總結(jié)是一個很好的反思和總結(jié)過去的機(jī)會,可以讓我們更好地規(guī)劃未來的發(fā)展方向。在總結(jié)中,我們可以借鑒他人的經(jīng)驗(yàn)和方法,以提高自己的總結(jié)能力。以下是一些時(shí)間管理的實(shí)用方法,希望能幫助大家合理安排時(shí)間。
數(shù)學(xué)思想方法心得篇一
(一)引導(dǎo)學(xué)生做到數(shù)形有機(jī)結(jié)合
數(shù)形結(jié)合是將抽象與具體相融合的過程,在這一過程中能夠有效實(shí)現(xiàn)數(shù)與形的優(yōu)勢互補(bǔ),將二者之間的本質(zhì)聯(lián)系凸顯出來。如在學(xué)習(xí)《圓的面積》一節(jié)時(shí),之前學(xué)生已對圓有了基本認(rèn)識,因此,在教學(xué)如何計(jì)算圓的面積時(shí),教師可先引導(dǎo)學(xué)生猜想圓的面積同什么要素有關(guān)。為了讓學(xué)生有更為直觀的感受,教師還可要求學(xué)生自己在練習(xí)本上分別畫出半徑是3cm、4cm和5cm的圓。然后,再詢問學(xué)生,這三個圓的大小不一樣,那它們的面積大小是什么關(guān)系呢?是等于還是半徑越小的面積越大,或是半徑越大圓的面積越大?學(xué)生在思考了一下后大都認(rèn)為半徑為5cm的那個圓最大,半徑是3cm的圓的面積最小。在有了這樣的認(rèn)識后,學(xué)生就會在頭腦中形成圓的'面積同半徑有關(guān)這樣一個認(rèn)識,之后教師就可據(jù)此引導(dǎo)學(xué)生如何求得圓的面積。綜上所述,在引入圓的面積之前,我先讓學(xué)生對圓同半徑之間的關(guān)系有了一個清晰的了解,為了達(dá)到這個目的采取的是讓學(xué)生自己動手將頭腦中抽象的東西通過圖形展示出來并結(jié)合具體的數(shù)字印證出來的方法。這種數(shù)形結(jié)合的思想方法能夠使問題直觀化,將學(xué)生學(xué)習(xí)的積極性和主動性調(diào)動起來,提高了課堂教學(xué)質(zhì)量。
(二)學(xué)會轉(zhuǎn)化,化難為易
轉(zhuǎn)化的思想就是用聯(lián)系、運(yùn)動和發(fā)展的觀點(diǎn)去看問題,通過變換問題的形式,把未解決的或復(fù)雜的問題歸結(jié)到已經(jīng)能解決的或簡單的問題中,從而獲得對原問題的解決,因此轉(zhuǎn)化的思想方法也叫劃歸的思想方法。在數(shù)學(xué)教學(xué)中轉(zhuǎn)化的思想方法隨處可見,特別是在解題時(shí),我們可根據(jù)已知條件將問題轉(zhuǎn)化,從另一個角度進(jìn)行思考將難化易。如在講完《圓的周長》這一節(jié)后,課后習(xí)題中有一道題是將長方形和正方形同圓結(jié)合起來,讓學(xué)生在已知半徑的情況下分別求出圓、長方形和正方形的周長。我將這道題中的一個小題做了改編,讓學(xué)生在已知正方形周長的情況下去求圓的周長。圓位于正方形內(nèi),二者是相切的關(guān)系,這就要求學(xué)生能夠根據(jù)正方形的周長求出正方形的邊長,而正方形的邊長就是圓的直徑,再套用周長c=d的公式就能求得圓的周長。這套題目要求學(xué)生能根據(jù)已知條件對問題進(jìn)行轉(zhuǎn)化,從而創(chuàng)造出更多的已知條件。在這個過程中,學(xué)生一方面將新舊知識聯(lián)系了起來,另一方面也擴(kuò)散了思維,對于學(xué)生學(xué)習(xí)能力和解決問題能力的提升有積極的促進(jìn)作用。
(三)及時(shí)做到歸納、總結(jié)
及時(shí)地歸納和總結(jié)既能夠使知識更加系統(tǒng)化,又便于學(xué)生更好地發(fā)現(xiàn)各個知識點(diǎn)之間的聯(lián)系與區(qū)別,對于鞏固學(xué)生知識具有十分重要的作用。在數(shù)學(xué)中歸納的思想方法指通過對特殊示例、題材的觀察和分析,攝取非本質(zhì)的、次要的要素,從中發(fā)現(xiàn)事物的本質(zhì)聯(lián)系,并概括普遍性的結(jié)論。在講完《圓》這一節(jié)后,我會及時(shí)要求學(xué)生將跟圓有關(guān)的知識總結(jié)出來,并在總結(jié)的同時(shí)思考自己在這一部分的學(xué)習(xí)中哪里還沒有真正掌握,哪里還存在欠缺。此外,我還要求學(xué)生將自己之前做過的練習(xí)題也做一個總結(jié),甚至是再多做一遍??偨Y(jié)知識點(diǎn)有利于學(xué)生做好知識的鞏固與梳理工作,練習(xí)題的歸納則是讓學(xué)生對于不同題目的不同解題思路和技巧有一個更明確的認(rèn)識。而學(xué)生在總結(jié)的過程中能不斷提升自己的概括能力,這也是數(shù)學(xué)思想方法滲入到學(xué)生思維中的一個良好的表現(xiàn)與結(jié)果。
數(shù)學(xué)思想方法心得篇二
為了幫助小學(xué)數(shù)學(xué)教師轉(zhuǎn)變數(shù)學(xué)教育觀念,提高對數(shù)學(xué)思想方法的理解和運(yùn)用水平,進(jìn)而提高數(shù)學(xué)專業(yè)素養(yǎng),本書主編王永春于出版了專著《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》,該書一經(jīng)出版,便受到廣大小學(xué)數(shù)學(xué)教師的歡迎,參與學(xué)習(xí)活動的老師們把自己的讀書心得寫出來,在教學(xué)中去實(shí)踐自己的學(xué)習(xí)收獲,主編王永春把這些鮮活的學(xué)習(xí)體會和寶貴的教學(xué)經(jīng)驗(yàn)案例結(jié)集出版,形成了本書,讓更多的老師分享通俗而深刻的理論解讀和接地氣的實(shí)踐經(jīng)驗(yàn)。
本書作者王永春,作為人民教育出版社小學(xué)數(shù)學(xué)編輯室主任,長期從事小學(xué)數(shù)學(xué)教材的編寫工作,致力于課程、教材的研究,對小學(xué)數(shù)學(xué)思想方法有深入的思考和探索?;趯μ岣呓逃|(zhì)量、落實(shí)教育目標(biāo)的強(qiáng)烈責(zé)任感,作者撰寫了系列文章,就有關(guān)數(shù)學(xué)思想方法在小學(xué)教學(xué)中的應(yīng)用作了專門的論述。在此基礎(chǔ)上,形成了本書。
本書是《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》一書的讀后感,是一線教師對數(shù)學(xué)思想方法的解讀和教學(xué)案例的研究。因此本書的內(nèi)容結(jié)構(gòu)和目錄與《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》的內(nèi)容結(jié)構(gòu)和目錄是基本相對應(yīng)的,其中第1章到第五章的目錄與《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》相對應(yīng),第六章教學(xué)案例部分,考慮到各年級案例分布不均,沒有按照冊數(shù)分節(jié),把一、二年級分為第1節(jié),三、四年級分為第二節(jié),五年級分為第三節(jié),六年級分為第四節(jié)。對學(xué)生來說,數(shù)學(xué)思想方法不同于一般的概念和技能,概念與技能通??梢酝ㄟ^短期的訓(xùn)練便能掌握,而數(shù)學(xué)思想方法則需要通過教師長期的滲透和影響才能夠形成。教師應(yīng)在每堂課的教學(xué)中適時(shí)、適當(dāng)?shù)伢w現(xiàn)思想方法的教學(xué)目標(biāo),使學(xué)生在潛移默化中日積月累,通過提高數(shù)學(xué)素養(yǎng)達(dá)到學(xué)好數(shù)學(xué)的目的。
數(shù)學(xué)思想方法不同于一般的概念和技能,后者一般通過短期的訓(xùn)練便能掌握,而數(shù)學(xué)思想方法需要通過在教學(xué)中長期地滲透和影響才能夠形成。古語云“泰山不讓土壤,故能成其大;河海不擇細(xì)流,故能就其深?!苯處煈?yīng)在每堂課的教學(xué)中適時(shí)、適當(dāng)?shù)伢w現(xiàn)思想方法的教學(xué)目標(biāo),使學(xué)生在潛移默化中日積月累,通過提高數(shù)學(xué)素養(yǎng)達(dá)到學(xué)好數(shù)學(xué)的目的。希望數(shù)學(xué)思想方法的教學(xué)能夠像春雨一樣,滋潤著學(xué)生的心田。
數(shù)學(xué)思想方法心得篇三
特殊與一般的數(shù)學(xué)思想:對于在一般情況下難以求解的問題,可運(yùn)用特殊化思想,通過取特殊值、特殊圖形等,找到解題的規(guī)律和方法,進(jìn)而推廣到一般,從而使問題順利求解。常見情形為:用字母表示數(shù);特殊值的應(yīng)用;特殊圖形的應(yīng)用;用特殊化方法探求結(jié)論;用一般規(guī)律解題等。
整體的數(shù)學(xué)思想:所謂整體思想,就是當(dāng)我們遇到問題時(shí),不著眼于問題的各個部分,而是有意識地放大考慮問題的視角,將所需要解決的問題看作一個整體,通過研究問題的整體形式、整體結(jié)構(gòu)、整體與局部的內(nèi)在聯(lián)系來解決問題的思想。用整體思想解題時(shí),是把一些彼此獨(dú)立,但實(shí)質(zhì)上又相互緊密聯(lián)系的量作為整體來處理,一定要善于把握求值或求解的問題的內(nèi)在結(jié)構(gòu)、數(shù)與形之間的內(nèi)在結(jié)構(gòu),要敏銳地洞察問題的本質(zhì),有時(shí)也不要放棄直覺的作用,把注意力和著眼點(diǎn)放在問題的整體上。常見的情形為:整體代入;整式約簡;整體求和與求積;整體換元與設(shè)元;整體變形與補(bǔ)形;整體改造與合并;整體構(gòu)造與操作等。分類討論的數(shù)學(xué)思想:也稱分情況討論,當(dāng)一個數(shù)學(xué)問題在一定的題設(shè)下,其結(jié)論并不唯一時(shí),我們就需要對這一問題進(jìn)行必要的分類。將一個數(shù)學(xué)問題根據(jù)題設(shè)分為有限的若干種情況,在每一種情況中分別求解,最后再將各種情況下得到的答案進(jìn)行歸納綜合。分類討論是根據(jù)問題的不同情況分類求解,它體現(xiàn)了化整為零和積零為整的思想與歸類整理的方法。運(yùn)用分類討論思想解題的關(guān)鍵是如何正確的進(jìn)行分類,即確定分類的標(biāo)準(zhǔn)。分類討論的原則是:(1)完全性原則,就是說分類后各子類別涵蓋的范圍之和,應(yīng)當(dāng)是原被分對象所涵蓋的范圍,即分類不能遺漏;(2)互斥性原則,就是說分類后各子類別涵蓋的范圍之間,彼此互相獨(dú)立,不應(yīng)重疊或部分重疊,即分類不能重復(fù);(3)統(tǒng)一性原則,就是說在同一次分類中,只能按所確定的一個標(biāo)準(zhǔn)進(jìn)行分類,即分類標(biāo)準(zhǔn)統(tǒng)一。分類的方法是:明確討論的對象,確定對象的全體,確立分類標(biāo)準(zhǔn),正確進(jìn)行分類,逐步進(jìn)行討論,獲取階段性結(jié)果,歸納小結(jié),綜合得出結(jié)論。常見的情形為:由字母系數(shù)引起的討論;由絕對值引起的討論;由點(diǎn)、線的運(yùn)動變化引起的討論;由圖形引起的討論;由邊、點(diǎn)的不確定引起的討論;存在特殊情形而引起的討論;應(yīng)用問題中的分類討論等。
轉(zhuǎn)化的數(shù)學(xué)思想:將未知解法或難以解決的問題,通過觀察、分析、聯(lián)想、類比等思維過程,選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行變換,化歸為在已知知識范圍內(nèi)已經(jīng)解決或容易解決的問題。解題的過程實(shí)際就是轉(zhuǎn)化的過程。常見的情形為:高次轉(zhuǎn)化為低次、多元轉(zhuǎn)化為一元、式子轉(zhuǎn)化為方程、次元轉(zhuǎn)化為主元、正面轉(zhuǎn)化為反面、分散轉(zhuǎn)化為集中、未知轉(zhuǎn)化為已知、動轉(zhuǎn)化為靜、部分轉(zhuǎn)化為整體、還有一般與特殊、數(shù)與形、相等與不等之間的相互轉(zhuǎn)化。
數(shù)形結(jié)合的數(shù)學(xué)思想:數(shù)與形是數(shù)學(xué)教學(xué)研究對象的兩個側(cè)面,把數(shù)量關(guān)系和空間形式結(jié)合起來去分析問題、解決問題,就是數(shù)形結(jié)合思想。數(shù)、式能反映圖形的準(zhǔn)確性,圖形能增強(qiáng)數(shù)、式的直觀性,“數(shù)形結(jié)合”可以調(diào)動和促進(jìn)學(xué)生形象思維和抽象思維的協(xié)調(diào)發(fā)展,溝通數(shù)學(xué)知識之間的聯(lián)系,從復(fù)雜的數(shù)量關(guān)系中凸顯最本質(zhì)的特征。數(shù)形結(jié)合是研究數(shù)學(xué)問題的有效途徑和重要策略,它體現(xiàn)了數(shù)學(xué)的和諧美、統(tǒng)一美。華羅庚先生曾用“數(shù)缺形時(shí)少直覺,形少數(shù)時(shí)難入微”作高度的概括。常見的情形為:利用數(shù)軸、函數(shù)的圖象和性質(zhì)、幾何模型、方程與不等式以及數(shù)式特征可以將代數(shù)問題轉(zhuǎn)化為集合問題;利用代數(shù)計(jì)算、幾何圖形特征可以將幾何問題轉(zhuǎn)化為代數(shù)問題;利用三角知識解決幾何問題;利用統(tǒng)計(jì)圖表讓統(tǒng)計(jì)數(shù)據(jù)更形象更直觀等。
函數(shù)與方程的思想:函數(shù)的思想就是利用運(yùn)動與變化的觀點(diǎn)、集合與對應(yīng)的思想,去分析和研究數(shù)學(xué)中的等量關(guān)系,建立和構(gòu)造函數(shù)關(guān)系,再運(yùn)用函數(shù)的圖象和性質(zhì)去分析問題,達(dá)到轉(zhuǎn)化問題的目的,從而使問題獲得解決。方程的思想就是從問題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語言將問題中的條件轉(zhuǎn)化為數(shù)學(xué)模型——方程或方程組,通過解方程或方程組,或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決。函數(shù)與方程的思想實(shí)際是就是一種模型化的思想。常見的情形為:數(shù)字問題、面積問題、幾何問題方程化;應(yīng)用函數(shù)思想解方程問題、不等問題、幾何問題、實(shí)際問題;利用方程作判斷;構(gòu)建方程模型探求實(shí)際問題;應(yīng)用函數(shù)設(shè)計(jì)方案和探求面積等。
常用數(shù)學(xué)方法如:配方法、消元法、換元法、待定系數(shù)法、構(gòu)造法、主元法、面積法、類比法、參數(shù)法、降次法、圖表法、估算法、分析法、綜合法、拼湊法、割補(bǔ)法、反證法、倒數(shù)法、同一法等。
數(shù)學(xué)思想方法心得篇四
新課標(biāo)明確提出開展數(shù)學(xué)思想方法的教學(xué)要求,旨在引導(dǎo)學(xué)生去把握數(shù)學(xué)知識結(jié)構(gòu)的.核心和靈魂,其重要意義顯而易見.數(shù)學(xué)思想方法是從數(shù)學(xué)內(nèi)容中提煉出來的數(shù)學(xué)學(xué)科的精髓,是將數(shù)學(xué)知識轉(zhuǎn)化為數(shù)學(xué)能力的橋梁.
