精選高一數(shù)學教案必修(案例16篇)

格式:DOC 上傳日期:2023-11-03 01:15:06
精選高一數(shù)學教案必修(案例16篇)
時間:2023-11-03 01:15:06     小編:XY字客

教案的編寫還需要考慮到教學資源和教學環(huán)境等因素,確保教學的順利進行。編寫教案前,教師需要充分了解教學內(nèi)容和課程標準,確保教學目標的準確把握。以下是小編為大家整理的教案范例,供大家參考。教案的編寫可以參考這些范例,但也要根據(jù)具體的教學內(nèi)容和學生情況進行個性化的調(diào)整。大家一起來看看吧,相信會對教案的編寫有所幫助。

高一數(shù)學教案必修篇一

了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景.

(2)一元二次不等式。

會從實際情境中抽象出一元二次不等式模型.

通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.

會解一元二次不等式,對給定的一元二次不等式,會設(shè)計求解的程序框圖.

(3)二元一次不等式組與簡單線性規(guī)劃問題。

會從實際情境中抽象出二元一次不等式組.

了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.

會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

高一數(shù)學教案必修篇二

3、能利用類比進行簡單的推理,體會并認識合情推理在數(shù)學發(fā)現(xiàn)中的作用、

一、課前準備。

問題3:因為三角形的內(nèi)角和是,四邊形的內(nèi)角和是,五邊形的內(nèi)角和是。

……所以n邊形的內(nèi)角和是。

新知1:從以上事例可一發(fā)現(xiàn):

叫做合情推理。歸納推理和類比推理是數(shù)學中常用的合情推理。

新知2:類比推理就是根據(jù)兩類不同事物之間具有。

推測其中一類事物具有與另一類事物的性質(zhì)的推理、

簡言之,類比推理是由的'推理、

新知3歸納推理就是根據(jù)一些事物的,推出該類事物的。

的推理、歸納是的過程。

例子:哥德巴赫猜想:

觀察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,。

16=13+3,18=11+7,20=13+7,……,。

50=13+37,……,100=3+97,

猜想:

歸納推理的一般步驟。

1通過觀察個別情況發(fā)現(xiàn)某些相同的性質(zhì)。

2從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想)。

※典型例題。

例1用推理的形式表示等差數(shù)列1,3,5,7……2n-1,……的前n項和sn的歸納過程。

變式1觀察下列等式:1+3=4=,

1+3+5=9=,

1+3+5+7=16=,

1+3+5+7+9=25=,

……。

你能猜想到一個怎樣的結(jié)論?

變式2觀察下列等式:1=1。

1+8=9,

1+8+27=36,

1+8+27+64=100,

……。

你能猜想到一個怎樣的結(jié)論?

例2設(shè)計算的值,同時作出歸納推理,并用n=40驗證猜想是否正確。

變式:(1)已知數(shù)列的第一項,且,試歸納出這個數(shù)列的通項公式。

例3:找出圓與球的相似之處,并用圓的性質(zhì)類比球的有關(guān)性質(zhì)、

圓的概念和性質(zhì)球的類似概念和性質(zhì)。

圓的周長。

圓的面積。

圓心與弦(非直徑)中點的連線垂直于弦。

與圓心距離相等的弦長相等,

※動手試試。

2如果一條直線和兩條平行線中的一條相交,則必和另一條相交。

3如果兩條直線同時垂直于第三條直線,則這兩條直線互相平行。

三、總結(jié)提升。

※學習小結(jié)。

1、歸納推理的定義、

高一數(shù)學教案必修篇三

1、教材(教學內(nèi)容)。

2、設(shè)計理念。

3、教學目標。

情感態(tài)度與價值觀目標:引導(dǎo)學生學會閱讀數(shù)學教材,學會發(fā)現(xiàn)和欣賞數(shù)學的理性之美、

4、重點難點。

重點:任意角三角函數(shù)的定義、

難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、

5、學情分析。

6、教法分析。

7、學法分析。

本課時先通過“閱讀”學習法,引導(dǎo)學生改造已有的認知結(jié)構(gòu),再通過類比學習法引導(dǎo)學生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學生運用類比學習法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學生形成新的認識結(jié)構(gòu),達成教學目標。

高一數(shù)學教案必修篇四

掌握三角函數(shù)模型應(yīng)用基本步驟:

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。

·利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型·。

一、練習講解:《習案》作業(yè)十三的第3、4題。

(精確到0·001)·。

米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?

