限,甚至很小。需要我們注意的是潛在價(jià)值用戶利用再造用戶關(guān)系,將來極有可能變成價(jià)值用戶。從長期分析,潛在價(jià)值用戶可以是企業(yè)的隱形財(cái)富,是企業(yè)獲得利潤的基礎(chǔ)。將采用數(shù)據(jù)挖掘方法對這4類用戶特點(diǎn)有效挖掘。
3.1設(shè)計(jì)問卷。
研究的關(guān)鍵是電子商務(wù)用戶特征的數(shù)據(jù)挖掘,具體包含了價(jià)值用戶特征、次價(jià)值用戶特征、潛在價(jià)值用戶特征,對電子商務(wù)用戶的認(rèn)知度、用戶的需求度分析。問卷內(nèi)容包括3部分:其一是為被調(diào)查者介紹電子商務(wù)的概念與背景;其二是具體調(diào)查被調(diào)查對象的個(gè)人信息,包含了性別、年齡、學(xué)歷、感情情況、職業(yè)、工作、生活地點(diǎn)、收入、上網(wǎng)購物經(jīng)歷;其三是問卷主要部分,是對用戶對電子商務(wù)的了解、需求、使用情況的指標(biāo)設(shè)計(jì)。
3.2調(diào)查方式。
本次調(diào)查的問卷主體是電腦上網(wǎng)的人群,采用隨機(jī)抽象的方式進(jìn)行網(wǎng)上訪問。一方面采用大眾聊天工具,利用電子郵件和留言的方式發(fā)放問卷,另一方面在大眾論壇上邀請其填寫問卷。
(1)選擇數(shù)據(jù)挖掘的算法利用clementine數(shù)據(jù)挖掘軟件,采用c5.o算法挖掘預(yù)處理之后數(shù)據(jù)。
(2)用戶數(shù)據(jù)分析。
1)電子商務(wù)用戶認(rèn)知度分析按照調(diào)查問卷的問題“您知道電子商務(wù)嗎?”得到對電子商務(wù)用戶認(rèn)知情況的統(tǒng)計(jì),十分了解20.4%,了解30.1%,聽過但不了解具體使用方法40.3%,從未聽過8.9%。很多人僅聽過電子商務(wù),但是并不清楚具體的功能與應(yīng)用方法,甚至有一小部分人沒有聽過電子商務(wù)。對調(diào)查問卷問題“您聽過電子商務(wù)的渠道是什么?”,大部分用戶是利用網(wǎng)了解電子商務(wù)的,占40.2%;僅有76人是利用紙質(zhì)報(bào)刊雜志上知道電子商務(wù)的并且對其進(jìn)行應(yīng)用;這也表明相較于網(wǎng)絡(luò)宣傳紙質(zhì)媒體推廣電子商務(wù)的方法缺乏有效性。
2)電子商務(wù)用戶需求用戶希求具體是指使用產(chǎn)品服務(wù)人員對應(yīng)用產(chǎn)品或服務(wù)形成的需求或者期望。按照問題“假如你曾經(jīng)使用電子商務(wù),你覺得其用途怎樣,假如沒有使用過,你覺得其對自己有用嗎?”得到了認(rèn)為需要和十分需要的數(shù)據(jù),覺得電子商務(wù)有用的用戶為40.7%,不清楚是否對自己有用的用戶為56.7%,認(rèn)為不需要的僅有2.4%。
3)電子商務(wù)用戶應(yīng)用意愿應(yīng)用意愿是指消費(fèi)者對某一產(chǎn)品服務(wù)進(jìn)行應(yīng)用或者購買的一種心理欲望。按照問題“假如可以滿足你所關(guān)心的因素,未來你會(huì)繼續(xù)應(yīng)用電子商務(wù)嗎?”獲得的數(shù)據(jù)可知,在滿足各種因素時(shí),將來一年之內(nèi)會(huì)應(yīng)用電子商務(wù)的用戶為78.2%,一定不會(huì)應(yīng)用電子商務(wù)的用戶為1.4%。表明用戶形成了較為強(qiáng)烈的應(yīng)用電子商務(wù)欲望,電子商務(wù)發(fā)展前景很好?;谟脩籼卣鞯碾娮由虅?wù)數(shù)據(jù)研究,電子商務(wù)企業(yè)通過這一結(jié)果能夠更好地實(shí)行營銷和推廣,對潛在用戶積極定位,提高用戶體驗(yàn),積極挖掘用戶價(jià)值。分析為企業(yè)準(zhǔn)確營銷和推廣企業(yè)提供了一個(gè)有效的借鑒。
互聯(lián)網(wǎng)中數(shù)據(jù)是最寶貴的資源之一,大量數(shù)據(jù)中包含了很大的潛在價(jià)值,對這些數(shù)據(jù)深入挖掘?qū)ヂ?lián)網(wǎng)商務(wù)、企業(yè)推廣、傳播信息發(fā)揮了巨大的作用。近些年來,數(shù)據(jù)挖掘技術(shù)獲得了信息產(chǎn)業(yè)的極大重視,具體原因是出現(xiàn)了大量的數(shù)據(jù),能夠廣泛應(yīng)用,并且需要轉(zhuǎn)化數(shù)據(jù)成為有價(jià)值的信息知識(shí)。通過基于用戶特征的電子商務(wù)數(shù)據(jù)挖掘研究,促使電子商務(wù)獲得巨大發(fā)展機(jī)會(huì),發(fā)現(xiàn)潛在用戶,促使電子商務(wù)企業(yè)精準(zhǔn)營銷。
數(shù)據(jù)挖掘論文篇十六
:隨著科學(xué)技術(shù)的不斷發(fā)展,數(shù)據(jù)挖掘技術(shù)也應(yīng)運(yùn)而生。為了高效有序的醫(yī)療信息管理,需要加強(qiáng)數(shù)據(jù)挖掘技術(shù)在醫(yī)療信息管理中的實(shí)際應(yīng)用,從而提升醫(yī)院的管理水平,為醫(yī)院的管理工作及資源的合理配置提供多樣化發(fā)展的可能性。筆者將針對數(shù)據(jù)挖掘技術(shù)在醫(yī)療信息管理中的應(yīng)用這一課題進(jìn)行相應(yīng)的探究,從而提出合理的改進(jìn)建議。
:挖掘技術(shù);醫(yī)療信息管理;應(yīng)用方式。