作者:朱毅作者單位:四川省榮縣富北學(xué)校,四川,榮縣,643100刊名:讀寫算(教育教學(xué)研究)英文刊名:duyuxie年,卷(期):“”(7)分類號:關(guān)鍵詞:數(shù)學(xué)思想方法心得篇五
(一)滲透如數(shù)學(xué)思想的概念顯得較為模糊
因?yàn)樵谛W(xué)教學(xué)階段,教師教授的數(shù)學(xué)知識都是比較簡單的,因此數(shù)學(xué)思想自然也就會顯得比較模糊,在小學(xué)數(shù)學(xué)課堂教學(xué)相關(guān)工作進(jìn)行的過程中,從事數(shù)學(xué)教學(xué)相關(guān)工作的教師,想要將數(shù)學(xué)思想滲透到較為模糊的概念中是比較困難的,在日常教學(xué)相關(guān)工作進(jìn)行的過程中,一般情況之下都是不會予以數(shù)學(xué)思想教學(xué)工作充分的總是的,單單是將數(shù)學(xué)教學(xué)當(dāng)成是基礎(chǔ)性數(shù)學(xué)知識教學(xué)工作,僅僅在教學(xué)相關(guān)工作進(jìn)行的過程中傳授給學(xué)生一些解答問題的方式方法,基本上是不會在數(shù)學(xué)思想的層面上對學(xué)生進(jìn)行引導(dǎo)的,從而在此基礎(chǔ)之上想要使得數(shù)學(xué)思想和小學(xué)數(shù)學(xué)教學(xué)有機(jī)的相互融合在一起就變得比較困難。
(二)學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中基本上不會做出反思
小學(xué)生正處于的是形象思維為主的這樣一個階段,在學(xué)習(xí)數(shù)學(xué)知識的過程中并沒有形成較為明確的認(rèn)識和觀點(diǎn),從而在此基礎(chǔ)之上想要對某些抽象的數(shù)學(xué)概念形成明確的了解就會變得比較困難,因此在學(xué)習(xí)數(shù)學(xué)的過程中一般情況之下都是停留在最為基礎(chǔ)的模仿式學(xué)習(xí)階段中的,依據(jù)教學(xué)教學(xué)流程展開模仿式數(shù)學(xué)學(xué)習(xí),在此基礎(chǔ)之上學(xué)生形成的認(rèn)識觀點(diǎn)自然也是較為模糊的,進(jìn)而在模仿式學(xué)習(xí)的基礎(chǔ)上,想要在學(xué)習(xí)工作完成之后對數(shù)學(xué)學(xué)習(xí)做出反思也就是一件比較困難的事情。
(三)對知識進(jìn)行總結(jié)和整理的意識是較為薄弱的
小學(xué)數(shù)學(xué)教學(xué)階段中包含的知識點(diǎn)是十分瑣碎的,當(dāng)教師開展教學(xué)相關(guān)工作的過程中想要將各個知識點(diǎn)串聯(lián)起來也就是一件比較困難的事情,當(dāng)教師開展課堂教學(xué)相關(guān)工作的過程中,一般情況之下僅僅會在復(fù)習(xí)的時(shí)候開展知識點(diǎn)梳理工作,在日常課堂教學(xué)相關(guān)工作進(jìn)行的過程中,一般情況之下都是不會向?qū)W生闡述各個知識點(diǎn)之間呈現(xiàn)出來的相互關(guān)系的,學(xué)生在日常學(xué)習(xí)的過程中自然也就難以積累下來豐富的經(jīng)驗(yàn)及解決模式,因此教師想要使得課堂教學(xué)相關(guān)工作的效率得到一定程度的提升自然也就比較困難。
2滲透到教學(xué)中的方法
1.在研究探索知識的過程中,著重于將數(shù)學(xué)思想方法滲透到學(xué)習(xí)中
教師應(yīng)該加強(qiáng)在學(xué)生學(xué)習(xí)過程中教學(xué)的力度,一定要凸顯出數(shù)學(xué)知識中一些定理、公式、性質(zhì)等得來的探究過程,進(jìn)而使同學(xué)們把過程轉(zhuǎn)換成解決問題的思想和方法。知識形成并發(fā)展的過程中應(yīng)穿針引線地將數(shù)學(xué)思想方法滲入其中,讓學(xué)生能夠掌握簡單的基礎(chǔ)知識,也能體會深層數(shù)學(xué)原理、性質(zhì)的探索過程,形成良好的解題思路,使學(xué)生在數(shù)學(xué)方面的造詣達(dá)到一個新的高度。教師在授課過程中,要引導(dǎo)學(xué)生自覺地對數(shù)學(xué)知識、方法進(jìn)行探究、學(xué)習(xí),主動追溯知識的探索過程,感悟數(shù)學(xué)知識,將數(shù)學(xué)思想方法與數(shù)學(xué)知識的學(xué)習(xí)融會貫通,使其在數(shù)學(xué)方面達(dá)到質(zhì)的飛躍。
2.在解題和講解例題的過程中滲透數(shù)學(xué)思想方法
在授課中,教師講解例題并且舉一反三,每解決一個問題和例題就為學(xué)生歸納總結(jié)出一種方法,久而久之,學(xué)生就會形成新的解題思路、學(xué)會新的解題方法。對于初中這個階段來講,許多典型例題被設(shè)計(jì)出來,許多出色的題目也出現(xiàn)在每年中考題中,老師有效地挑選具有啟示性和創(chuàng)造性的題目進(jìn)行訓(xùn)練,再將數(shù)學(xué)思想和教學(xué)方法展示在對這些問題的講解和探究中,可以培養(yǎng)學(xué)生的解題能力。
3.按時(shí)總結(jié),漸進(jìn)地消化數(shù)學(xué)思想方法
在初中的數(shù)學(xué)知識體系中蘊(yùn)含著數(shù)學(xué)思想,不同的數(shù)學(xué)思想通常蘊(yùn)藏于一個內(nèi)容中,而同一個數(shù)學(xué)思想方法又常常被運(yùn)用于許多不同的基礎(chǔ)知識中,教師在對一道題目進(jìn)行分析后,要清晰地向?qū)W生展示出教師在解決這道題時(shí)的思路以及解決這道題需要哪些我們原先學(xué)習(xí)的知識以及解題方法。與此同時(shí),要引導(dǎo)學(xué)生對新方法、新思路的思考,鍛煉其發(fā)散性思維。老師通過“一題多解”及舉一反三等方式及時(shí)鞏固,使學(xué)生慢慢內(nèi)化這些數(shù)學(xué)思想、解題思路等。
3解題滲透數(shù)學(xué)思想方法
(1)注意分析探求解題思路時(shí)數(shù)學(xué)思想方法的運(yùn)用。解題的過程就是在數(shù)學(xué)思想方法的指導(dǎo)下,合理聯(lián)想提取相關(guān)知識,調(diào)用一定數(shù)學(xué)方法加工、處理題設(shè)條件及知識,逐步縮小題設(shè)與題干之間的差異的過程。解題思想的尋求就自然是運(yùn)用數(shù)學(xué)思想方法分析、解決問題的過程。
(2)注意數(shù)學(xué)思想方法在解決典型問題中的運(yùn)用。如解題中求二面角大小最常用的方法之一就是:根據(jù)已知條件,在二面角內(nèi)尋找或作出過一個面內(nèi)一點(diǎn)到另一個面上的垂線,過這點(diǎn)再作二面角的棱的垂線,然后連結(jié)兩個垂足。這樣平面角即為所得的直角三角形的一銳角。這個通法就是在立體問題化平面的轉(zhuǎn)化思想的指導(dǎo)下求得的,其中三垂線定理在構(gòu)圖中的運(yùn)用,也是分析、聯(lián)想等數(shù)學(xué)思維方法運(yùn)用之所得。
(3)用數(shù)學(xué)思想指導(dǎo)知識、方法的靈活運(yùn)用,進(jìn)行一題多解的練習(xí),培養(yǎng)思維的發(fā)散性、靈活性、敏捷性;對習(xí)題靈活變通、引伸推廣,培養(yǎng)思維的深刻性、抽象性;組織引導(dǎo)對解法的簡捷性的反思評估,不斷優(yōu)化思維品質(zhì),培養(yǎng)思維的嚴(yán)謹(jǐn)性,批判性。對同一數(shù)學(xué)問題的多角度的審視引發(fā)的不同聯(lián)想,是一題多解的思維本源。豐富合理的聯(lián)想,是對知識的深刻理解,及類比、轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程等數(shù)學(xué)思想運(yùn)用的必然。數(shù)學(xué)方法、數(shù)學(xué)思想的自覺運(yùn)用往往使我們運(yùn)算簡捷、邏輯嚴(yán)密,是提高數(shù)學(xué)能力的必由之路。
4提高課堂教學(xué)效率
重視備課,明確教學(xué)目標(biāo)
如果說數(shù)學(xué)是一門藝術(shù),那么備好課是搞好藝術(shù)的基本條件。不經(jīng)武裝的戰(zhàn)士上戰(zhàn)場,只能束手就擒;沒有充分準(zhǔn)備的教師上講臺,充其量是“信口開河”,決談不上駕馭課堂的能力,作為教師,傳授知識是我們的責(zé)任,出色的備課也是我們實(shí)行責(zé)任的前提。那怎么去用心備課呢?在此我只談?wù)勛约旱母形颍菏紫龋x好合適的起點(diǎn),起點(diǎn)就是新知識在原有知識基礎(chǔ)上的生長點(diǎn)。起點(diǎn)要合適,采有利于促進(jìn)知識遷移,學(xué)生才能學(xué),才肯學(xué)。起點(diǎn)過低,學(xué)生沒興趣,不愿學(xué);起點(diǎn)過高,學(xué)生又聽不懂,不能學(xué)。