本題的解答中,給出貨船的`進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。

練習:教材p65面3題。

三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:

(1)根據(jù)圖象建立解析式;

(2)根據(jù)解析式作出圖象;

(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。

2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型·。

四、作業(yè)《習案》作業(yè)十四及十五。

高一數(shù)學教案必修篇五

1、知識目標:使學生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質(zhì)。

2、能力目標:通過定義的引入,圖像特征的觀察、發(fā)現(xiàn)過程使學生懂得理論與實踐的辯證關(guān)系,適時滲透分類討論的數(shù)學思想,培養(yǎng)學生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。

3、情感目標:通過學生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學習習慣和勇于探索、鍥而不舍的治學精神。

高一數(shù)學教案必修篇六

(1)通過實物操作,增強學生的直觀感知。

(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。

(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。

2.過程與方法。

(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。

(2)讓學生觀察、討論、歸納、概括所學的知識。

3.情感態(tài)度與價值觀。

(1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。

(2)培養(yǎng)學生的空間想象能力和抽象括能力。

二、教學重點、難點。

重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。

難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。

三、教學用具。

(1)學法:觀察、思考、交流、討論、概括。

(2)實物模型、投影儀。

四、教學思路。

(一)創(chuàng)設(shè)情景,揭示課題。

1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。

2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學習的內(nèi)容。

(二)、研探新知。

1.引導(dǎo)學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。

3.組織學生分組討論,每小組選出一名同學發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

4.教師與學生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。

6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關(guān)的概念及圓柱的表示。

8.引導(dǎo)學生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學生思考、討論、概括。

9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。

1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。

2.棱柱的何兩個平面都可以作為棱柱的底面嗎?

3.課本p8,習題1.1a組第1題。

5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?

四、鞏固深化。

練習:課本p7練習1、2(1)(2)。

課本p8習題1.1第2、3、4題。

五、歸納整理。

由學生整理學習了哪些內(nèi)容。

六、布置作業(yè)。

課本p8練習題1.1b組第1題。

課外練習課本p8習題1.1b組第2題。

1.2.1空間幾何體的三視圖(1課時)。

高一數(shù)學教案必修篇七

1.使學生掌握的概念,圖象和性質(zhì).

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域.

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質(zhì).

(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象.

2.通過對的概念圖象性質(zhì)的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.

(1)是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學習對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以應(yīng)重點研究.

(2)本節(jié)的教學重點是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì).難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.

(3)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.

(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是.

(2)對底數(shù)的限制條件的理解與認識也是認識的重要內(nèi)容.如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對的認識及性質(zhì)的分類討論,還關(guān)系到后面學習對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來.

關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導(dǎo)再列表計算,描點得圖象.

高一數(shù)學教案必修篇八

教學目標。

3.讓學生深刻理解向量在處理平面幾何問題中的優(yōu)越性.

教學重難點。

教學重點:用向量方法解決實際問題的基本方法:向量法解決幾何問題的“三步曲”.

教學難點:如何將幾何等實際問題化歸為向量問題.

教學過程。

由于向量的線性運算和數(shù)量積運算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長度、夾角等都可以由向量的線性運算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實例,說明向量方法在平面幾何中的運用。

思考:

運用向量方法解決平面幾何問題可以分哪幾個步驟?

運用向量方法解決平面幾何問題可以分哪幾個步驟?

“三步曲”:

(2)通過向量運算,研究幾何元素之間的關(guān)系,如距離、夾角等問題;。

(3)把運算結(jié)果“翻譯”成幾何關(guān)系.

高一數(shù)學教案必修篇九

1. 閱讀課本 練習止.

2. 回答問題

(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?

(2)層次間的聯(lián)系是什么?

(3)對數(shù)函數(shù)的定義是什么?

(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?

3. 完成 練習

4. 小結(jié).

二、方法指導(dǎo)

1. 在學習對數(shù)函數(shù)時,同學們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

一、提問題

1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?

2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?

3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.

二、變題目

1. 試求下列函數(shù)的反函數(shù):

(1) ; (2) ;

(3) ; (4) .

2. 求下列函數(shù)的定義域:

(1) ; (2) ; (3) .

3. 已知 則 = ; 的定義域為 .

1.對數(shù)函數(shù)的'有關(guān)概念

(1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);

(2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);

(3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).

2. 反函數(shù)的概念

在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個函數(shù)叫做互為反函數(shù).