數(shù)據(jù)挖掘作為一種數(shù)據(jù)信息再利用的有效技術(shù),能夠有效地為醫(yī)院的管理決策提供重要信息。它以數(shù)據(jù)庫、人工智能以及數(shù)理統(tǒng)計(jì)為主要技術(shù)支柱進(jìn)行技術(shù)管理與決策。而在醫(yī)療信息管理過程之中應(yīng)用數(shù)據(jù)挖掘技術(shù)能夠較好地針對醫(yī)療衛(wèi)生信息進(jìn)行整理與歸類來建立管理模型,形成有效的總結(jié)數(shù)據(jù)的同時(shí)能夠?yàn)獒t(yī)療工作的高效進(jìn)行提供有價(jià)值的信息。所以筆者將以數(shù)據(jù)挖掘技術(shù)在醫(yī)療信息管理中的應(yīng)用為著手點(diǎn),從而針對其應(yīng)用現(xiàn)狀進(jìn)行探究,以此提出加強(qiáng)數(shù)據(jù)挖掘技術(shù)在醫(yī)療信息管理中應(yīng)用的具體措施,希望能夠在理論層面上推動(dòng)醫(yī)療信息管理工作的飛躍。
數(shù)據(jù)挖掘是結(jié)合信息收集技術(shù)、人工智能處理技術(shù)以及分析檢測技術(shù)等所形成的功能強(qiáng)大的技術(shù)。它能夠?qū)崿F(xiàn)對于數(shù)據(jù)的收集、問題的定義與處理,并且能夠較好地對于結(jié)果進(jìn)行解釋與評估。在醫(yī)療信息管理工作進(jìn)行的過程之中,應(yīng)用數(shù)據(jù)挖掘技術(shù)可以較好地加強(qiáng)醫(yī)療信息數(shù)據(jù)模型的建立,同時(shí)以多種形式出現(xiàn),例如文字信息、基本信號信息、圖像收集等,也能夠用來進(jìn)行醫(yī)療信息的科普與宣傳。并且,數(shù)據(jù)挖掘技術(shù)在醫(yī)療信息中所體現(xiàn)出的應(yīng)用方式有所不同,在數(shù)據(jù)挖掘技術(shù)應(yīng)用過程之中,既可以針對同一類的實(shí)物反應(yīng)出共同性質(zhì)的基本特征,同時(shí)也能夠根據(jù)具有一定關(guān)聯(lián)性的事物信息來探究差異。這些功能不僅僅能夠在醫(yī)療信息的管理層面上給予醫(yī)療人員較大的信息管理指導(dǎo),同時(shí)在實(shí)際的醫(yī)療診斷過程之中,也可以向醫(yī)生提供患者的患病信息,并且輔助治療的進(jìn)行[1]。所以,在醫(yī)療信息管理中應(yīng)用數(shù)據(jù)挖掘技術(shù)不僅僅能夠推動(dòng)醫(yī)療信息管理水平的提升,也是醫(yī)院實(shí)現(xiàn)現(xiàn)代化、信息化建設(shè)的重要體現(xiàn),需要從根本上明確醫(yī)療信息管理應(yīng)用數(shù)據(jù)挖掘技術(shù)的必要性與基本內(nèi)涵,從而針對醫(yī)院的管理現(xiàn)狀實(shí)現(xiàn)其管理方式與技術(shù)應(yīng)用的轉(zhuǎn)變與優(yōu)化。
2.1實(shí)現(xiàn)建模環(huán)節(jié)以及數(shù)據(jù)收集環(huán)節(jié)的優(yōu)化。
在應(yīng)用數(shù)據(jù)挖掘技術(shù)的過程之中,必須基于數(shù)據(jù)庫信息的基礎(chǔ)之上,其數(shù)據(jù)挖掘技術(shù)才能夠進(jìn)行相應(yīng)的規(guī)律探究與信息分析,所以需要在源頭處加強(qiáng)數(shù)據(jù)收集環(huán)節(jié)以及建模環(huán)節(jié)的優(yōu)化。以醫(yī)院中醫(yī)部門為例,在對于中醫(yī)處方經(jīng)驗(yàn)的挖掘方法使用過程之中,需要針對不同的藥物進(jìn)行關(guān)聯(lián)性建模,比如數(shù)據(jù)庫中有基礎(chǔ)性藥物,針對藥物進(jìn)行頻數(shù)和次數(shù)的統(tǒng)計(jì),然后以此類推,將所有藥物都按照出現(xiàn)的頻數(shù)進(jìn)行降數(shù)排列,從而探究參考價(jià)值。建模環(huán)節(jié)以及數(shù)據(jù)收集環(huán)節(jié)是醫(yī)療信息管理過程的根本,所以需要做好對于建模環(huán)節(jié)以及數(shù)據(jù)收集環(huán)節(jié)的優(yōu)化,才能夠?yàn)閿?shù)據(jù)挖掘技術(shù)的應(yīng)用奠定相應(yīng)的基礎(chǔ)[2]。
想要在醫(yī)療信息管理過程之中,加強(qiáng)對于數(shù)據(jù)挖掘技術(shù)的有效應(yīng)用,就需要從數(shù)據(jù)挖掘技術(shù)應(yīng)用類別處進(jìn)行著手,從而提升技術(shù)應(yīng)用的針對性與有效性。常見的技術(shù)應(yīng)用類別有:醫(yī)院資源配置方面、病患區(qū)域管理方面、醫(yī)療衛(wèi)生質(zhì)量管理方面、醫(yī)療急診管理方面、醫(yī)院經(jīng)濟(jì)管理方面以及醫(yī)療衛(wèi)生常見病宣傳方面等,數(shù)據(jù)挖掘技術(shù)都可以在這些類別之中實(shí)現(xiàn)應(yīng)用,但是在應(yīng)用的過程之中也有所不同。以病房區(qū)域管理為例,在應(yīng)用數(shù)據(jù)挖掘技術(shù)之前,首先需要明確不同的科室狀況以及病房區(qū)域分配狀況等,加強(qiáng)病患區(qū)域的指標(biāo)分析,因?yàn)椴》抗芾聿粌H僅影響到科室的工作效率與工作效果,同時(shí)也是醫(yī)療物資分配與人員編制的主要參考標(biāo)準(zhǔn)。