其次,明確重點(diǎn),每一堂課都要有一個重點(diǎn),而整堂的教學(xué)都是圍繞著這個重點(diǎn)來逐步展開的。為了讓學(xué)生明確本堂課的重點(diǎn)、難點(diǎn),教師在備課時(shí),應(yīng)該在課本上做標(biāo)記。重點(diǎn)往往是新知識的起點(diǎn)和主體部分。備課時(shí)要突出重點(diǎn)。一節(jié)課內(nèi),首先要在時(shí)間上保證重點(diǎn)內(nèi)容重點(diǎn)講,要緊緊圍繞重點(diǎn),以它為中心,輔以知識講練,引導(dǎo)啟發(fā)學(xué)生加強(qiáng)對重點(diǎn)內(nèi)容的理解,做到心中有重點(diǎn),講中出重點(diǎn),才能使整個一堂課有個靈魂。最后,注重聯(lián)系,即新舊知識的聯(lián)系。數(shù)學(xué)知識本身系統(tǒng)性很強(qiáng),章節(jié)、例題、習(xí)題中都有密切的聯(lián)系,要真正搞懂新舊知識的交點(diǎn),才能把知識融會貫通,溝通知識間的縱橫聯(lián)系,形成知識網(wǎng)絡(luò),學(xué)生才能舉一反三,更有利于靈活地運(yùn)用知識。作為教師,切記備課的重要性,一切的一切都要從備課開始,出色的備課是成功課堂教學(xué)的前提。
重視教學(xué)方法的作用,加強(qiáng)學(xué)法的指導(dǎo)
曾經(jīng)看過這么一句話,說的是“未來的文盲不再是不識字的人,而是沒有學(xué)會怎樣學(xué)習(xí)的人”。這充分說明了學(xué)習(xí)方法的重要性,它是獲取知識的金鑰匙。學(xué)生一旦掌握了學(xué)習(xí)方法,就能自己打開知識寶庫的大門。所以我們應(yīng)該改進(jìn)課堂教學(xué),運(yùn)用正確的教學(xué)方法去指導(dǎo)學(xué)生的學(xué)法,傳授給學(xué)生的不僅僅是知識,更重要的是學(xué)習(xí)方法。同時(shí)每一節(jié)課都有每一節(jié)課的知識點(diǎn),都有需要掌握的重點(diǎn)內(nèi)容。教師能隨著教學(xué)內(nèi)容的變化,教學(xué)對象的變化,教學(xué)設(shè)備的變化,靈活應(yīng)用教學(xué)方法。我們可以結(jié)合課堂內(nèi)容,靈活采用談話、讀書指導(dǎo)、作業(yè)、練習(xí)等多種教學(xué)方法。有時(shí),在一堂課上,要同時(shí)使用多種教學(xué)方法。俗話說:“教無定法,貴要得法”。只要能激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的學(xué)習(xí)積極性,有助于學(xué)生思維能力的培養(yǎng),有利于所學(xué)知識的掌握和運(yùn)用,都是好的教學(xué)方法。教會學(xué)生的學(xué)習(xí)方法,是我們作為教師的責(zé)任。
綜上所述,學(xué)好數(shù)學(xué)對學(xué)生將來的發(fā)展起到至關(guān)重要的作用,作為教師,我們要認(rèn)真?zhèn)湔n,全身心的投入課堂,創(chuàng)造最佳的課堂氣氛和環(huán)境,充分調(diào)動學(xué)生的內(nèi)在積極因素,激發(fā)求知欲,千方百計(jì)使學(xué)生的注意力高度集中,同時(shí)還應(yīng)該不斷地努力提高自己的能力,在有限的時(shí)間內(nèi),將知識最大化的傳授給學(xué)生,提高課堂教學(xué)效率。
數(shù)學(xué)思想方法心得篇六
一、集合的思想方法
把一組對象放在一起,作為討論的范圍,這是人類早期就有的思想方法,繼而把一定程度抽象了的思維對象,如數(shù)學(xué)上的點(diǎn)、數(shù)、式放在一起作為研究對象,這種思想就是集合思想。集合思想作為一種思想,在小學(xué)數(shù)學(xué)中就有所體現(xiàn)。在小學(xué)數(shù)學(xué)中,集合概念是通過畫集合圖的辦法來滲透的。
如用圓圈圖(韋恩圖)向?qū)W生直觀的滲透集合概念。讓他們感知圈內(nèi)的物體具有某種共同的屬性,可以看作一個整體,這個整體就是一個集合。利用圖形間的關(guān)系則可向?qū)W生滲透集合之間的關(guān)系,如長方形集合包含正方形集合,平行四邊形集合包含長方形集合,四邊形集合又包含平行四邊行集合等。
二、對應(yīng)的思想方法
對應(yīng)是人的思維對兩個集合間問題聯(lián)系的把握,是現(xiàn)代數(shù)學(xué)的一個最基本的概念。小學(xué)數(shù)學(xué)教學(xué)中主要利用虛線、實(shí)線、箭頭、計(jì)數(shù)器等圖形將元素與元素、實(shí)物與實(shí)物、數(shù)與算式、量與量聯(lián)系起來,滲透對應(yīng)思想。
如人教版一年級上冊教材中,分別將小兔和磚頭、小豬和木頭、小白兔和蘿卜、蘋果和梨一一對應(yīng)后,進(jìn)行多少的比較學(xué)習(xí),向?qū)W生滲透了事物間的對應(yīng)關(guān)系,為學(xué)生解決問題提供了思想方法。
三、數(shù)形結(jié)合的思想方法
數(shù)與形是數(shù)學(xué)教學(xué)研究對象的兩個側(cè)面,把數(shù)量關(guān)系和空間形式結(jié)合起來去分析問題、解決問題,就是數(shù)形結(jié)合思想。“數(shù)形結(jié)合”可以借助簡單的圖形、符號和文字所作的示意圖,促進(jìn)學(xué)生形象思維和抽象思維的協(xié)調(diào)發(fā)展,溝通數(shù)學(xué)知識之間的聯(lián)系,從復(fù)雜的數(shù)量關(guān)系中凸顯最本質(zhì)的特征。它是小學(xué)數(shù)學(xué)教材編排的重要原則,也是小學(xué)數(shù)學(xué)教材的一個重要特點(diǎn),更是解決問題時(shí)常用的.方法。
例如,我們常用畫線段圖的方法來解答應(yīng)用題,這是用圖形來代替數(shù)量關(guān)系的一種方法。我們又可以通過代數(shù)方法來研究幾何圖形的周長、面積、體積等,這些都體現(xiàn)了數(shù)形結(jié)合的思想。
四、函數(shù)的思想方法
恩格斯說:“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡兒的變數(shù)。有了變數(shù),運(yùn)動進(jìn)入了數(shù)學(xué),有了變數(shù),辯證法進(jìn)入了數(shù)學(xué),有了變數(shù),微分和積分也就立刻成為必要的了?!蔽覀冎?,運(yùn)動、變化是客觀事物的本質(zhì)屬性。函數(shù)思想的可貴之處正在于它是運(yùn)動、變化的觀點(diǎn)去反映客觀事物數(shù)量間的相互聯(lián)系和內(nèi)在規(guī)律的。學(xué)生對函數(shù)概念的理解有一個過程。在小學(xué)數(shù)學(xué)教學(xué)中,教師在處理一些問題時(shí)就要做到心中有函數(shù)思想,注意滲透函數(shù)思想。
函數(shù)思想在人教版一年級上冊教材中就有滲透。如讓學(xué)生觀察《20以內(nèi)進(jìn)位加法表》,發(fā)現(xiàn)加數(shù)的變化引起的和的變化的規(guī)律等,都較好的滲透了函數(shù)的思想,其目的都在于幫助學(xué)生形成初步的函數(shù)概念。
這就是我們精心為大家準(zhǔn)備的小升初學(xué)習(xí)數(shù)學(xué)思想方法,希望對大家有用!更多小升初復(fù)習(xí)資料及相關(guān)資訊,盡在數(shù)學(xué)網(wǎng),請大家及時(shí)關(guān)注!
數(shù)學(xué)思想方法心得篇七
復(fù)習(xí)備考需要足夠數(shù)量的習(xí)題,只有針對性訓(xùn)練才能在中考得以正常發(fā)揮,只有每天動筆適當(dāng)?shù)淖鲂┝?xí)題才能保持思維的連貫性。但僅僅做題還是遠(yuǎn)遠(yuǎn)不夠,需要解題后的反思與總結(jié)。在反思中才能進(jìn)一步看透問題的本質(zhì),體會命題的意圖。在總結(jié)的過程中也才能優(yōu)化解題的思路,探索處理問題規(guī)律,形成有自己特色的經(jīng)驗(yàn)。
在復(fù)習(xí)中既要注重?cái)?shù)學(xué)概念、法則、定理等基礎(chǔ)知識的梳理,更要關(guān)注解題后的反思與總結(jié),領(lǐng)會解題中蘊(yùn)含的數(shù)學(xué)思想方法,并通過不斷積累逐漸的納入自己已有的知識體系。在反思總結(jié)中可以從兩方面考慮:一是宏觀層面,如每復(fù)習(xí)一塊內(nèi)容后可以從主要知識考點(diǎn)、考點(diǎn)之間的聯(lián)系等去反思;二是微觀層面,如解題后的可以對所解題的結(jié)構(gòu)是否理解清楚,解題過程中運(yùn)用了哪些基礎(chǔ)知識和基本技能?哪些步驟易出錯?原因何在?如何防止?也可以對解題的方法進(jìn)行評價(jià)找出最優(yōu)的解法,考慮解題中運(yùn)用了哪些思維方式、數(shù)學(xué)思想方法?想法是如何分析出來的?有無規(guī)律可循?也可以對解題步驟進(jìn)行分析,抓住解題的關(guān)鍵。如解題的難點(diǎn)在哪?我是如何突破的?能否用其他方法也得到同樣結(jié)果?其方法的優(yōu)劣所在?若能把反思與總結(jié)當(dāng)作一個經(jīng)常性、自覺性的學(xué)習(xí)行為,就會在不斷地積累和總結(jié)基本的數(shù)學(xué)活動經(jīng)驗(yàn)中,提高數(shù)學(xué)知識的運(yùn)用能力。
......
函數(shù)思想,是指用函數(shù)的概念和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題。方程思想,是從問題中的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語言將問題中的條件轉(zhuǎn)化為數(shù)學(xué)模型(方程、不......