3. 與對數(shù)函數(shù)有關(guān)的定義域的求法:

4. 舉例說明如何求反函數(shù).

一、課外作業(yè): 習題3-5 a組 1,2,3, b組1,

二、課外思考:

1. 求定義域: .

2. 求使函數(shù) 的函數(shù)值恒為負值的 的取值范圍.

高一數(shù)學教案必修篇十

1.要讀好課本。

有些“自我感覺良好”的學生,常輕視課本中基礎(chǔ)知識、基本技能和基本方法的學習與訓練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質(zhì)”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。因此,同學們應(yīng)從高一開始,增強自己從課本入手進行研究的意識。

2.要記好筆記。

首先,在課堂教學中培養(yǎng)好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關(guān)鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應(yīng)適當?shù)赜心康男缘挠浐霉P記,領(lǐng)會課上老師的主要精神與意圖??茖W的記筆記可以提高45分鐘課堂效益。

3.要做好作業(yè)。

在課堂、課外練習中培養(yǎng)良好的作業(yè)習慣也很有必要.在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨立完成。同時可以培養(yǎng)一種獨立思考和解題正確的責任感。在作業(yè)時要提倡效率,應(yīng)該十分鐘完成的作業(yè),不拖到半小時完成,疲疲憊憊的作業(yè)習慣使思維松散、精力不集中,這對培養(yǎng)數(shù)學能力是有害而無益的。

4.要寫好總結(jié)。

一個人不斷接受新知識,不斷遭遇挫折產(chǎn)生疑問,不斷地總結(jié),才有不斷地提高。“不會總結(jié)的同學,他的能力就不會提高,挫折經(jīng)驗是成功的基石。”自然界適者生存的生物進化過程便是最好的例證。學習要經(jīng)??偨Y(jié)規(guī)律,目的就是為了更一步的發(fā)展。

通過與老師、同學平時的接觸交流,逐步總結(jié)出一般性的學習步驟,它包括:制定計劃、課前自學、專心上課、及時復(fù)習、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學習幾個方面,簡單概括為四個環(huán)節(jié)(預(yù)習、上課、整理、作業(yè))和一個步驟(復(fù)習總結(jié))。每一個環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結(jié)”(先預(yù)習后聽課,先復(fù)習后做作業(yè),寫好每個單元的總結(jié))的學習習慣。

1.課前預(yù)習教材。課前可以把教材上第二天老師要講的內(nèi)容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。

2.上課專心聽講。這是很重要的,很多同學以為自己什么都弄懂了,就自己做自己的題目。其實即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時候講比自己看更好。

小編推薦:高一數(shù)學怎么學才能學好。

3.課后認真復(fù)習。剛學的知識,還沒完全被消化吸收成為自己的知識,如果不及時復(fù)習,就很容易忘記。所以,課后一定要抽出一些時間,及時對所學進行鞏固。

4.通過習題鞏固。數(shù)學是理科,需要通過一定量的習題來鞏固,量變積累到了一定量才能質(zhì)變嘛。這個并非要各位打題海戰(zhàn)術(shù),只要求各位做到熟練為止。

5.錯題反復(fù)研究。自己準備一個錯題本,把考試時候做錯的題目記錄下來,寫上做錯的原因,反復(fù)研究,避免再次出錯。

高一數(shù)學教案必修篇十一

教學準備

教學目標

1、理解平面向量的坐標的概念;

2、掌握平面向量的坐標運算;

3、會根據(jù)向量的坐標,判斷向量是否共線.

教學重難點

教學重點:平面向量的坐標運算

教學難點:向量的坐標表示的理解及運算的準確性.

教學過程

平面向量基本定理:

什么叫平面的一組基底?

平面的基底有多少組?

引入:

1.平面內(nèi)建立了直角坐標系,點a可以用什么來

表示?

2.平面向量是否也有類似的表示呢?