其次利用數(shù)據(jù)挖掘技術(shù)能夠較好地實(shí)現(xiàn)不同科室工作效率、質(zhì)量管理質(zhì)量以及經(jīng)濟(jì)收益等多種指標(biāo)的評估,建立其科室的運(yùn)營模型,從而實(shí)現(xiàn)科室的又好又快發(fā)展。比如使用數(shù)據(jù)挖掘技術(shù)建立其病區(qū)管理的標(biāo)準(zhǔn)模型以及統(tǒng)計(jì)指標(biāo),從而計(jì)算出科室動(dòng)態(tài)的工作模型以及病床動(dòng)態(tài)的周轉(zhuǎn)次數(shù)等[3]。另外在醫(yī)療質(zhì)量管理過程之中,數(shù)據(jù)挖掘技術(shù)提供的不僅僅是資料數(shù)據(jù)的參考以及疾病的診斷,也能夠針對臨床的治療效果進(jìn)行分析與評價(jià),并且能夠預(yù)測治療狀況:可以利用醫(yī)院的醫(yī)療數(shù)據(jù)庫,對于病人的基本患病信息進(jìn)行分類,從而比對死亡率、治愈率等多個(gè)數(shù)據(jù),實(shí)現(xiàn)治療方案的制訂。而在醫(yī)療質(zhì)量管理過程之中也有很多的影響因素,例如基礎(chǔ)醫(yī)療設(shè)備、病床周轉(zhuǎn)次數(shù)、病種治愈記錄等,所以也可以利用數(shù)據(jù)挖掘技術(shù)來進(jìn)一步加強(qiáng)其多種數(shù)據(jù)之間的關(guān)聯(lián)性,從而為提升醫(yī)院的社會(huì)效益與經(jīng)濟(jì)效益提出合理的參考性建議。
醫(yī)院加強(qiáng)數(shù)據(jù)挖掘技術(shù)應(yīng)用方向的探索上,可以從客戶拓展這個(gè)角度出發(fā)實(shí)現(xiàn)對于醫(yī)療信息管理。例如通過數(shù)據(jù)挖掘技術(shù)多方進(jìn)行患者信息比對,同時(shí)制訂完善的醫(yī)療服務(wù)影響策略方式,加強(qiáng)對于客戶行為的分析;在數(shù)據(jù)挖掘的基礎(chǔ)之上,增強(qiáng)其技術(shù)應(yīng)用的實(shí)用性,在分析的基礎(chǔ)之上比對自身的競爭優(yōu)勢,實(shí)現(xiàn)醫(yī)院資源的合理規(guī)劃與合理配置,例如藥品、資金以及疾病診斷等,從而實(shí)現(xiàn)經(jīng)營狀況的優(yōu)化。目前醫(yī)院也逐步向現(xiàn)代化、信息化方向發(fā)展,無論是信息管理還是醫(yī)療技術(shù)方面,醫(yī)院都已經(jīng)成為了一個(gè)信息化的綜合行業(yè)體系,所以在加強(qiáng)數(shù)據(jù)挖掘應(yīng)用的過程之中,還需要加強(qiáng)數(shù)據(jù)信息的管理,實(shí)現(xiàn)數(shù)據(jù)挖掘結(jié)果的維護(hù),從而提升醫(yī)院的決策能力,實(shí)現(xiàn)數(shù)據(jù)挖掘技術(shù)的高效應(yīng)用。
醫(yī)院在目前的醫(yī)療信息管理過程之中,還有很大的發(fā)展空間,需要綜合利用數(shù)據(jù)挖掘技術(shù),實(shí)現(xiàn)其信息管理水平的提升。通過明確數(shù)據(jù)挖掘技術(shù)的應(yīng)用方向、應(yīng)用類別以及建模數(shù)據(jù)環(huán)節(jié)的優(yōu)化等,促進(jìn)醫(yī)院管理水平的提升,實(shí)現(xiàn)數(shù)據(jù)挖掘技術(shù)應(yīng)用效果的提升。
[2]廖亮。數(shù)據(jù)挖掘技術(shù)在醫(yī)療信息管理中的應(yīng)用[j].中國科技信息,20xx(11):54,56.
數(shù)據(jù)挖掘論文篇十七
由于信息技術(shù)的迅速發(fā)展,現(xiàn)代的檔案管理模式與過去相比,也有了很大的變化,也讓如今的檔案管理模式有了新的挑戰(zhàn)。讓人們對信息即時(shí)、大量地獲取是目前檔案管理工作和檔案管理系統(tǒng)急切需要解決的問題。
(一)數(shù)據(jù)挖掘技術(shù)。數(shù)據(jù)挖掘是指從大量的、不規(guī)則、亂序的數(shù)據(jù)中,進(jìn)行分析歸納,得到隱藏的,未知的,但同時(shí)又含有較大價(jià)值的信息和知識(shí)。它主要對確定目標(biāo)的有關(guān)信息,使用自動(dòng)化和統(tǒng)計(jì)學(xué)等方法對信息進(jìn)行預(yù)測、偏差分析和關(guān)聯(lián)分析等,從而得到合理的結(jié)論。在檔案管理中使用數(shù)據(jù)挖掘技術(shù),能夠充分地發(fā)揮檔案管理的作用,從而達(dá)到良好的檔案管理工作效果。(二)數(shù)據(jù)挖掘技術(shù)分析。數(shù)據(jù)挖掘技術(shù)分析的方法是多種多樣的,其主要方法有以下幾種:1.關(guān)聯(lián)分析。指從已經(jīng)知道的信息數(shù)據(jù)中,找到多次展現(xiàn)的信息數(shù)據(jù),由信息的說明特征,從而得到具有相同屬性的事物特征。2.分類分析。利用信息數(shù)據(jù)的特征,歸納總結(jié)相關(guān)信息數(shù)據(jù)的數(shù)據(jù)庫,建立所需要的數(shù)據(jù)模型,從而來識(shí)別一些未知的信息數(shù)據(jù)。3.聚類分析。通過在確定的數(shù)據(jù)中,找尋信息的價(jià)值聯(lián)系,得到相應(yīng)的管理方案。4.序列分析。通過分析信息的前后因果關(guān)系,從而判斷信息之間可能出現(xiàn)的聯(lián)系。