數(shù)學(xué)思想方法心得篇八
《新課程標(biāo)準(zhǔn)》在總目標(biāo)中提出:通過義務(wù)教育階段的數(shù)學(xué)學(xué)習(xí),學(xué)生能獲得適應(yīng)社會生活和進(jìn)一步發(fā)展所必須的數(shù)學(xué)知識、基本技能、基本思想、基本活動經(jīng)驗(yàn)。這句話對于我們新教師來已經(jīng)是爛熟于心,但對于這句話真正理解的少之又少,讀了王永春老師的《小學(xué)數(shù)學(xué)思想與數(shù)學(xué)思想方法》之后,對這句話才有了真正的認(rèn)識?!笆谌艘贼~不如授人以漁”,對于學(xué)生而言,數(shù)學(xué)知識在其次,數(shù)學(xué)方法才是最重要的,在這本書中,王老師為我們總結(jié)了小學(xué)數(shù)學(xué)知識中蘊(yùn)含的數(shù)學(xué)思想,這讓我們在日常教學(xué)中可以結(jié)合所教知識很清楚地知道這些知識中蘊(yùn)含了哪些數(shù)學(xué)思想方法,為我們的教學(xué)提供了指導(dǎo)和幫助。
這學(xué)期我任三年級數(shù)學(xué),三年級上冊中的主要思想有:第3單元“測量”中學(xué)習(xí)的長度單位:分米(dm)、毫米(mm)、千米(km)是符號化思想的應(yīng)用;第7單元“長方形和正方形”中有些習(xí)題如本書中第25頁的“案例2”應(yīng)用了分類思想;第9單元“數(shù)學(xué)廣角――集合”中學(xué)習(xí)的重復(fù)問題是集合思想的應(yīng)用;第8單元“分?jǐn)?shù)的初步認(rèn)識”中學(xué)生用一張正方形白紙可以折出不同的形狀表示它的1/4。在學(xué)生充分展示后,我們可以引導(dǎo)學(xué)生發(fā)現(xiàn)雖然形狀、大小不同,但都是把一張正方形白紙平均成4份,每份是它的1/4。這個教學(xué)過程中有變中有不變的思想的應(yīng)用。第8單元“分?jǐn)?shù)的初步認(rèn)識”中把一個圓形平均分,分的份數(shù)越多,分?jǐn)?shù)越小,如果一直分下去,可以對應(yīng)寫出無限多個分?jǐn)?shù)。
生活本身是一個巨大的數(shù)學(xué)課堂,生活中客觀存在著大量有價(jià)值的數(shù)學(xué)現(xiàn)象。指導(dǎo)學(xué)生運(yùn)用數(shù)學(xué)知識寫日記,能促使學(xué)生主動地用數(shù)學(xué)的眼光去觀察生活,去思考生活問題,讓生活問題數(shù)學(xué)化。在教學(xué)中注重培養(yǎng)孩子運(yùn)用數(shù)學(xué)的意識,增強(qiáng)學(xué)生運(yùn)用知識解決實(shí)際問題的能力。由此可見,數(shù)學(xué)并不是靠老師教會的,而是在教師的指導(dǎo)下,靠學(xué)生自己學(xué)會的。在教學(xué)中教師要給學(xué)生創(chuàng)造情景、提供機(jī)會,給學(xué)生充足的時(shí)間和空間,讓學(xué)生主動探究新知,在探究中發(fā)現(xiàn)規(guī)律、歸納規(guī)律。因此,我們在課堂教學(xué)中,多留些時(shí)間給學(xué)生,讓他們動手操作;多留些時(shí)間給學(xué)生,自己的`意見;多留些時(shí)間給學(xué)生,讓他們質(zhì)疑問難。保證充分的時(shí)間和空間,讓學(xué)生再課內(nèi)交流、討論、質(zhì)疑。
這本書教給了我們一種教學(xué)理念,教會了我們一種教學(xué)方法。讀書更是一種好的學(xué)習(xí)手段,它將帶領(lǐng)我們不斷更新、與時(shí)俱進(jìn),成為一名學(xué)生喜歡的、有專業(yè)素養(yǎng)的好老師。
數(shù)學(xué)思想方法心得篇九
一、注重引導(dǎo),抓住學(xué)習(xí)關(guān)鍵
二、要正確處理本課程的自身邏輯系統(tǒng)與相關(guān)課程的關(guān)系
初數(shù)研究課在研究初等數(shù)學(xué)問題時(shí),大多采用專題討論的方法,都有一套完整的體系。如果過分強(qiáng)調(diào)自身完整的邏輯系統(tǒng),容易導(dǎo)致不同學(xué)科、不同課程的內(nèi)客及方法有很多重復(fù)和交叉。
如數(shù)與初等數(shù)論中的相關(guān)內(nèi)容,解析式的恒等變形,方程、不等式的解法與證明,幾何證題法與證題術(shù)排列、組合及數(shù)列的一些解題方法等。如果不處理好它們之間的關(guān)系,只是簡單地追求各門課程自身體系的完整,既不利于學(xué)生整體數(shù)學(xué)思想的建立,又制約了他們數(shù)學(xué)綜合運(yùn)用能力的提高,同時(shí)占用了很多的課時(shí),所以,對于相關(guān)課程中己作詳盡討論過的知識及理論,應(yīng)作為工具來應(yīng)用,避免一些不必要的重復(fù)。
三、變被動式學(xué)習(xí)為主動式學(xué)習(xí)
1.知識系統(tǒng)的探究
初數(shù)研究課涉及大量的理論,教師講、學(xué)生聽的傳統(tǒng)教學(xué)模式既占用課時(shí)多,又難以體現(xiàn)學(xué)生的主體性。因此對理論性較強(qiáng)的內(nèi)容,教師可以先提出一些切題的問題作為一堂課的鍥子,留待后面逐個解決。這些問題將整個教學(xué)內(nèi)容串起來,起到提綱摯領(lǐng)的作用,使學(xué)生明確學(xué)習(xí)目標(biāo),集中學(xué)習(xí)資源(如本課程及相關(guān)課程的教村及參考書)有針對性地去探究問題,然后教師組織學(xué)生對探究的結(jié)果進(jìn)行歸納整理,形成較完整的知識體系。當(dāng)然一個問題的解訣并非探究的終結(jié),在探究過程中教師與學(xué)生都可以提出一些新問題,延續(xù)學(xué)生探究的熱情,在合作交流的民主和諧的氛圍里,盡可能地讓學(xué)生走向自由探究。
2.解題方法的探究
從學(xué)生的認(rèn)知角度未說,解題過程是獨(dú)立的發(fā)現(xiàn)、探索與積極思考的過程,這種探索過程中所形成的意識和思維,就是真正的創(chuàng)造與發(fā)現(xiàn)。應(yīng)該說,解題教學(xué)是中學(xué)數(shù)學(xué)教學(xué)的主要任務(wù)之一,設(shè)置初數(shù)研究課程的目的之一,就是結(jié)合中學(xué)實(shí)際對解題作專門的訓(xùn)練。
3.條件與結(jié)論的探究
對一個問題的條件或結(jié)論進(jìn)行探究是對問題深入研究的重要組成部分,也是初數(shù)研究課程中具有挑戰(zhàn)性的任務(wù)之一,引導(dǎo)學(xué)生從不同角度、不同層面來看問題,對學(xué)生的發(fā)散思維及創(chuàng)造思維的培養(yǎng),都能起到良好的推動作用。
隨著教學(xué)改革的深化,教學(xué)思想方法不僅要在理論上做研究探討,更重要的是需要在實(shí)踐中不斷地創(chuàng)造與完善,才能使教學(xué)取得較好的效果。
[數(shù)學(xué)思想方法心得體會]
數(shù)學(xué)思想方法心得篇十
為什么我看這個數(shù)學(xué)思維方法幾頁就覺得很受益,有觸動。因?yàn)橐郧白约簲?shù)學(xué)能學(xué)好感覺只是天然的選擇,下意識的動作,在這里能找到原理,讓你的行為有理論依據(jù),更加明晰思維方法的重要性。自己就是受益于這些思維方法,但卻沒意識到,看了書才恍然大悟。很多習(xí)以為常,想當(dāng)然的事情明白了這樣設(shè)計(jì)的道理了。比如為啥設(shè)計(jì)小學(xué)五年級六年級。為什么三四年級、初中一年級會是檻。區(qū)別主要是抽象能力的發(fā)展不同。思維在低年級作用不是特別大。差距顯現(xiàn)不出來。從作者的言外之意也可以看到數(shù)學(xué)思維方法是最重要的東西,但卻不是課堂教學(xué)的常態(tài)目標(biāo),只是教學(xué)的附屬品,滲透出來的,有人悟性高,捕獲的多,發(fā)展的好。有人不敏感,攫取的少。差距就出來了。
但不管從數(shù)學(xué)教育從業(yè)者還是我們個人的經(jīng)歷來說,數(shù)學(xué)思維方法都是最基本的。屬于對數(shù)學(xué)本質(zhì)的認(rèn)識,理性的認(rèn)識。
奧數(shù)就是為了訓(xùn)練數(shù)學(xué)思維方法啊。但是真假奧數(shù)不一樣,假奧數(shù)就是教給你套路,記住就好。
我自己數(shù)學(xué)學(xué)習(xí)也是原發(fā)性的。沒人指導(dǎo),沒人培訓(xùn)。不過有人指點(diǎn)肯定會更輕松,或者能更進(jìn)一步。
我們常說語文學(xué)習(xí),詞匯是理解力的基礎(chǔ)。在數(shù)學(xué)中,概念是數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),是抽象思維的基礎(chǔ)和基本形式。概念大概等同于中文閱讀里的抽象詞匯,不過概念是有相關(guān)系統(tǒng)的東西。說這個是為了說明我們平時(shí)說的打好基礎(chǔ)再拓展。到底什么是基礎(chǔ)。基礎(chǔ)就是概念與概念之間的關(guān)系構(gòu)成的知識結(jié)構(gòu)。
所以也自然明白日常我們說的“拓展”是什么。拓展就是在理解概念之間關(guān)系的知識結(jié)構(gòu)基礎(chǔ)上,利用思想方法、模型思想、推理思想等學(xué)習(xí)數(shù)學(xué),解決問題。
數(shù)學(xué)思想方法心得篇十一
一、初中數(shù)學(xué)思想方法教學(xué)的重要性
長期以來,傳統(tǒng)的數(shù)學(xué)教學(xué)中,只注重知識的傳授,卻忽視知識形成過程中的數(shù)學(xué)思想方法的現(xiàn)象非常普遍,它嚴(yán)重影響了學(xué)生思維發(fā)展和能力培養(yǎng)。隨著教育改革的不斷深入,越來越多的教育工作者,特別是一線的教師們充分認(rèn)識到:中學(xué)數(shù)學(xué)教學(xué),一方面要傳授數(shù)學(xué)知識,使學(xué)生掌握必備數(shù)學(xué)基礎(chǔ)知識;另一方面,更要通過數(shù)學(xué)知識這個載體,挖掘其中蘊(yùn)含的數(shù)學(xué)思想方法,更好地理解數(shù)學(xué),掌握數(shù)學(xué),形成正確的數(shù)學(xué)觀和一定的數(shù)學(xué)意識。事實(shí)上,單純的知識教學(xué),只顯見于學(xué)生知識的積累,是會遺忘甚至于消失的,而方法的掌握,思想的形成,才能使學(xué)生受益終生,正所謂“授之以魚,不如授之以漁”。不管他們將來從事什么職業(yè)和工作,數(shù)學(xué)思想方法,作為一種解決問題的思維策略,都將隨時(shí)隨地有意無意地發(fā)揮作用。
二、初中數(shù)學(xué)思想方法的主要內(nèi)容
初中數(shù)學(xué)中蘊(yùn)含的數(shù)學(xué)思想方法很多,最基本最主要的有:轉(zhuǎn)化的思想方法,數(shù)形結(jié)合的思想方法,分類討論的思想方法,函數(shù)與方程的思想方法等。(一)轉(zhuǎn)化的思想方法。轉(zhuǎn)化的思想方法是人們將需要解決的問題,通過某種轉(zhuǎn)化手段,歸結(jié)為另一種相對容易解決的或已經(jīng)有解決方法的問題,從而使原來的問題得到解決。初中數(shù)學(xué)處處都體現(xiàn)出轉(zhuǎn)化的思想方法,例如:在解二元一次方程組中,我們一般都通過代入消元法和加減消元法將它轉(zhuǎn)化為一元一次方程,而在解一元二次方程時(shí),可以通過配方法因成分解法直接開平方法,將它化為一元一次方程來解等。它們都是化未知為已知,體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想,又如解方程,我們用換元法來解,也體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想。在幾何中很多計(jì)算題也同樣體現(xiàn)著轉(zhuǎn)化的數(shù)學(xué)思想。(二)數(shù)形結(jié)合的思想方法。數(shù)學(xué)是研究現(xiàn)實(shí)空間形式和數(shù)量關(guān)系的科學(xué),因而研究總是圍繞著數(shù)與形進(jìn)行的。“數(shù)”就是代數(shù)式、函數(shù)、不等式等表達(dá)式“,形”就是圖形、圖像、曲線等。數(shù)形結(jié)合就是抓住數(shù)與形之間的本質(zhì)上的聯(lián)系,以形直觀地表達(dá)數(shù),以數(shù)精確地研究形。“數(shù)無形時(shí)不直觀,形無數(shù)時(shí)難入微?!睌?shù)形結(jié)合是研究數(shù)學(xué)問題的重要思想方法。初中數(shù)學(xué)中,通過數(shù)軸,將數(shù)與點(diǎn)對應(yīng),通過直角坐標(biāo)系,將函數(shù)與圖像對應(yīng),用數(shù)形結(jié)合的思想方法學(xué)習(xí)了相反數(shù)的'概念、絕對值的概念,有理數(shù)大小比較的法則,研究了函數(shù)的性質(zhì)等。特別學(xué)習(xí)一次函數(shù)、二次函數(shù)更進(jìn)一步地把直線和一次函數(shù)聯(lián)系著,任向一條直線對著一個不同一次函數(shù)表達(dá)式,不同的拋物線對著不同的二次函數(shù)表達(dá)式,而用數(shù)形結(jié)合的思想,可以利用二次函數(shù)或二次函數(shù)的圖象簡單的解出一元一次不等式和一元二次不等式和方程,更好地通過形象思維,過渡到抽象思維。大大減輕了學(xué)習(xí)的難度,也會增強(qiáng)學(xué)生學(xué)習(xí)的興趣。