高一數(shù)學教案必修篇十二

要學好數(shù)學,最關(guān)鍵的是要有一個好的基礎(chǔ)。只有打牢數(shù)學基礎(chǔ),才能夠把高中數(shù)學好,同樣只有打好基礎(chǔ),才能夠數(shù)學取得高分。打好基礎(chǔ)是最關(guān)鍵的!比如:建一棟大樓,如果地基不穩(wěn),不管大樓有多么豪華,都只是華而不實。

想學好數(shù)學,對數(shù)學感興趣。

其實學好數(shù)學最好的辦法就是發(fā)自內(nèi)心由衷的想要學習,渴望學習,才能體會到從學習中所收獲的樂趣。自己的成就感提升,對于學習數(shù)學的積極性也就提高了,覺得數(shù)學并沒有那么難,就愿意去多接觸了。

多做題反復(fù)做,有題感。

其實學好數(shù)學辦法就是要大量做題,反復(fù)去做,題做多了就知道哪些方面需要自己去加強學習,還有就是同樣做數(shù)學題做多了就會有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會做,你也會找到一些解題的思路和技巧。

高一數(shù)學教案必修篇十三

(2)利用平面直角坐標系解決直線與圓的位置關(guān)系;

(3)會用“數(shù)形結(jié)合”的數(shù)學思想解決問題、

用坐標法解決幾何問題的步驟:

第二步:通過代數(shù)運算,解決代數(shù)問題;

第三步:將代數(shù)運算結(jié)果“翻譯”成幾何結(jié)論、

重點與難點:直線與圓的方程的應(yīng)用、

問 題設(shè)計意圖師生活動

生:回顧,說出自己的看法、

2、解決直線與圓的位置關(guān)系,你將采用什么方法?

生:回顧、思考、討論、交流,得到解決問題的方法、

問 題設(shè)計意圖師生活動

3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題

生:自 學例4,并完成練習題1、2、

生:建立適當?shù)闹苯亲鴺讼担?探求解決問題的方法、

8、小結(jié):

(1)利用“坐標法”解決問對知識進行歸納概括,體會利 師:指導(dǎo) 學生完成練習題、

生:閱讀教科書的例3,并完成第

問 題設(shè)計意圖師生活動

題的需要準備什么工作?

(2)如何建立直角坐標系,才能易于解決平面幾何問題?

(3)你認為學好“坐標法”解決問題的關(guān)鍵是什么?

高一數(shù)學教案必修篇十四

一、自主學習

1.閱讀課本練習止.

2.回答問題

(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?

(2)層次間的聯(lián)系是什么?

(3)對數(shù)函數(shù)的定義是什么?

(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?

3.完成練習

4.小結(jié).

二、方法指導(dǎo)

1.在學習對數(shù)函數(shù)時,同學們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

一、提問題

1.對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?

2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?

3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.

二、變題目

1.試求下列函數(shù)的反函數(shù):

(1);(2);

(3);(4).

2.求下列函數(shù)的定義域:

(1);(2);(3).

3.已知則=;的定義域為.

1.對數(shù)函數(shù)的有關(guān)概念

(1)把函數(shù)叫做對數(shù)函數(shù),叫做對數(shù)函數(shù)的'底數(shù);

(2)以10為底數(shù)的對數(shù)函數(shù)為常用對數(shù)函數(shù);

(3)以無理數(shù)為底數(shù)的對數(shù)函數(shù)為自然對數(shù)函數(shù).

2.反函數(shù)的概念

在指數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是;在對數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是,像這樣的兩個函數(shù)叫做互為反函數(shù).

3.與對數(shù)函數(shù)有關(guān)的定義域的求法:

4.舉例說明如何求反函數(shù).

一、課外作業(yè):習題3-5a組1,2,3,b組1,

二、課外思考:

1.求定義域:.

2.求使函數(shù)的函數(shù)值恒為負值的的取值范圍.

高一數(shù)學教案必修篇十五

1、使學生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。

(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)確定的。

(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式。

(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的`前幾項。

2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力。

3、通過由求的過程,培養(yǎng)學生嚴謹?shù)目茖W態(tài)度及良好的思維習慣。

(1)為激發(fā)學生學習數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等。

(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。

(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應(yīng)精心設(shè)計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應(yīng)多舉幾個例子,讓學生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助。

(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結(jié)論,如正負相間用來調(diào)整等。如果學生一時不能寫出通項公式,可讓學生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系。

(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調(diào)的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況。

(6)給出一些簡單數(shù)列的通項公式,可以求其項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學生應(yīng)提出這一問題,學生運用函數(shù)知識是可以解決的。

高一數(shù)學教案必修篇十六

教學目標。

熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。

掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。

教學重難點。

熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。

教學過程。

復(fù)習。

兩角差的余弦公式。

用-b代替b看看有什么結(jié)果?

【本文地址:http://mlvmservice.com/zuowen/6986220.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