在進(jìn)行現(xiàn)代檔案信息處理時(shí),傳統(tǒng)的檔案管理方法已經(jīng)不能滿足其管理的要求,數(shù)據(jù)挖掘技術(shù)在這方面確有著顯著的優(yōu)勢。首先,檔案是較為重要的信息記錄,甚至有些檔案的重要性大到無價(jià),因此對于此類的珍貴檔案,相關(guān)的檔案管理人員也是希望檔案本身及其價(jià)值一直保持下去。不過越是珍貴的檔案,其使用率自然也就越高,所以其安全性就很難得到保障,在檔案管理中運(yùn)用數(shù)據(jù)挖掘技術(shù),可以讓檔案的信息數(shù)據(jù)得到分析統(tǒng)計(jì),歸納總結(jié),不必次次實(shí)物查閱,這樣就極大地提升了檔案相關(guān)內(nèi)容的安全性,降低檔案的磨損率。并且可以對私密檔案進(jìn)行加密,進(jìn)行授權(quán)查閱,進(jìn)一步提高檔案信息的安全性。其次,對檔案進(jìn)行鑒定與甄別,這也是檔案工作中較困難的過程,過去做好這方面的工作主要依靠管理檔案管理員自己的能力和水平,主觀上的因素影響很大,但是數(shù)據(jù)挖掘技術(shù)可以及時(shí)對檔案進(jìn)行編碼和收集,對檔案進(jìn)行數(shù)字化的管理和規(guī)劃,解放人力資源,提升檔案利用的服務(wù)水平。第三,數(shù)據(jù)挖掘技術(shù)可以減少檔案的收集和保管成本,根據(jù)檔案的特點(diǎn)和規(guī)律建立的數(shù)據(jù)模型能為之后的工作人員建立一種標(biāo)準(zhǔn),提升了檔案的鑒定效率。
(一)檔案信息的收集。在實(shí)施檔案管理工作時(shí),首先需要對檔案信息數(shù)據(jù)的收集??梢赃\(yùn)用相關(guān)檔案數(shù)據(jù)庫的數(shù)據(jù)資料,進(jìn)行科學(xué)的分析,制定科學(xué)的說明方案,對確定的數(shù)據(jù)集合類型和一些相關(guān)概念的模型進(jìn)行科學(xué)說明,利用這些數(shù)據(jù)說明,建立準(zhǔn)確的數(shù)據(jù)模型,并以此數(shù)據(jù)模型作為標(biāo)準(zhǔn),為檔案信息的快速分類以及整合奠定基礎(chǔ)。例如,在體育局的相關(guān)網(wǎng)站上提供問卷,利用問卷來得到的所需要的信息數(shù)據(jù),導(dǎo)入數(shù)據(jù)庫中,讓數(shù)據(jù)庫模型中保有使用者的相關(guān)個(gè)人信息,通過對使用者的信息數(shù)據(jù)進(jìn)行說明,從而判斷使用者可能的類型,提升服務(wù)的準(zhǔn)確性。因此,數(shù)據(jù)挖掘技術(shù)為檔案信息的迅速有效收集,為檔案分類以及后續(xù)工作的順利展開,提供了有利條件,為個(gè)性化服務(wù)的實(shí)現(xiàn)提供了保證。(二)檔案信息的分類。數(shù)據(jù)挖掘技術(shù)具有的屬性分析能力,可以將數(shù)據(jù)庫中的信息進(jìn)行分門別類,將信息的對象通過不同的特征,規(guī)劃為不同的分類。將數(shù)據(jù)挖掘技術(shù)運(yùn)用到檔案管理中時(shí),可以簡單快速地找到想要的檔案數(shù)據(jù),能根據(jù)數(shù)據(jù)中使用者的相關(guān)數(shù)據(jù),找尋使用者在數(shù)據(jù)庫中的信息,使用數(shù)據(jù)模型的分析能力,分析出使用者的相關(guān)特征。利如,在使用者上網(wǎng)使用網(wǎng)址時(shí),數(shù)據(jù)挖掘技術(shù)可以充分利用使用者的搜索數(shù)據(jù)以及網(wǎng)站的訪問記錄,自動(dòng)保存用戶的搜索信息、搜索內(nèi)容、下載次數(shù)、時(shí)間等,得到用戶的偏好和特征,對用戶可能存在的需求進(jìn)行預(yù)測和分類,更加迅速和準(zhǔn)確的,為用戶提供個(gè)性化的服務(wù)。(三)檔案信息的整合。數(shù)據(jù)挖掘技術(shù)可以對新舊檔案的信息進(jìn)行整合處理,可以較為簡單地將“死檔案”整合形成為“活檔案”,提供良好的檔案信息和有效的檔案管理。例如,對于企事業(yè)單位而言,培訓(xùn)新員工的成本往往比聘請老員工的成本要高出很多。對老員工的檔案信息情況進(jìn)行全體整合,使檔案資源充分發(fā)揮作用,將檔案數(shù)據(jù)進(jìn)行總結(jié)和規(guī)劃,根據(jù)數(shù)據(jù)之間的聯(lián)系確定老員工流失的原因,然后建立清晰、明白的數(shù)據(jù)庫,這樣可以防止人才流失,也能大大提高檔案管理的效率。
綜上所述,在這個(gè)信息技術(shù)迅速跳躍發(fā)展的時(shí)代,將數(shù)據(jù)挖掘技術(shù)運(yùn)用到檔案管理工作中是時(shí)代發(fā)展的需求與必然結(jié)果。利用數(shù)據(jù)挖掘技術(shù),可以使檔案管理工作的效率大大提升,不僅減少了搜索檔案信息的時(shí)間,節(jié)省人力物力,避免資源的浪費(fèi),還能幫助用戶在海量的信息數(shù)據(jù)中,快速找到所需的檔案數(shù)據(jù)信息。數(shù)據(jù)挖掘技術(shù)的運(yùn)用,使靜態(tài)的檔案信息變成了可以“主動(dòng)”為企事業(yè)單位的發(fā)展,提供有效的個(gè)性化服務(wù)的檔案管家,推動(dòng)了社會(huì)的快速發(fā)展。
[2]宇然,數(shù)據(jù)挖掘技術(shù)研究以及在檔案計(jì)算機(jī)管理系統(tǒng)中的應(yīng)用[d].沈陽工業(yè)大學(xué),20xx.
[3]吳秀霞,關(guān)于檔案管理方面的數(shù)據(jù)挖掘分析及應(yīng)用探討[j].經(jīng)營管理者,20xx:338.