三、分類討論的思想方法
分為不同種類的思想方法。分類是以比較為基礎(chǔ)的,它能揭示數(shù)學(xué)對象之間的內(nèi)在規(guī)律,有助于學(xué)生總結(jié)歸納數(shù)學(xué)知識,解決數(shù)學(xué)問題。初中數(shù)學(xué)從整體上看分為代數(shù)、幾何兩大類,采用不同方法進(jìn)行研究,就是分類思想的體現(xiàn)。具體來說,實(shí)數(shù)的分類,方程的分類、三角形的分類,函數(shù)的分類等,都是分類思想的具體體現(xiàn)。在初中數(shù)學(xué)問題中,不管是代數(shù)問題或者是幾何問題,都體現(xiàn)著分類討論的數(shù)學(xué)思想方法。
四、函數(shù)與方程的思想方法
函數(shù)思想是客觀世界中事物運(yùn)動變化,相互聯(lián)系,相互制約的普遍規(guī)律在數(shù)學(xué)中的反映,它的本質(zhì)是變量之間的對應(yīng)。用變化的觀點(diǎn),把所研究的數(shù)量關(guān)系,用函數(shù)的形式表示出來的,然后用函數(shù)的性質(zhì)進(jìn)行研究,使問題獲解,如果函數(shù)的形式是用解析式的方法表示出來的。在實(shí)中數(shù)學(xué)教材中,其它的思想方法都是隱藏在數(shù)學(xué)知識里,沒有單獨(dú)提出來,而函數(shù)與方程的思想方法,其內(nèi)容和名稱形式一致,單獨(dú)作為章節(jié)系統(tǒng)學(xué)習(xí)。
數(shù)學(xué)思想方法心得篇十二
高考試題重在考查對知識理解的準(zhǔn)確性、深刻性,重在考查知識的綜合靈活運(yùn)用。它著眼于知識點(diǎn)新穎巧妙的組合,試題新而不偏,活而不過難;著眼于對數(shù)學(xué)思想方法、數(shù)學(xué)能力的考查。尤其是近幾年的高考試題加大了對考生應(yīng)用能力的考查,高考《考試說明》中明確指出:“能綜合應(yīng)用所學(xué)數(shù)學(xué)知識、思想方法解決問題,包括解決在相關(guān)學(xué)科、生產(chǎn)生活中的數(shù)學(xué)問題……”、“有效地檢測考生對中學(xué)數(shù)學(xué)知識中所蘊(yùn)涵的數(shù)學(xué)思想和方法的掌握程度……”。高考的這種積極導(dǎo)向,決定了我們的數(shù)學(xué)復(fù)習(xí)中必須以數(shù)學(xué)思想指導(dǎo)知識、方法的運(yùn)用,整體把握各部分知識的內(nèi)在聯(lián)系。
高考復(fù)習(xí)有別于新知識的教學(xué)。它是在學(xué)生基本掌握了中學(xué)數(shù)學(xué)知識體系、具備了一定的解題經(jīng)驗(yàn)的基礎(chǔ)上的復(fù)課數(shù)學(xué),也是在學(xué)生基本認(rèn)識了各種數(shù)學(xué)基本方法、思維方法及數(shù)學(xué)思想的基礎(chǔ)上的復(fù)課數(shù)學(xué)。其目的在于深化學(xué)生對基礎(chǔ)知識的理解,完善學(xué)生的知識結(jié)構(gòu),在綜合性強(qiáng)的練習(xí)中進(jìn)一步形成基本技能,優(yōu)化思維品質(zhì),使學(xué)生在多次的練習(xí)中充分運(yùn)用數(shù)學(xué)思想方法,提高數(shù)學(xué)能力。高考復(fù)習(xí)是學(xué)生發(fā)展數(shù)學(xué)思想,熟練掌握數(shù)學(xué)方法理想的難得的深化過程。
數(shù)學(xué)思想方法心得篇十三
中學(xué)數(shù)學(xué)內(nèi)容從總體上可以分為兩個層次:一個稱為基礎(chǔ)知識,另一個稱為深層知識.基礎(chǔ)知識包括概念、性質(zhì)、法則、公式、公理、定理等數(shù)學(xué)的基本知識和基本技能,深層知識主要指數(shù)學(xué)思想和數(shù)學(xué)方法。
基礎(chǔ)知識是深層知識的基礎(chǔ),是教學(xué)大綱中明確規(guī)定的,教材中明確給出的,以及具有較強(qiáng)操作性的知識.學(xué)生只有通過對教材的學(xué)習(xí),在掌握和理解了一定的基礎(chǔ)知識后,才能進(jìn)一步的學(xué)習(xí)和領(lǐng)悟相關(guān)的深層知識。
那種只重視講授基礎(chǔ)知識,而不注重滲透數(shù)學(xué)思想、方法的復(fù)習(xí),是不完備的,它不利于對所學(xué)知識的真正理解和掌握,使學(xué)生的知識水平永遠(yuǎn)停留在一個初級階段,難以提高;反之,如果單純強(qiáng)調(diào)數(shù)學(xué)思想和方法,而忽略基礎(chǔ)知識的教學(xué),就會使復(fù)習(xí)流于形式,成為無源之水,無本之木,學(xué)生也難以領(lǐng)略到深層知識的真諦.因此,數(shù)學(xué)思想、方法的復(fù)習(xí)應(yīng)與整個基礎(chǔ)知識的融為一體,使學(xué)生逐步掌握有關(guān)的深層知識,提高數(shù)學(xué)能力,形成良好的數(shù)學(xué)素質(zhì)。這也是數(shù)學(xué)思想方法復(fù)習(xí)的基本原則。
數(shù)學(xué)思想方法心得篇十四
數(shù)學(xué)關(guān)鍵就在一個悟字,所謂悟,就是開竅,如何開竅,就要求講師不要只講題目的做法,而是包括,是怎么想到要這么做的,以引導(dǎo)學(xué)生去理解,去悟,對于初等數(shù)學(xué),本人的看法是隨便怎么做,因?yàn)槌醯葦?shù)學(xué)的試題必然有解,必然是可以通過所給條件經(jīng)過n多步驟推出來,不信可以試試,拿一道,先什么都不要管,只管把已知條件以全排列方式組合,以推出新的條件,再將所得條件組合,再推,直到最后推無可推,你會發(fā)現(xiàn)題目所求就在其中,甚至簡單的可能是離最終結(jié)論還有n步,復(fù)雜的估計(jì)也就是最終結(jié)論了,所以以高考為目的的初等數(shù)學(xué)題目是不經(jīng)做的,因?yàn)橹灰阕?,就一定能做出來,而之所以很多學(xué)生覺得難,沒處著筆,不知道改該怎么做,很大一部分是因?yàn)閼校辉竸庸P,而只是呆看,簡單的能看出來,復(fù)雜的是很難看出來的,如果說那種直接推導(dǎo)的辦法太耗時(shí)間,那么只能說是因?yàn)椴皇炀?,一旦題目做多了,思維形成了,差不多就可以一眼看出來,頂多推兩步,就知道后面的怎么推了,從而省略了n多的分支,古往今來的題海戰(zhàn)術(shù)不是沒有依據(jù)的,熟能生巧,見得多了,做的多了,自然可以找到某種規(guī)律。
初數(shù)研究課在研究初等數(shù)學(xué)問題時(shí),大多采用專題討論的方法,都有一套完整的體系。如果過分強(qiáng)調(diào)自身完整的邏輯系統(tǒng),容易導(dǎo)致不同學(xué)科、不同課程的內(nèi)客及方法有很多重復(fù)和交叉。
如數(shù)與初等數(shù)論中的相關(guān)內(nèi)容,解析式的恒等變形,方程、不等式的解法與證明,幾何證題法與證題術(shù)排列、組合及數(shù)列的一些解題方法等。如果不處理好它們之間的'關(guān)系,只是簡單地追求各門課程自身體系的完整,既不利于學(xué)生整體數(shù)學(xué)思想的建立,又制約了他們數(shù)學(xué)綜合運(yùn)用能力的提高,同時(shí)占用了很多的課時(shí),所以,對于相關(guān)課程中己作詳盡討論過的知識及理論,應(yīng)作為工具來應(yīng)用,避免一些不必要的重復(fù)。
1.知識系統(tǒng)的探究
初數(shù)研究課涉及大量的理論,教師講、學(xué)生聽的傳統(tǒng)教學(xué)模式既占用課時(shí)多,又難以體現(xiàn)學(xué)生的主體性。因此對理論性較強(qiáng)的內(nèi)容,教師可以先提出一些切題的問題作為一堂課的鍥子,留待后面逐個解決。這些問題將整個教學(xué)內(nèi)容串起來,起到提綱摯領(lǐng)的作用,使學(xué)生明確學(xué)習(xí)目標(biāo),集中學(xué)習(xí)資源(如本課程及相關(guān)課程的教村及參考書)有針對性地去探究問題,然后教師組織學(xué)生對探究的結(jié)果進(jìn)行歸納整理,形成較完整的知識體系。當(dāng)然一個問題的解訣并非探究的終結(jié),在探究過程中教師與學(xué)生都可以提出一些新問題,延續(xù)學(xué)生探究的熱情,在合作交流的民主和諧的氛圍里,盡可能地讓學(xué)生走向自由探究。
2.解題方法的探究
從學(xué)生的認(rèn)知角度未說,解題過程是獨(dú)立的發(fā)現(xiàn)、探索與積極思考的過程,這種探索過程中所形成的意識和思維,就是真正的創(chuàng)造與發(fā)現(xiàn)。應(yīng)該說,解題教學(xué)是中學(xué)數(shù)學(xué)教學(xué)的主要任務(wù)之一,設(shè)置初數(shù)研究課程的目的之一,就是結(jié)合中學(xué)實(shí)際對解題作專門的訓(xùn)練。
3.條件與結(jié)論的探究
對一個問題的條件或結(jié)論進(jìn)行探究是對問題深入研究的重要組成部分,也是初數(shù)研究課程中具有挑戰(zhàn)性的任務(wù)之一,引導(dǎo)學(xué)生從不同角度、不同層面來看問題,對學(xué)生的發(fā)散思維及創(chuàng)造思維的培養(yǎng),都能起到良好的推動作用。
隨著教學(xué)改革的深化,教學(xué)思想方法不僅要在理論上做研究探討,更重要的是需要在實(shí)踐中不斷地創(chuàng)造與完善,才能使教學(xué)取得較好的效果。
數(shù)學(xué)思想方法心得篇十五
其實(shí),這本書擱置在書架上已經(jīng)許久了,因?yàn)槔锩娓拍钚缘臇|西比較多,所以讀起來并不是那么趣味十足,之前讀了幾頁,便沒有再讀下去。
之所以重讀這本書,緣于這幾天和學(xué)生一起收看《名師同步課堂》,在電視上做六年級數(shù)學(xué)直播課的是經(jīng)驗(yàn)豐富的魯向前老師,我發(fā)現(xiàn)他在講課的時(shí)候,特別注重?cái)?shù)學(xué)思想方法的滲透,在這方面正是我所欠缺的。
魯老師在講解求體積的解決問題時(shí),提到了把一個體積轉(zhuǎn)化成另一個體積,正方體熔鑄成圓柱體,小石子放入水中水面升高等等,體現(xiàn)了恒等變形的思想。
魯老師特別提到一種數(shù)學(xué)思想方法,由圓柱體積的求法猜想并實(shí)驗(yàn)證明圓錐體積的求法,體現(xiàn)了類比的思想方法。類比思想是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)遷移到另一類數(shù)學(xué)對象上去的思想。
經(jīng)常說教方法比教知識重要,作為一名數(shù)學(xué)老師,需要系統(tǒng)的了解數(shù)學(xué)思想方法。所以我便想到了書架上的這本書。說實(shí)話,讀這本書是有些枯燥的,而且如果你不動腦子去思考書中的問題的話,那你可能僅僅讀的就是字了。
在《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》這本書的封皮上寫著:
數(shù)學(xué)思想方法不同于一般的概念和技能,后者一般通過短期的訓(xùn)練便能掌握,數(shù)學(xué)思想方法的教學(xué)更應(yīng)該是一個通過長期的滲透和影響才能夠形成思想和方法的過程。教師應(yīng)在每堂課的教學(xué)中適時(shí)、適當(dāng)?shù)伢w現(xiàn)思想方法的教學(xué)目標(biāo),使學(xué)生在潛移默化中日積月累,通過提高數(shù)學(xué)素養(yǎng)達(dá)到學(xué)好數(shù)學(xué)的目的。
這本書分上下兩篇,上篇介紹各類思想方法,下篇介紹各類思想方法在每一冊教材中的體現(xiàn),這本書可以當(dāng)成我們的一本工具書,在我們備課的時(shí)候,方便我們查閱。比如,在總結(jié)十以內(nèi)的加減法或者乘法口訣的推導(dǎo)過程中,都體現(xiàn)了函數(shù)思想,作為老師的我們,不必讓學(xué)生明確知道什么是函數(shù)思想,但是我們應(yīng)該明白這里面體現(xiàn)了函數(shù)思想,并且有意識地向?qū)W生滲透思想方法,讓學(xué)生在以后面對類似的問題,能夠聯(lián)想到這種思想方法去解決問題。
僅僅花費(fèi)兩三天的時(shí)間,匆匆讀完了這本書,書中的一些思想方法或者內(nèi)容,有些地方還不是太懂,需要慢慢去領(lǐng)悟,但是我知道,在以后備課,做教學(xué)設(shè)計(jì)時(shí),一定要思考一個問題:這節(jié)課體現(xiàn)了哪些思想方法?我們應(yīng)該向?qū)W生滲透哪些思想方法?為學(xué)生考慮的再長遠(yuǎn)一些。
數(shù)學(xué)思想方法心得篇十六
豆角是人們喜食的蔬菜之一,但如果吃了沒有煮熟炒熟的豆角會導(dǎo)致中毒。近期外地有豆角中毒事件頻繁發(fā)生。為此,記者近日采訪了市衛(wèi)生監(jiān)督所有關(guān)專家。
據(jù)介紹,食用生豆角或未炒熟的豆角易引起中毒,是由于生豆角中含有兩種對人體有害的物質(zhì):溶血素和毒蛋白。這兩種毒素對胃腸道有強(qiáng)烈的刺激作用,一般食用未熟豆角十幾分鐘到4小時(shí)發(fā)病。輕者感到腹部不適、惡心、嘔吐、腹痛、腹瀉;嚴(yán)重者發(fā)生頭暈、頭痛、出冷汗、心慌、胸悶、四肢麻木等中毒癥狀,尤其是兒童。
雖然豆角中的這兩種物質(zhì)對人體有毒,但它有自身的特點(diǎn)和弱點(diǎn),即不耐高溫。所以,做菜時(shí)一定要把豆角充分加熱煮熟。兩種毒素在高溫中可被分解而破壞,尤其是集體食堂食用豆角菜時(shí),應(yīng)作為食品衛(wèi)生來強(qiáng)調(diào)執(zhí)行。豆角兩頭及兩旁的絲要去除,因?yàn)檫@些部位的毒素含量較高。
市衛(wèi)生監(jiān)督所專家提醒:一旦發(fā)生豆角中毒,輕癥者對癥治療,及時(shí)補(bǔ)充因頻繁嘔吐、腹瀉而丟失的水分。中度以上的中毒者及時(shí)送醫(yī)院救治。采取催吐、洗胃、利尿、導(dǎo)瀉、補(bǔ)液等多種方法治療,一般很快恢復(fù)正常,不會造成其他影響。集體中毒事件應(yīng)及時(shí)報(bào)告衛(wèi)生監(jiān)督部門。
數(shù)學(xué)思想方法心得篇十七
“讓讀書成為師生的習(xí)慣,讓書香浸潤全校師生的心靈”是莒南縣第一小學(xué)倡導(dǎo)師生閱讀的初衷。20xx年,學(xué)校提出了“六年影響一生”的辦學(xué)理念,著力打造內(nèi)涵發(fā)展的學(xué)校。作為師生成長發(fā)展的重要措施,學(xué)校啟動了“書香校園”的建設(shè)。學(xué)校試行“長短課結(jié)合”,開設(shè)大閱讀課,統(tǒng)一制定學(xué)生閱讀計(jì)劃,按班級人數(shù)購置《中國小學(xué)生基礎(chǔ)閱讀書目》等100種近萬冊圖書,周二至周五下午,在老師的指導(dǎo)下集體閱讀,保障了閱讀時(shí)間和效果。教師讀書交流會、師生讀書才藝展示、重陽節(jié)經(jīng)典誦讀活動、“書香伴我成長”主題教育活動、讀書征文活動等一系列形式多樣的讀書交流活動,豐富了廣大師生的讀書生活,使讀書成為一種享受,成為一種快樂!在國家倡導(dǎo)“全民閱讀”的大背景下,3月30日,學(xué)校舉行了“首屆讀書節(jié)”活動啟動儀式,拉開了學(xué)校讀書活動新的啟程。作為此次活動的重要組成部分,凝結(jié)了廣大教師在寒假中讀書的所感所想,是教師專業(yè)幸福成長的又一見證!
讀了王永春老師的《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》,我對小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法有了更進(jìn)一步的認(rèn)識。下面是我梳理一些知識。
數(shù)學(xué)思想是數(shù)學(xué)知識內(nèi)容的精髓,是對數(shù)學(xué)的本質(zhì)認(rèn)識。是從某些具體的數(shù)學(xué)內(nèi)容和對數(shù)學(xué)的認(rèn)識過程中提煉上升的.數(shù)學(xué)觀點(diǎn),是構(gòu)建數(shù)學(xué)理論和用數(shù)學(xué)理論解決問題的指導(dǎo)思想。
數(shù)學(xué)方法是指從數(shù)學(xué)角度提出問題、解決問題時(shí)所采用的各種方式和手段。數(shù)學(xué)思想和數(shù)學(xué)方法既有區(qū)別又有密切聯(lián)系。數(shù)學(xué)思想的理論和抽象程度要高一些,而數(shù)學(xué)方法的實(shí)踐性更強(qiáng)一些。人們實(shí)現(xiàn)數(shù)學(xué)思想往往要靠一定的數(shù)學(xué)方法;而人們選擇數(shù)學(xué)方法,又要以一定的數(shù)學(xué)思想為依據(jù)。因此,二者是有密切聯(lián)系的。我們把二者合稱為數(shù)學(xué)思想方法。
數(shù)學(xué)思想方法是數(shù)學(xué)的靈魂,那么,要想學(xué)好數(shù)學(xué)、用好數(shù)學(xué),就要深入到數(shù)學(xué)的“靈魂深處”。
1、有利于建立現(xiàn)代數(shù)學(xué)教育觀、落實(shí)新課程理念
2、有利于提高教師專業(yè)素養(yǎng)、提高教學(xué)水平
《標(biāo)準(zhǔn)(20xx版)》把數(shù)學(xué)基本思想作為“四基”之一之后,我面臨更大的挑戰(zhàn),一方面是關(guān)于數(shù)學(xué)思想方法的專業(yè)知識方面的欠缺,另一方面是課堂教學(xué)中應(yīng)該具備的數(shù)學(xué)思想方法的意識、經(jīng)驗(yàn)、策略等的不足。
3、有利于提高學(xué)生的思維水平。培養(yǎng)“四能”完善認(rèn)知結(jié)構(gòu),指導(dǎo)學(xué)習(xí)遷移,促進(jìn)思維發(fā)展。
因此,在小學(xué)數(shù)學(xué)階段有意識的向?qū)W生滲透一些基本的數(shù)學(xué)想方法可以加深學(xué)生對數(shù)學(xué)概念、公式、法則、定律等知識的數(shù)學(xué)本質(zhì)的理解,提高學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題的能力及思維能力,也是小學(xué)數(shù)學(xué)進(jìn)行素質(zhì)教育的真正內(nèi)涵之所在。同時(shí),也能為初中數(shù)學(xué)的學(xué)習(xí)打下較好的基礎(chǔ)。
1、重視思想方法目標(biāo)的落實(shí)。
2、在知識形成過程中體現(xiàn)數(shù)學(xué)思想方法。
3、在知識的應(yīng)用過程中體現(xiàn)數(shù)學(xué)思想方法。
4、在整理和復(fù)習(xí)、總復(fù)習(xí)中體現(xiàn)數(shù)學(xué)思想方法。
5、潛移默化、明確呈現(xiàn)、長期堅(jiān)持
數(shù)學(xué)思想方法心得篇十八
摘要:
數(shù)學(xué)思想方法是數(shù)學(xué)知識的核心,是數(shù)學(xué)的精髓和靈魂,是研究數(shù)學(xué)理論和運(yùn)用數(shù)學(xué)解決實(shí)際問題的指導(dǎo)思想。本文針對目前高職數(shù)學(xué)教學(xué)中存在的數(shù)學(xué)思想方法教學(xué)重視不夠以及教法上隨意性的現(xiàn)狀,提出通過加強(qiáng)數(shù)學(xué)史和基本數(shù)學(xué)思想方法的介紹,以及倡導(dǎo)“問題解決”的教學(xué)模式來提高學(xué)生的數(shù)學(xué)素養(yǎng)。
關(guān)鍵詞:
數(shù)學(xué)教學(xué);數(shù)學(xué)思想;數(shù)學(xué)教學(xué)改革
數(shù)學(xué)思想是人腦對現(xiàn)實(shí)世界的空間形式和數(shù)量關(guān)系的本質(zhì)反映,是思維加工的產(chǎn)物,是人們對現(xiàn)實(shí)世界空間形式和數(shù)量關(guān)系的本質(zhì)認(rèn)識。它隱藏在數(shù)學(xué)概念、公式、定理、方法的背后,反映了這些知識的共同本質(zhì)。它比一般的數(shù)學(xué)概念和數(shù)學(xué)方法具有更高的概括性和抽象性,因而更深刻、更本質(zhì)。數(shù)學(xué)思想方法是數(shù)學(xué)課程的重要目的,是發(fā)展學(xué)生智力和能力的關(guān)鍵所在,是培養(yǎng)學(xué)生數(shù)學(xué)創(chuàng)新意識的基礎(chǔ),也是一個人數(shù)學(xué)素養(yǎng)的重要組成部分。
1目前數(shù)學(xué)思想方法教學(xué)的現(xiàn)狀
1.1思想上不重視
高職教育更加強(qiáng)調(diào)“專業(yè)教育”,對高職數(shù)學(xué)教育提出了“必須、夠用”的原則,這直接導(dǎo)致數(shù)學(xué)課時(shí)減少,內(nèi)容不得不被壓縮。這使得一些數(shù)學(xué)教師片面理解“為專業(yè)服務(wù)”的真實(shí)含義,教學(xué)中采用以知識為本位的教學(xué),只關(guān)注知識的教授本身,學(xué)生只是學(xué)到了各種題目的具體解法,并沒有掌握數(shù)學(xué)思想方法,解決問題的水平并沒有得到提高。在后續(xù)學(xué)習(xí)中,導(dǎo)致學(xué)生數(shù)學(xué)知識面偏窄,數(shù)學(xué)思想蒼白,眼界不廣,缺乏創(chuàng)造力,“后勁”不足。
1.2教法上的隨意性
現(xiàn)行教材主要以知識結(jié)構(gòu)作為編寫體系,數(shù)學(xué)思想散見于教材之中,這就決定了數(shù)學(xué)思想教學(xué)的主觀隨意性很大,其教學(xué)效果主要依賴于教師對數(shù)學(xué)思想的理解程度。雖然在目前的數(shù)學(xué)教學(xué)中非常強(qiáng)調(diào)能力的培養(yǎng),但在實(shí)際教學(xué)中往往只注重運(yùn)算能力和邏輯推理能力的訓(xùn)練,一些重要的數(shù)學(xué)思想被淹沒在大量的計(jì)算、證明題之中,失去了應(yīng)有的魅力和價(jià)值。例如,導(dǎo)數(shù)思想是高等數(shù)學(xué)中的重要思想,但導(dǎo)數(shù)部分的內(nèi)容常被當(dāng)作求導(dǎo)的技能技巧來訓(xùn)練,成為一種機(jī)械操作,使學(xué)生在專業(yè)工程技術(shù)、經(jīng)濟(jì)、電工學(xué)習(xí)中對影子價(jià)格、邊際函數(shù)、瞬時(shí)電流強(qiáng)度等感到困惑。
2加強(qiáng)數(shù)學(xué)思想方法教學(xué)的意義
2.1加強(qiáng)數(shù)學(xué)思想方法
教學(xué)是素質(zhì)教育的需要高職數(shù)學(xué)教學(xué)的根本目的,就是提高學(xué)生的數(shù)學(xué)素質(zhì),使學(xué)生形成良好的數(shù)學(xué)觀念和數(shù)學(xué)意識,善于用數(shù)學(xué)思想方法去觀察、解釋、表述現(xiàn)實(shí)事物的數(shù)量關(guān)系、變化趨勢、空間形式和數(shù)據(jù)信息。可見,加強(qiáng)數(shù)學(xué)思想的教學(xué)是對學(xué)生進(jìn)行素質(zhì)教育,全面培養(yǎng)新世紀(jì)合格人才的需要。