數(shù)據(jù)挖掘論文篇十八
數(shù)據(jù)挖掘作為一種數(shù)據(jù)分析的方法,在現(xiàn)代社會(huì)的應(yīng)用越來越廣泛。因此,許多研究者致力于數(shù)據(jù)挖掘技術(shù)的研究和應(yīng)用。其中,論文是數(shù)據(jù)挖掘研究最主要的成果之一。良好的數(shù)據(jù)挖掘論文可以促進(jìn)數(shù)據(jù)挖掘的發(fā)展和應(yīng)用,提高數(shù)據(jù)挖掘技術(shù)的效率和可靠性。因此,寫一篇優(yōu)秀的數(shù)據(jù)挖掘論文對于這個(gè)領(lǐng)域的研究人員來說至關(guān)重要。
第二段:講述數(shù)據(jù)挖掘論文的內(nèi)容需要注意的重點(diǎn)。
在寫一篇數(shù)據(jù)挖掘論文時(shí),需要注意幾個(gè)重點(diǎn)。首先,需要明確研究對象和研究目的,確定原始數(shù)據(jù)的來源和數(shù)據(jù)處理方法。其次,需要進(jìn)行特征分析,挑選有效的特征進(jìn)行數(shù)據(jù)挖掘。同時(shí),在數(shù)據(jù)挖掘過程中需要使用合適的算法和模型,以取得優(yōu)秀的預(yù)測結(jié)果。最后,還需要對結(jié)果進(jìn)行驗(yàn)證和評價(jià),以保證數(shù)據(jù)挖掘結(jié)果的準(zhǔn)確性和可靠性。
在我的研究過程中,我深刻地認(rèn)識(shí)到了數(shù)據(jù)挖掘技術(shù)的重要性和應(yīng)用價(jià)值。我需要詳細(xì)地了解數(shù)據(jù)采集、數(shù)據(jù)清洗、特征選擇和評估模型等方面的知識(shí),學(xué)習(xí)基本的算法和模型,并靈活運(yùn)用最新的數(shù)據(jù)挖掘技術(shù),以達(dá)到最好的預(yù)測結(jié)果。同時(shí),我也注意到了不同論文之間的差異,不同研究的方向和方法不同,需要靈活變通和開創(chuàng)性思維,才能寫出優(yōu)秀的數(shù)據(jù)挖掘論文。
第四段:探討數(shù)據(jù)挖掘論文的審查標(biāo)準(zhǔn)和要求。
數(shù)據(jù)挖掘的研究范圍和深度不斷擴(kuò)大,論文審查機(jī)構(gòu)和專家對數(shù)據(jù)挖掘論文的要求也越來越高。好的數(shù)據(jù)挖掘論文需要有一定的貢獻(xiàn)和創(chuàng)新點(diǎn),同時(shí),還需要展示出數(shù)據(jù)挖掘算法、模型和數(shù)據(jù)特征選擇的能力,具有可操作性和穩(wěn)健性。此外,好的數(shù)據(jù)挖掘論文還需有清晰的圖表展示,數(shù)據(jù)的充分分析和結(jié)論的合理性,撰寫格式規(guī)范明確,語言流暢等特點(diǎn)。
第五段:總結(jié)論文寫作的經(jīng)驗(yàn)和啟示。
總之,在撰寫優(yōu)秀的數(shù)據(jù)挖掘論文時(shí),應(yīng)該注重掌握所需的關(guān)鍵技術(shù)和知識(shí),同時(shí)宏觀和微觀兩個(gè)方面的考慮都需要。特別注重特征選擇和數(shù)據(jù)模型的設(shè)計(jì)更是必不可少的。此外,要注意相關(guān)專業(yè)期刊的審查標(biāo)準(zhǔn)和要求,并且合理分配時(shí)間,不斷完善整理論文。相信在不斷讀論文,自己不斷寫論文的過程中,每個(gè)人都可以不斷提高論文的質(zhì)量,為數(shù)據(jù)挖掘技術(shù)的發(fā)展和實(shí)踐做出重要貢獻(xiàn)。
數(shù)據(jù)挖掘論文篇十九
:中醫(yī)臨床理論多是由著名醫(yī)家的經(jīng)驗(yàn)升華形成的,反映了臨床上不同學(xué)術(shù)派系以及不同學(xué)科的優(yōu)勢特征,但這其中不免摻雜了個(gè)人主觀經(jīng)驗(yàn),因此本文就中醫(yī)臨床理論研究中醫(yī)病案為基礎(chǔ),對應(yīng)用病案數(shù)據(jù)挖掘結(jié)果來總結(jié)和重建中醫(yī)臨床理論的方式進(jìn)行了探討,認(rèn)為該方法可為完善中醫(yī)臨床理論提供客觀的數(shù)據(jù)支持,使中醫(yī)臨床理論的來源更具有科學(xué)性。
科研一體化中醫(yī)臨床理論決定著中醫(yī)臨床學(xué)科的發(fā)展水平,是中醫(yī)臨床發(fā)展的動(dòng)力。從古至今,中醫(yī)名醫(yī)名家輩出,他們的臨床經(jīng)驗(yàn)和學(xué)術(shù)思想不斷提煉升華,逐步形成了傳統(tǒng)的中醫(yī)臨床理論。新中國成立以來,中醫(yī)不斷汲取最新的科技成果,進(jìn)行了大量臨床實(shí)踐,而中醫(yī)臨床理論發(fā)展緩慢,己經(jīng)成為制約當(dāng)代中醫(yī)學(xué)術(shù)發(fā)展的瓶頸,對如何開拓中醫(yī)臨床理論的研究,可謂見仁見智,但各種新的臨床理論常常裹挾著“各家學(xué)說”。在當(dāng)今大數(shù)據(jù)和信息技術(shù)發(fā)達(dá)的背景下,運(yùn)用數(shù)據(jù)挖掘技術(shù)對中醫(yī)病案進(jìn)行大數(shù)據(jù)分析,客觀揭示當(dāng)前中醫(yī)臨床理論的本來面目,盡可能減少個(gè)人見解的偏倚,對于推動(dòng)中醫(yī)臨床理論發(fā)展具有重要的現(xiàn)實(shí)意義,本文就基于病案數(shù)據(jù)挖掘的中醫(yī)臨床理論重建進(jìn)行探討如下。
1.1中醫(yī)古典文獻(xiàn)是傳統(tǒng)中醫(yī)臨床理論的基礎(chǔ)。