2.2加強(qiáng)數(shù)學(xué)思想方法
教學(xué)是教學(xué)改革的新視角從教材的構(gòu)成體系來看,高職數(shù)學(xué)教材所涉及的數(shù)學(xué)知識點(diǎn)和數(shù)學(xué)思想?yún)R成了數(shù)學(xué)結(jié)構(gòu)系統(tǒng)的兩條“河流”。一條是由具體的知識構(gòu)成的易于被發(fā)現(xiàn)的“明河流”,它是構(gòu)成數(shù)學(xué)教材的“骨架”;另一條是由數(shù)學(xué)思想方法構(gòu)成的具有潛在價(jià)值的“暗河流”,它是構(gòu)成數(shù)學(xué)教材的“血脈”。有了數(shù)學(xué)思想,數(shù)學(xué)知識點(diǎn)才不再是孤立的、零散的東西,而是數(shù)學(xué)的內(nèi)在本質(zhì),是獲取數(shù)學(xué)知識、發(fā)展思維能力的動力工具。因此,我們的數(shù)學(xué)教學(xué)改革可以從這條“暗河流”入手,對學(xué)生進(jìn)行思想觀念層次上的數(shù)學(xué)教育,這將是進(jìn)行數(shù)學(xué)素質(zhì)教育的有效突破口。
2.3加強(qiáng)數(shù)學(xué)思想方法
教學(xué)是學(xué)生可持續(xù)發(fā)展的需要數(shù)學(xué)思想越來越多地被應(yīng)用于環(huán)境科學(xué)、自然科學(xué)、經(jīng)濟(jì)學(xué)、社會學(xué)、心理學(xué)和認(rèn)知科學(xué)之中,加強(qiáng)數(shù)學(xué)思想的教學(xué),可以影響學(xué)生的整體素質(zhì),為學(xué)生今后的工作和學(xué)習(xí)奠定基礎(chǔ)。如定積分的思想廣泛地被應(yīng)用于自然科學(xué)和社會科學(xué)中。
因此,21世紀(jì)的數(shù)學(xué)課程必須突破原有的結(jié)構(gòu),從舊的框架中走出來,突出數(shù)學(xué)思想這條主線,才有可能使學(xué)生知其然,更知其所以然,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的主動性和積極性,使之學(xué)到的知識“充滿活力”。
3實(shí)施數(shù)學(xué)思想方法
教學(xué)的對策數(shù)學(xué)思想方法蘊(yùn)含于數(shù)學(xué)基礎(chǔ)知識中,相對來說,它是隱性的、抽象的。為了更好地完成數(shù)學(xué)思想方法的教學(xué),數(shù)學(xué)教師要具備較高的數(shù)學(xué)思想方法素養(yǎng)。認(rèn)真學(xué)習(xí)、掌握數(shù)學(xué)思想方法的內(nèi)容和實(shí)質(zhì),明確數(shù)學(xué)思想方法在整個數(shù)學(xué)發(fā)展中的地位,努力把初等數(shù)學(xué)、高等數(shù)學(xué)和現(xiàn)代數(shù)學(xué)的基本思想方法有機(jī)地聯(lián)系起來。筆者認(rèn)為可從以下三個方面入手,進(jìn)行數(shù)學(xué)思想方法的教學(xué)。
3.1要重視數(shù)學(xué)史和數(shù)學(xué)思想史的介紹
數(shù)學(xué)史是一部追求真理的歷史,在追求真理的征途中,前人不斷探索、不斷完善,最終形成高度抽象嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)概念,其中所蘊(yùn)涵的數(shù)學(xué)思想和數(shù)學(xué)方法是絕好實(shí)例。在教學(xué)中應(yīng)交代清楚數(shù)學(xué)知識的背景和出處,使學(xué)生感受和了解原始創(chuàng)新過程。
例如,在極限的概念教學(xué)中,通過介紹歷史上劉徽為求圓周率而產(chǎn)生的“割圓術(shù)”、阿基米德用“窮竭法”求出拋物線弓形的面積等數(shù)學(xué)問題引入概念,學(xué)生一般都能認(rèn)識到極限是一種研究變量的變化趨勢的數(shù)學(xué)方法,它產(chǎn)生于求實(shí)際問題的精確解。這不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且對于隨后介紹數(shù)列極限的定義也大有益處。教師還可以由此給出懸念:同學(xué)們在學(xué)了定積分的應(yīng)用之后,可以證明阿基米德所作解答是正確的。
3.2要倡導(dǎo)“問題解決”的教學(xué)模式
數(shù)學(xué)中的概念、法則、性質(zhì)、公式、公理、定理通常稱為數(shù)學(xué)表層知識。數(shù)學(xué)教材主要記述的就是數(shù)學(xué)表層知識,深入分析這些表層知識,便可以發(fā)現(xiàn)蘊(yùn)涵在其中的極為豐富的深層知識,這就是貫穿于其中的數(shù)學(xué)思想方法和模式等。數(shù)學(xué)深層知識是數(shù)學(xué)的本質(zhì)和精髓,掌握基本的數(shù)學(xué)思想方法能使數(shù)學(xué)更易于理解和記憶,是學(xué)會學(xué)習(xí)、發(fā)展創(chuàng)新的'前提。作為數(shù)學(xué)教師,在教學(xué)時(shí)不能就知識論知識,就書本論書本,應(yīng)引導(dǎo)學(xué)生去領(lǐng)悟內(nèi)容中蘊(yùn)含的深邃思想和巧妙方法。
3.2.1重視論證的結(jié)論
從應(yīng)用的角度講,對于高職學(xué)生而言需要的往往不是論證的過程,而是它的結(jié)論。因此我們主張,在高等數(shù)學(xué)教學(xué)中,應(yīng)淡化嚴(yán)格的數(shù)學(xué)論證,強(qiáng)化幾何說明,重視直觀、形象的理解,但這并非是將定理的推證與公式的推導(dǎo)全盤舍棄。若是推證、推導(dǎo)中包含重要的數(shù)學(xué)思想和方法,教師應(yīng)引導(dǎo)學(xué)生大膽猜想,運(yùn)用歸納法和類比的思想積極探索,力求形成“問題情境―建立模型―解釋、應(yīng)用與拓展”的基本教學(xué)模式,以大眾化、生活化的方式反映重要的現(xiàn)代數(shù)學(xué)觀念和數(shù)學(xué)思想方法。
3.2.2展示思維的過程
學(xué)生的思維往往是通過模仿教師的思路逐漸形成的,“讓學(xué)生看到思維的過程”是提高學(xué)生學(xué)習(xí)積極性、促進(jìn)學(xué)生思維能力發(fā)展的有效措施。讓學(xué)生看到思維的過程,意在使學(xué)生能從教師的分析中懂得怎樣去變更問題、怎樣引入輔助問題、怎樣進(jìn)行聯(lián)想類比、怎樣迂回障礙,使之柳暗花明,得到成功的喜悅,從而逐漸養(yǎng)成自覺思維的習(xí)慣。
3.3要重點(diǎn)突出基本數(shù)學(xué)思想方法的介紹和傳授
數(shù)學(xué)思想方法主要包括:化歸思想方法、數(shù)形結(jié)合思想方法、構(gòu)造思想方法、類比思想方法、極限的思想方法、積分的思想方法、歸納與猜想、函數(shù)與方程思想方法等等。高職數(shù)學(xué)教學(xué)中應(yīng)重點(diǎn)滲透以下兩種類型的數(shù)學(xué)思想方法:3.3.1宏觀型的數(shù)學(xué)思想方法如抽象概括、化歸、數(shù)學(xué)模型、數(shù)形結(jié)合,方程與函數(shù),積分等等。
3.3.2邏輯型的數(shù)學(xué)思想方法
如分類、類比,歸納,演繹,等等。
4結(jié)論
數(shù)學(xué)思想方法對數(shù)學(xué)的認(rèn)識結(jié)構(gòu)起著重要的導(dǎo)向作用,是將知識轉(zhuǎn)化為能力的杠桿,由于數(shù)學(xué)思想方法比其它數(shù)學(xué)知識更抽象、更概括,學(xué)生一般難以在教材中獨(dú)立獲得,只有通過教師在教學(xué)中的引導(dǎo)和點(diǎn)撥,才能使學(xué)生真正感受到數(shù)學(xué)思想方法俯瞰全局、舉一反三、事半功倍的作用。
總之,“授之以魚,不如授之以漁”,方法的掌握,思想的形成,才能使學(xué)生受益終身。
參考文獻(xiàn)
數(shù)學(xué)思想方法心得篇十九
解:
根據(jù)乘法原理,分兩步:
第一步是把5對夫妻看作5個整體,進(jìn)行排列有5×4×3×2×1=120種不同的排法,但是因?yàn)槭菄梢粋€首尾相接的圈,就會產(chǎn)生5個5個重復(fù),因此實(shí)際排法只有120÷5=24種。
綜合兩步,就有24×32=768種。
解:
5全排列5*4*3*2*1=120
有兩個l所以120/2=60
原來有一種正確的所以60-1=59
答案為53秒
可以這樣理解:“快車從追上慢車的車尾到完全超過慢車”就是快車車尾上的點(diǎn)追及慢車車頭的點(diǎn),因此追及的路程應(yīng)該為兩個車長的和。
答案為100米
300÷(5-4.4)=500秒,表示追及時(shí)間
5×500=2500米,表示甲追到乙時(shí)所行的路程
2500÷300=8圈……100米,表示甲追及總路程為8圈還多100米,就是在原來起跑線的前方100米處相遇。
5.一個人在鐵道邊,聽見遠(yuǎn)處傳來的火車汽笛聲后,在經(jīng)過57秒火車經(jīng)過她前面,已知火車鳴笛時(shí)離他1360米,(軌道是直的),聲音每秒傳340米,求火車的速度(得出保留整數(shù))
答案為22米/秒
算式:1360÷(1360÷340+57)≈22米/秒
關(guān)鍵理解:人在聽到聲音后57秒才車到,說明人聽到聲音時(shí)車已經(jīng)從發(fā)聲音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。
6.獵犬發(fā)現(xiàn)在離它10米遠(yuǎn)的前方有一只奔跑著的野兔,馬上緊追上去,獵犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的動作快,獵犬跑2步的時(shí)間,兔子卻能跑3步,問獵犬至少跑多少米才能追上兔子。
正確的答案是獵犬至少跑60米才能追上。
解:
答案:18分鐘
解:設(shè)全程為1,甲的速度為x乙的速度為y
列式40x+40y=1
x:y=5:4
得x=1/72y=1/90
走完全程甲需72分鐘,乙需90分鐘
故得解
答案是300千米。
解:通過畫線段圖可知,兩個人第一次相遇時(shí)一共行了1個ab的路程,從開始到第二次相遇,一共又行了3個ab的路程,可以推算出甲、乙各自共所行的路程分別是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,從線段圖可以看出,甲一共走了全程的(1+1/5)。
因此360÷(1+1/5)=300千米
解:(1/6-1/8)÷2=1/48表示水速的分率
2÷1/48=96千米表示總路程
10.快車和慢車同時(shí)從甲乙兩地相對開出,快車每小時(shí)行33千米,相遇是已行了全程的七分之四,已知慢車行完全程需要8小時(shí),求甲乙兩地的路程。
解:
相遇是已行了全程的七分之四表示甲乙的速度比是4:3
時(shí)間比為3:4
所以快車行全程的時(shí)間為8/4*3=6小時(shí)
6*33=198千米
解:
把路程看成1,得到時(shí)間系數(shù)
去時(shí)時(shí)間系數(shù):1/3÷12+2/3÷30
返回時(shí)間系數(shù):3/5÷12+2/5÷30
去時(shí)時(shí)間:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75
路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)
數(shù)學(xué)思想方法心得篇二十
為什么我看這個《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》幾頁就覺得很受益,有觸動。因?yàn)橐郧白约簲?shù)學(xué)能學(xué)好感覺只是天然的選擇,下意識的動作,在這里能找到原理,讓你的行為有理論依據(jù),更加明晰思維方法的重要性。自己就是受益于這些思維方法,但卻沒意識到,看了書才恍然大悟。很多習(xí)以為常,想當(dāng)然的事情明白了這樣設(shè)計(jì)的道理了。比如為啥設(shè)計(jì)小學(xué)五年級六年級。為什么三四年級、初中一年級會是檻。區(qū)別主要是抽象能力的發(fā)展不同。思維在低年級作用不是特別大。差距顯現(xiàn)不出來。從作者的言外之意也可以看到數(shù)學(xué)思維方法是最重要的東西,但卻不是課堂教學(xué)的常態(tài)目標(biāo),只是教學(xué)的附屬品,滲透出來的,有人悟性高,捕獲的多,發(fā)展的好。有人不敏感,攫取的少。差距就出來了。
但不管從數(shù)學(xué)教育從業(yè)者還是我們個人的經(jīng)歷來說,數(shù)學(xué)思維方法都是最基本的。屬于對數(shù)學(xué)本質(zhì)的認(rèn)識,理性的認(rèn)識。
奧數(shù)就是為了訓(xùn)練數(shù)學(xué)思維方法啊。但是真假奧數(shù)不一樣,假奧數(shù)就是教給你套路,記住就好。
我自己數(shù)學(xué)學(xué)習(xí)也是原發(fā)性的。沒人指導(dǎo),沒人培訓(xùn)。不過有人指點(diǎn)肯定會更輕松,或者能更進(jìn)一步。
我們常說語文學(xué)習(xí),詞匯是理解力的基礎(chǔ)。在數(shù)學(xué)中,概念是數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),是抽象思維的基礎(chǔ)和基本形式。概念大概等同于中文閱讀里的抽象詞匯,不過概念是有相關(guān)系統(tǒng)的東西。說這個是為了說明我們平時(shí)說的打好基礎(chǔ)再拓展。到底什么是基礎(chǔ)?;A(chǔ)就是概念與概念之間的關(guān)系構(gòu)成的知識結(jié)構(gòu)。
所以也自然明白日常我們說的“拓展”是什么。拓展就是在理解概念之間關(guān)系的知識結(jié)構(gòu)基礎(chǔ)上,利用思想方法、模型思想、推理思想等學(xué)習(xí)數(shù)學(xué),解決問題。
數(shù)學(xué)思想方法心得篇二十一
摘要:
隨著新課改的實(shí)施,在數(shù)學(xué)課堂教學(xué)中有意識地進(jìn)行數(shù)學(xué)思想方法的教學(xué)日益顯得重要。本文闡述了數(shù)學(xué)思想方法的涵義,指出了加強(qiáng)數(shù)學(xué)思想方法教學(xué)的重要性及如何在課堂教學(xué)中選準(zhǔn)時(shí)機(jī)進(jìn)行數(shù)學(xué)思想方法的教學(xué)。
關(guān)鍵詞:數(shù)學(xué)思想方法滲透
思想是對數(shù)學(xué)知識內(nèi)容的本質(zhì)認(rèn)識,是對數(shù)學(xué)規(guī)律的理性認(rèn)識。數(shù)學(xué)方法是在數(shù)學(xué)提出問題、研究問題和解決問題的過程中所采用的各種手段和途徑,思想是方法的升華,方法是思想的體現(xiàn)。沒有不含數(shù)學(xué)方法的數(shù)學(xué)思想,也沒有不以數(shù)學(xué)思想為指導(dǎo)的數(shù)學(xué)方法,因此我們通常把數(shù)學(xué)思想方法視為一個整體。
縱觀數(shù)學(xué)教學(xué)的現(xiàn)狀,仍有一些數(shù)學(xué)課基本上還是在應(yīng)試教育的慣性下運(yùn)行,課堂上就題論題,致使我們的孩子至今仍被困惑在無邊的題海之中。究竟怎樣走出題海,提高他們的數(shù)學(xué)能力,實(shí)現(xiàn)素質(zhì)教育的目標(biāo)呢?這就要求我們要更新觀念,在數(shù)學(xué)教學(xué)中適時(shí)地滲透數(shù)學(xué)思想方法,所以在數(shù)學(xué)課堂教學(xué)中滲透數(shù)學(xué)思想方法的教學(xué)是新課改的要求。
1、幾種常見的數(shù)學(xué)思想方法。
(1)函數(shù)的思想。
函數(shù)的思想就是用運(yùn)動變化的觀點(diǎn),分析和研究具體問題中的數(shù)量關(guān)系,建立函數(shù)關(guān)系,運(yùn)用函數(shù)的.知識,使問題得到解決,諸如正比例、反比例概念中揭示的兩種相關(guān)聯(lián)的量之間的關(guān)系實(shí)質(zhì)上就是函數(shù)關(guān)系。
(2)數(shù)形結(jié)合的思想。
數(shù)形結(jié)合思想是通過數(shù)形間的對應(yīng)來研究解決問題的思想方法,數(shù)形結(jié)合的本質(zhì)是數(shù)量關(guān)系決定了幾何圖形的性質(zhì),幾何圖形的性質(zhì)又反映了數(shù)量關(guān)系。數(shù)形結(jié)合就是抓住數(shù)與形之間的內(nèi)在聯(lián)系,以“形”直觀地表達(dá)“數(shù)”,以“數(shù)”精確地研究“形”。我國著名數(shù)學(xué)家華羅庚曾對數(shù)形結(jié)合的作用進(jìn)行了高度的概括:“數(shù)缺形時(shí)少直觀,形無數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,割裂分家萬事休?!痹蹅兪煜さ牡芽栕鴺?biāo)系就是笛卡爾通過建立點(diǎn)與有序數(shù)組的對應(yīng),實(shí)現(xiàn)了“位置的量化”。
(3)分類討論的思想。
分類討論思想是根據(jù)數(shù)學(xué)對象的本質(zhì)屬性的相同點(diǎn)和不同點(diǎn),將數(shù)學(xué)對象區(qū)分為不同種類的數(shù)學(xué)思想?!拔镆灶惥?,人以群分”,將事物進(jìn)行分類,然后對劃分的每一類分別進(jìn)行研究,這是深化研究對象必不可少的思想方法。
(4)化歸思想。
數(shù)學(xué)問題的解決是數(shù)學(xué)教學(xué)中一個重要的組成部分,在解決數(shù)學(xué)問題時(shí)我們不是對問題直接求解,而是將問題轉(zhuǎn)化變形,使之歸結(jié)為容易解決的問題,這就是化歸思想。例如“多邊形的內(nèi)角和”問題通過分解多邊形為三角形來解決,這都是化歸思想在實(shí)際問題中的具體體現(xiàn)。
2、教學(xué)中滲透數(shù)學(xué)思想方法的有效途徑。
(1)在知識的發(fā)生過程中,適時(shí)滲透數(shù)學(xué)思想方法。
數(shù)學(xué)思想方法的教學(xué)必須通過具體的教學(xué)過程得以實(shí)現(xiàn),因此必須把握好教學(xué)過程進(jìn)行數(shù)學(xué)思想方法教學(xué)的契機(jī)―――概念形成的過程、結(jié)論推倒的過程、方法思考的過程、規(guī)律揭示的過程,忽視和壓縮這些過程就必然失去滲透數(shù)學(xué)思想方法的良機(jī)。例如在加法教學(xué)時(shí)進(jìn)行函數(shù)思想的滲透:2+3=5,把左端的3變成6、右端的5隨之變成8,把左端的3變成7右端的5隨之變成9,由此說明:一個加數(shù)不變時(shí),和隨著另一個加數(shù)的變化而變化,對于另一個加數(shù)所取的每一個值,我們都可以算得和的唯一值與之對應(yīng),即一個加數(shù)不變時(shí),和是另一個加數(shù)的函數(shù)。
(2)在復(fù)習(xí)與小結(jié)中提煉、概括數(shù)學(xué)思想方法。
小結(jié)與復(fù)習(xí)是數(shù)學(xué)教學(xué)的一個重要環(huán)節(jié)。數(shù)學(xué)的小結(jié)與復(fù)習(xí),不能僅停留在把已學(xué)的知識溫習(xí)記憶一遍的要求上,而要去努力思考新知識是怎樣產(chǎn)生、展開和證明的,因此在這個過程中,提供了發(fā)展和提高能力的極好機(jī)會,也是滲透數(shù)學(xué)思想方法的極好途徑。比如在學(xué)習(xí)一元二次不等式的解法時(shí)用“化歸、類比、分類、數(shù)形結(jié)合”等數(shù)學(xué)思想方法連接知識之間的關(guān)系,這樣就能優(yōu)化學(xué)生關(guān)于不等式解法的知識結(jié)構(gòu),促進(jìn)學(xué)生知識結(jié)構(gòu)的不斷完善。
(3)通過問題解決,突出和深化數(shù)學(xué)思想方法。
楊振寧博士曾指出理科要講理,對數(shù)學(xué)來說就是要講清數(shù)學(xué)知識在產(chǎn)生和形成中及數(shù)學(xué)方法在挑選和演進(jìn)中的思維活動過程,數(shù)學(xué)思想方法存在于數(shù)學(xué)問題的解決過程中,數(shù)學(xué)問題的步步轉(zhuǎn)化無不遵循數(shù)學(xué)思想方法的指導(dǎo),我們教師應(yīng)通過這種教學(xué)逐步引導(dǎo)學(xué)生科學(xué)地思考問題。如小學(xué)教材中為了說明“同樣多”、“多些”、“少些”的含義,利用在實(shí)物圖間畫線的辦法滲透對應(yīng)思想,以后在應(yīng)用題的教學(xué)中,可常利用畫線段圖建立數(shù)與形之間的對應(yīng)關(guān)系,使數(shù)量關(guān)系形象化。
(4)引導(dǎo)學(xué)生進(jìn)行反思,從中領(lǐng)悟數(shù)學(xué)思想方法。
著名數(shù)學(xué)教育家弗賴登塔爾指出“:反思是數(shù)學(xué)思維活動的核心和動力?!币虼私處煈?yīng)該創(chuàng)設(shè)各種情境,為學(xué)生創(chuàng)造反思的機(jī)會,如解法是怎樣想出來的?關(guān)鍵是哪一步?通過解這個題我學(xué)到了什么?以后遇到這類題我能獨(dú)立解決嗎?如通過分?jǐn)?shù)和百分?jǐn)?shù)應(yīng)用題有規(guī)律的對比、反思,指導(dǎo)學(xué)生小結(jié)解答這類應(yīng)用題的關(guān)鍵,這時(shí)學(xué)生已意會到對應(yīng)思想和化歸思想,但這是學(xué)生自己提煉、概括出來的,因而具有更強(qiáng)的活力。
3、數(shù)學(xué)思想方法教學(xué)中應(yīng)注意的問題。
(1)教師要更新觀念縱觀數(shù)學(xué)教學(xué)的現(xiàn)狀。
應(yīng)該看到確實(shí)有很多站在了波峰浪尖,但也仍有許多數(shù)學(xué)課基本上還是在應(yīng)試教育的慣性下運(yùn)行,數(shù)學(xué)教育家李玉琪在《數(shù)學(xué)教育概論》一書中寫道:如果說“問題”是數(shù)學(xué)的“心臟”,“知識”是數(shù)學(xué)的“軀體”,“數(shù)學(xué)思想”無疑是數(shù)學(xué)的“靈魂”。我們教師要從思想上不斷提高對數(shù)學(xué)思想方法重要性的認(rèn)識,在備課時(shí)要把掌握數(shù)學(xué)知識和挖掘數(shù)學(xué)思想方法同時(shí)納入教學(xué)目標(biāo),并在教案中設(shè)計(jì)好數(shù)學(xué)思想方法的教學(xué)內(nèi)容和教學(xué)過程,只有這樣才能使學(xué)生較好地形成數(shù)學(xué)能力,實(shí)現(xiàn)素質(zhì)教育的目標(biāo)。
(2)注意滲透數(shù)學(xué)思想方法的漸進(jìn)性和長期性。
數(shù)學(xué)思想方法是在啟發(fā)學(xué)生思維過程中逐步積累和形成的。在教學(xué)中,首先要特別強(qiáng)調(diào)解決問題以后的“反思”,因?yàn)樵谶@個過程中提煉出來的數(shù)學(xué)思想方法對學(xué)生來說才是易于體會、易于接受的。其次,對學(xué)生進(jìn)行數(shù)學(xué)思想方法的滲透不是一朝一夕就能見效的事,而需一個過程,數(shù)學(xué)思想方法蘊(yùn)含在數(shù)學(xué)知識里,滲透在全部數(shù)學(xué)教學(xué)內(nèi)容中,這就要求我們教師在數(shù)學(xué)教學(xué)過程中要根據(jù)所講內(nèi)容與學(xué)生實(shí)際潛移默化地去影響學(xué)生,逐步提高學(xué)生解決問題的能力。
總之,數(shù)學(xué)思想方法是數(shù)學(xué)的靈魂、是數(shù)學(xué)的精髓,我們老師只有在教學(xué)中長期滲透并靈活運(yùn)用,方能“隨風(fēng)潛入夜,潤物細(xì)無聲”,讓學(xué)生在不知不覺中領(lǐng)會、掌握、自覺運(yùn)用,從而形成能力,以利于終身學(xué)習(xí)和發(fā)展。
參考文獻(xiàn):
[1]李玉琪。數(shù)學(xué)教育概論[m]。中國科學(xué)技術(shù)出版社,1994。
[2]張景中。感受小學(xué)數(shù)學(xué)思想的力量[j]。人民教育,(18)。
【本文地址:http://mlvmservice.com/zuowen/6905433.html】