眾所周知,中醫(yī)之所以能夠屹立千年不倒,很大一部分原因是因?yàn)槠溆歇?dú)特的理論體系,而在這其中,中醫(yī)古典文獻(xiàn)做出的貢獻(xiàn)應(yīng)該是第一位的。因?yàn)檫@些古典文獻(xiàn)的記載和流傳,為后世的醫(yī)家提供了參考和借鑒,使得我們從前人的思維上不斷創(chuàng)新,與臨床進(jìn)行有機(jī)結(jié)合,不斷研究出新的適合于當(dāng)前時(shí)代的臨床理論。例如,中醫(yī)學(xué)無論在理論研究還是在臨床治療方面的豐富,許多根本性的理論都是源自于《內(nèi)經(jīng)》。該書創(chuàng)立了藏象、經(jīng)絡(luò)、診法等各方面的理論[1],勾畫了中醫(yī)理論的雛形,構(gòu)建了中醫(yī)理論體系的基本框架。到后期東漢時(shí)期張仲景的《傷寒論》則是創(chuàng)造了以六經(jīng)辨證和臟腑辨證為主的局面,其所倡導(dǎo)的“觀其脈證,知犯何逆,隨證治之”使得辨證論治登上新的高度。到了金元時(shí)期,就是百家爭鳴的時(shí)代,這期間以金元四大家為主的學(xué)派開始萌生,留下了許多可供后世醫(yī)家參考的古典文獻(xiàn)并創(chuàng)建了不同的臨床理論,而明清時(shí)期以葉天士和吳鞠通為首確立的衛(wèi)氣營血和三焦辨證,使溫病學(xué)的辨證理論逐步趨于完善,至今仍是指導(dǎo)臨床治療溫?zé)岵〉睦碚撘罁?jù)。總之,傳統(tǒng)中醫(yī)臨床理論的構(gòu)建和完善,離不開前人的摸索與貢獻(xiàn),也得益于著名醫(yī)學(xué)家創(chuàng)建的傳統(tǒng)中醫(yī)理論,使得我們現(xiàn)在的中醫(yī)體系不斷的飽滿和充實(shí)。
1.2當(dāng)代著名中醫(yī)的臨床經(jīng)驗(yàn)不斷提升為中醫(yī)臨床理論。
傳統(tǒng)中醫(yī)的臨床理論,在很大程度上展示著著名醫(yī)家的臨床經(jīng)驗(yàn)。在中醫(yī)理論與實(shí)踐發(fā)展的相互促進(jìn)過程中,當(dāng)代醫(yī)家通過讀書、臨證、心悟?qū)?shí)踐經(jīng)驗(yàn)不斷總結(jié)并升華為理論,又在實(shí)踐中不斷完善既有的理論,成為中醫(yī)理論發(fā)展的重要途徑和模式,而當(dāng)代中醫(yī)理論的發(fā)展則需要將傳統(tǒng)理論與現(xiàn)代實(shí)踐相互融合起來。例如上世紀(jì)60年代時(shí),面對中醫(yī)基礎(chǔ)理論中新的思想相對匱乏的這一局面,鄧鐵濤結(jié)合其治療的臨床經(jīng)驗(yàn),首次提出了“五臟相關(guān)學(xué)說”。盡管當(dāng)時(shí)的理論準(zhǔn)備并不完善,但是這一理論的提出,在很大程度上完善并且取代了“五行學(xué)說”中某些模糊性和不確定性,并且隨著時(shí)代的發(fā)展,逐漸驗(yàn)證了鄧?yán)系倪@一經(jīng)驗(yàn)的正確性,也成為指導(dǎo)中醫(yī)臨床理論的一大重要體系[2]。又如,腦出血這一現(xiàn)代疾病在古代名為中風(fēng),多數(shù)是“從風(fēng)而治”,認(rèn)為肝臟與中風(fēng)的關(guān)系最為密切。隨著時(shí)代的推進(jìn),自20世紀(jì)80年代以來,許多學(xué)者根據(jù)微觀辨證和中醫(yī)理論“離經(jīng)之血便是瘀”,提出急性出血中風(fēng)屬中醫(yī)血證,瘀血阻滯是急性期腦出血的最基本病機(jī),是治療的關(guān)鍵所在[3]。故現(xiàn)代中醫(yī)臨床治療上多以活血化瘀法治療腦出血、腦梗塞這一系列疾病。若是仔細(xì)研讀傳統(tǒng)中醫(yī)臨床理論后,我們不難得出其構(gòu)成和完善離不開當(dāng)代著名醫(yī)家的臨床經(jīng)驗(yàn),它是在歷經(jīng)歲月的洗禮下不斷塑造成型的。
1.3傳統(tǒng)中醫(yī)臨床理論不斷將現(xiàn)代醫(yī)學(xué)相關(guān)內(nèi)容中醫(yī)化。
傳統(tǒng)中醫(yī)臨床理論不斷吸收現(xiàn)代醫(yī)學(xué)的理論,將其相關(guān)內(nèi)容不斷中醫(yī)化,將病人的各種證型通過五臟辨證、陰陽五行辨證以及八綱辨證劃分得越來越細(xì)化,以提供病人在中醫(yī)臨床上治療的理論依據(jù)。中醫(yī)吸取了現(xiàn)代醫(yī)學(xué)理論后正在不斷壯大其內(nèi)容,現(xiàn)代醫(yī)學(xué)相關(guān)內(nèi)容中醫(yī)化在許多難治疾病的辨證治療中都起到了良好的指導(dǎo)作用[4]。如艾滋病是古代傳統(tǒng)中醫(yī)辨證論治的空白,通過對艾滋病中醫(yī)病因病機(jī)、證候規(guī)律、治法方藥的系統(tǒng)研究,提出了“艾毒傷元”“脾為樞機(jī)”“氣虛為本”的病因病機(jī)學(xué)說,確立了艾滋病“培元解毒”“益氣健脾”的治療原則,為中醫(yī)藥防治艾滋病奠定了理論基礎(chǔ),為進(jìn)一步提高艾滋病的中醫(yī)藥臨床診療效果提供理論依據(jù)[5]。
2.1中醫(yī)主流理論不突出且與時(shí)俱進(jìn)力度不夠。
不可否認(rèn)的是,當(dāng)代的中醫(yī)臨床理論發(fā)展也是存在諸多不足的,中醫(yī)理論的完善和發(fā)展是中華五千年來集體智慧的結(jié)晶,個(gè)別醫(yī)家提出的臨床理論可能各有千秋,其所立的角度和思維也不盡相同。例如,同是治療輸卵管阻塞這一疾病時(shí),朱南孫教授認(rèn)為多是由于濕蘊(yùn)沖任所致,其用自擬的清熱利濕方來進(jìn)行治療;而李廣文教授則認(rèn)為這一疾病多是由于瘀血阻絡(luò)為主,治療上以活血祛瘀為法,擬通任種子湯進(jìn)行治療[6]。又如對于“和解法”這一治療方法的理解,當(dāng)代名醫(yī)蒲輔周老先生認(rèn)為“寒熱并用,補(bǔ)瀉合劑,表里雙解,苦辛分消,調(diào)和氣血,皆謂和解”。而方和謙教授則認(rèn)為“在治法上扶正祛邪,表里兼顧,此法就為和解法”。不同的醫(yī)家在面對不同的疾病,甚至是不同的理法方藥時(shí),所持的看法常常是“各家學(xué)說”,這就導(dǎo)致了當(dāng)前中醫(yī)臨床理論發(fā)展比較混亂,不能全面地體現(xiàn)中國五千年來發(fā)展過程中的中醫(yī)主流理論。目前中醫(yī)基礎(chǔ)理論還存在一個(gè)缺陷就是它的與時(shí)俱進(jìn)力度還不夠,很多古代經(jīng)典方藥的主治病癥,在當(dāng)今時(shí)代已經(jīng)不再多見了。比如蛔蟲導(dǎo)致的蛔厥這一致病因素在現(xiàn)代已經(jīng)不再常見,對應(yīng)的烏梅丸的主要適應(yīng)病癥也不再是蛔厥;在針對沒有明顯臨床表現(xiàn)的疾病如乙肝時(shí),按傳統(tǒng)中醫(yī)往往體現(xiàn)出“無證可治”的狀態(tài);傳統(tǒng)的診斷與現(xiàn)代檢查相結(jié)合的力度也不夠,中醫(yī)臨床基礎(chǔ)理論在某些程度上忽略了其與生化、b超、x光、ct等現(xiàn)代檢查結(jié)果的結(jié)合,并沒有用中醫(yī)理論對其做一合理的陳述;且現(xiàn)在臨床上很多中藥的藥理作用、性味歸經(jīng)的研究作用還不夠深入、細(xì)致,其作用不能在微觀上得以解釋。這些都導(dǎo)致了臨床上很多情況沒有從中醫(yī)理論來認(rèn)識(shí)中醫(yī),不是“以中解中”,而是“以西解中”,形成了臨床拋棄中醫(yī)理論的狀態(tài)[7]。由于中醫(yī)學(xué)是一門實(shí)踐性很強(qiáng)的學(xué)科,它是在哲學(xué)辨證的思想指導(dǎo)下,與臨床經(jīng)驗(yàn)不斷結(jié)合,這與西醫(yī)知識(shí)體系相比較,難免存在一定的滯后性,這都會(huì)使得中醫(yī)臨床理論發(fā)展相對的落后。
2.2部分中醫(yī)理論帶有權(quán)威專家的“個(gè)人學(xué)說”偏見。
傳統(tǒng)中醫(yī)強(qiáng)調(diào)個(gè)人經(jīng)驗(yàn)和學(xué)說,以中醫(yī)內(nèi)科學(xué)為例,第八版中的腦系疾病在第九版中已經(jīng)刪除,其涉及到的各種腦系疾病大多數(shù)歸屬于心系疾病與肝系疾病。根據(jù)其版本的不同,我們可以明顯看出其凸顯的中心內(nèi)容及其思想不同,其多是體現(xiàn)編著者的理論思想,在一定程度上并沒有客觀地揭示疾病的本質(zhì),治療理論也不夠完善,一部分內(nèi)容與最新研究得出的論文理論不符,這使得當(dāng)代中醫(yī)臨床理論在某些程度上,帶有權(quán)威專家的“個(gè)人學(xué)說”色彩。由于現(xiàn)代西方先進(jìn)的科技文化流入,使得中醫(yī)在一定程度上備受質(zhì)疑,而正是因?yàn)槿藗儗τ谥嗅t(yī)理論的一些偏見,才使得中醫(yī)長期讓人詬病。
3.1臨床理論應(yīng)具有真實(shí)性與系統(tǒng)性。
中醫(yī)臨床理論的發(fā)展方形應(yīng)當(dāng)是建立在客觀并且真實(shí)的臨床實(shí)踐基礎(chǔ)上,從一次次臨床實(shí)踐中得出。由于歷史時(shí)代的原因以及假設(shè)推理、模式建設(shè)的廣泛使用,當(dāng)代中醫(yī)臨床理論中理論與假說并存的現(xiàn)象較為普遍,如中醫(yī)的五運(yùn)六氣學(xué)說對現(xiàn)代疫病預(yù)測和人體各經(jīng)絡(luò)臟腑在時(shí)間上對于人體治病效果的不同等,就需要我們在扎實(shí)的文獻(xiàn)與臨床實(shí)踐基礎(chǔ)上,對醫(yī)案進(jìn)行認(rèn)真總結(jié),利用科學(xué)的方法深入挖掘,開展中醫(yī)理論的去偽存真研究,以促進(jìn)中醫(yī)理論的科學(xué)與健康發(fā)展。另外,傳統(tǒng)的中醫(yī)臨床治療上所用的理法方藥,多是根據(jù)個(gè)人經(jīng)驗(yàn)所進(jìn)行的。隨著科技的不斷發(fā)展與時(shí)代的不斷進(jìn)步,當(dāng)代的中醫(yī)臨床理論應(yīng)該在成功的中醫(yī)醫(yī)案上進(jìn)行系統(tǒng)的總結(jié),不斷挖掘和研究其微觀的結(jié)構(gòu),并隨著年月的更迭不斷更新,不斷完善,使其具有科學(xué)性和理論依據(jù)。同時(shí),對近年來興起的傳染性非典型肺炎、艾滋病、禽流感等古人所沒有經(jīng)歷過的疾病的診治,中醫(yī)就其病因病機(jī)的認(rèn)識(shí)以及探究相應(yīng)的診療方法,無疑也是一種理論上的創(chuàng)新[8]。通過對其進(jìn)行深一層次的研究和發(fā)現(xiàn),歸納出合適的治則治法,找到針對這一疾病的理法方藥,使其更具有系統(tǒng)性,使得臨床上中醫(yī)治病可以循序漸進(jìn),注重整體,也是當(dāng)代臨床理論的一大發(fā)展方向。
3.2臨床理論具有信息化的特點(diǎn)并可持續(xù)拓展。
隨著時(shí)代的進(jìn)步,當(dāng)代的中醫(yī)臨床理論可以通過網(wǎng)絡(luò)等方式進(jìn)行共享,在大數(shù)據(jù)的這一時(shí)代背景下,隨著病案的不斷報(bào)道與積累,可以將各類成功的中醫(yī)醫(yī)案進(jìn)行統(tǒng)計(jì)和挖掘,其結(jié)果也會(huì)不斷進(jìn)行更新和發(fā)展。不同的醫(yī)家對于某一疾病的認(rèn)識(shí)角度可能不同,其表現(xiàn)在病位、病性、病勢和證候的判斷標(biāo)準(zhǔn)也不一樣,因此方藥規(guī)律也不一樣。而通過統(tǒng)計(jì)某一中醫(yī)或西醫(yī)疾病的較大樣本病例,并對其進(jìn)行數(shù)據(jù)挖掘,可以得出整個(gè)中醫(yī)群體對于這一疾病診治的證候分布、治則治法、處方用藥等的規(guī)律,甚至可以根據(jù)統(tǒng)計(jì)的結(jié)果探索出新的方藥,分析他們的共同點(diǎn)和所在差異。將中醫(yī)臨床理論具有信息化的這一特點(diǎn)不斷地拓展下去,通過計(jì)算機(jī)等客觀科學(xué)的手段進(jìn)行分析,與主觀的名老中醫(yī)傳承模式相比,更具客觀性,更容易被臨床醫(yī)生接受,對各種疾病的中醫(yī)臨床用藥也更具有指導(dǎo)價(jià)值。
4.1病案研究是中醫(yī)理論發(fā)展的重要基礎(chǔ)。
在當(dāng)今大數(shù)據(jù)的時(shí)代背景下,中醫(yī)固有的傳統(tǒng)整體論科學(xué)特征有了越來越多的可供改變的空間。這種變化既為其按照自身特有的規(guī)律發(fā)展特點(diǎn)帶來了機(jī)遇,也給未來中醫(yī)理論的發(fā)展提出了挑戰(zhàn)。同時(shí),學(xué)習(xí)醫(yī)案研究也是中醫(yī)學(xué)相關(guān)大學(xué)生們應(yīng)該學(xué)習(xí)的一項(xiàng)內(nèi)容。閱讀醫(yī)案是必要的訓(xùn)練,也是中醫(yī)入門的方法之一。醫(yī)案的故事性引人入勝,在自然而然中接受中醫(yī)思維方法和傳統(tǒng)文化知識(shí),同時(shí)醫(yī)案中所呈現(xiàn)的名醫(yī)風(fēng)范,醫(yī)德對學(xué)生起到潛移默化的影響,并培養(yǎng)對專業(yè)的熱愛[9]。病案客觀、真實(shí)地直接記錄疾病診斷和治療過程,醫(yī)案研究作為中醫(yī)理論發(fā)展過程中至關(guān)重要的一環(huán),是中醫(yī)理論發(fā)展的重要基礎(chǔ),以研究病案為基礎(chǔ),對于中醫(yī)理論的形成和臨床上中醫(yī)積累經(jīng)驗(yàn),都起到了一定的輔助提升作用。
4.2數(shù)據(jù)挖掘方法是中醫(yī)理論發(fā)展的現(xiàn)代技術(shù)手段。
利用多種數(shù)據(jù)挖掘技術(shù)對中醫(yī)病案中的有關(guān)信息行進(jìn)行歸納、整理,是近年來傳承中醫(yī)臨床經(jīng)驗(yàn)的重要方法之一[10]。通過對同一種疾病的病案進(jìn)行數(shù)據(jù)挖掘以分析醫(yī)者的思路和探索其用藥的。方法,對中醫(yī)臨床病案進(jìn)行規(guī)范化的整理,能夠深入總結(jié)其臨床經(jīng)驗(yàn),挖掘隱藏在大量病案背后的診治規(guī)律,甚至探索出新的方藥配伍,為中醫(yī)理論的發(fā)展提供一定的科學(xué)依據(jù)的同時(shí),使得中醫(yī)理論的發(fā)展越來越現(xiàn)代化,不僅僅只是停留在以前的靠讀書和個(gè)人經(jīng)驗(yàn)的結(jié)合,也為廣大的中醫(yī)在日后的臨床治療上提供了新的思路和方向。
4.3臨床實(shí)踐推動(dòng)理論發(fā)展,賦予轉(zhuǎn)化醫(yī)學(xué)新的內(nèi)涵。
目前,我們通過并按數(shù)據(jù)挖掘來總結(jié)一些中醫(yī)對于治療同一種疾病所采取的診斷和用藥,可以獲得新的思路,并且為完善我們現(xiàn)有的中醫(yī)理論基礎(chǔ)可以提供可靠的理論支持。采用數(shù)據(jù)挖掘技術(shù)對中醫(yī)學(xué)術(shù)思想和臨證經(jīng)驗(yàn)進(jìn)行研究,可以全面解析其中的規(guī)律,分析中醫(yī)個(gè)體化診療信息特征,提煉出臨證經(jīng)驗(yàn)中蘊(yùn)藏的新理論、新力法,可以實(shí)現(xiàn)經(jīng)驗(yàn)的有效總結(jié)與傳承[11]。與此同時(shí),要求我們用發(fā)展的眼光將現(xiàn)代的科技手段整合加入到傳統(tǒng)的中醫(yī)學(xué)理論中去,推陳出新,通過臨床實(shí)踐與基礎(chǔ)理論的不斷結(jié)合,不斷完善,推動(dòng)祖國醫(yī)學(xué)現(xiàn)代化,譜寫有關(guān)于中醫(yī)學(xué)在轉(zhuǎn)化醫(yī)學(xué)上新的篇章。
[2]邱仕君,吳玉生。在基礎(chǔ)理論與臨床醫(yī)學(xué)之間———對鄧鐵濤教授五臟相關(guān)學(xué)說的理論思考[j].湖北民族學(xué)院學(xué)報(bào)(醫(yī)學(xué)版),2005,22(2):36-39.
[3]顧寧,周仲英。通下法治療急性腦出血研究進(jìn)展[j].中國中醫(yī)急診,2000,9(5):227.
[4]靳士英。鄧鐵濤教授學(xué)術(shù)成就管[j].現(xiàn)代醫(yī)院,2004(9):1-6.
[7]孟靜巖,應(yīng)森林。試論中醫(yī)基礎(chǔ)理論指導(dǎo)臨床研究的思考與途徑[j].上海中醫(yī)藥大學(xué)學(xué)報(bào),2009(3):3-5.
【本文地址:http://mlvmservice.com/zuowen/7210145.html】