專(zhuān)業(yè)大學(xué)數(shù)學(xué)建模論文(模板15篇)

格式:DOC 上傳日期:2023-10-31 05:51:03
專(zhuān)業(yè)大學(xué)數(shù)學(xué)建模論文(模板15篇)
時(shí)間:2023-10-31 05:51:03     小編:BW筆俠

文學(xué)作品是用語(yǔ)言藝術(shù)的方式表達(dá)思想感情的一種創(chuàng)作成果。創(chuàng)造力是推動(dòng)社會(huì)進(jìn)步的火花,我們應(yīng)該培養(yǎng)并善于發(fā)揮自己的創(chuàng)造力??偨Y(jié)是一種重要的學(xué)習(xí)和工作技能,有助于提高綜合素質(zhì)。

大學(xué)數(shù)學(xué)建模論文篇一

從現(xiàn)實(shí)現(xiàn)象到數(shù)學(xué)模型 .....................................................................................................................

數(shù)學(xué)建模的相關(guān)基本概念 ............................................................................. 錯(cuò)誤!未定義書(shū)簽。

…… …… 余下全文

大學(xué)數(shù)學(xué)建模論文篇二

1.數(shù)學(xué)建模對(duì)學(xué)生創(chuàng)新思維和創(chuàng)新精神的培養(yǎng)

數(shù)學(xué)建模解決的都是與我們生活息息相關(guān)的實(shí)際問(wèn)題,很多都是當(dāng)前社會(huì)比較關(guān)注的熱點(diǎn)問(wèn)題,比如開(kāi)放性小區(qū)的建立,人工智能機(jī)器人在工作中的應(yīng)用,這些問(wèn)題開(kāi)放性比較強(qiáng),有明確的目的和要求,但它沒(méi)有唯一的結(jié)果和方法。因此留給學(xué)生很大的創(chuàng)新空間,使學(xué)生對(duì)數(shù)學(xué)產(chǎn)生了極大的興趣,他們發(fā)現(xiàn)這幾年學(xué)習(xí)的高數(shù)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)終于派上了用場(chǎng)。數(shù)學(xué)建模課程會(huì)結(jié)合《高等數(shù)學(xué)》,《線性代數(shù)》,《概率論與數(shù)理統(tǒng)計(jì)》等數(shù)學(xué)基礎(chǔ)學(xué)科,還會(huì)經(jīng)常涉及到物理,工程,經(jīng)濟(jì),金融,農(nóng)林等各個(gè)領(lǐng)域各個(gè)學(xué)科,從不同的學(xué)科中找最熱門(mén)最真實(shí)的案例進(jìn)行教學(xué),這要求學(xué)生有很強(qiáng)的自學(xué)能力,要不得學(xué)習(xí)新知識(shí),新思路和新方法,讓學(xué)生結(jié)合所學(xué)的數(shù)學(xué)知識(shí)把自己學(xué)科的專(zhuān)業(yè)知識(shí)轉(zhuǎn)化成數(shù)學(xué)模型,讓數(shù)學(xué)充分發(fā)揮它的優(yōu)勢(shì),以達(dá)到培養(yǎng)學(xué)生的創(chuàng)新能力,更重要的是對(duì)學(xué)生的知識(shí)體系起到了完善的作用。在整個(gè)競(jìng)賽中從模型建立與求解到寫(xiě)作,都是由學(xué)生獨(dú)立完成,充分發(fā)揮了他們的自主性和創(chuàng)造性。

2.數(shù)學(xué)建模能培養(yǎng)學(xué)生團(tuán)隊(duì)合作精神和創(chuàng)新創(chuàng)業(yè)能力

數(shù)學(xué)建模競(jìng)賽是由三個(gè)人組成一個(gè)小團(tuán)隊(duì)共同處理一個(gè)問(wèn)題,在這個(gè)團(tuán)隊(duì)中每個(gè)人都各有分工,有的人擅長(zhǎng)建立模型,有的人擅長(zhǎng)計(jì)算機(jī)編程求解模型,有的人擅長(zhǎng)寫(xiě)作,這三個(gè)人缺一不可,任何一個(gè)人都發(fā)揮著舉足輕重的作用。通常我們還會(huì)設(shè)一個(gè)隊(duì)長(zhǎng)能協(xié)調(diào)隊(duì)員之間的關(guān)系和對(duì)題目的把控。每個(gè)人都有不同的性格,能力,學(xué)識(shí),知識(shí)結(jié)構(gòu),在做題的過(guò)程中會(huì)產(chǎn)生不同的想法,比如在模型的建立中,數(shù)據(jù)的處理過(guò)程中,算法的選取,編程語(yǔ)言的選取,寫(xiě)作的過(guò)程中都會(huì)有很多的不同,所以每個(gè)成員都要有團(tuán)隊(duì)精神、相互信任、相互溝通、相互尊重、取長(zhǎng)補(bǔ)短、充分發(fā)揮集體的力量共同完成一個(gè)項(xiàng)目。同時(shí)每年無(wú)論在培訓(xùn)還是正式比賽過(guò)程中由于高強(qiáng)度的腦力活動(dòng),強(qiáng)大的心理壓力以及隊(duì)員之間的不和睦都會(huì)造成中途退賽,這樣無(wú)疑是最可惜的。所以,在競(jìng)賽中除了培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和團(tuán)隊(duì)合作精神,還培養(yǎng)了大家的心理承受能力,強(qiáng)大的意志力以及與他人溝通交往的能力,是對(duì)自己綜合素質(zhì)的一個(gè)提高,對(duì)未來(lái)考研、出國(guó)、就業(yè)都有很大的幫助。

3.數(shù)學(xué)建模培養(yǎng)學(xué)生的創(chuàng)新創(chuàng)業(yè)的.綜合能力

通過(guò)在大二一年的數(shù)學(xué)建模選修課,以及假期的集中培訓(xùn)培養(yǎng)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,很大程度上提高了他們思考問(wèn)題解決問(wèn)題的能力等綜合素質(zhì),同時(shí)還培養(yǎng)了他們應(yīng)用計(jì)算機(jī)去處理各種問(wèn)題的科技能力。他們學(xué)會(huì)了各種軟件、語(yǔ)言,很多同學(xué)會(huì)數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí)以及人工智能,這些都是未來(lái)科技的前沿,科技創(chuàng)新是企業(yè)發(fā)展的動(dòng)力,現(xiàn)代教育不能只停留在教授學(xué)生理論知識(shí)的學(xué)習(xí),更重要的是理論與實(shí)踐的結(jié)合,走產(chǎn)學(xué)研相結(jié)合的道路,數(shù)學(xué)建模很好的把理論與實(shí)踐相結(jié)合,激發(fā)學(xué)生科研熱情,提高學(xué)生科研積極性,激發(fā)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,為以后工作生活奠定了扎實(shí)的基礎(chǔ)。為了讓建模更好的服務(wù)學(xué)生,我們將不斷的努力,探索和改進(jìn)培養(yǎng)模式和方法,爭(zhēng)取通過(guò)數(shù)學(xué)建模平臺(tái)使更多的同學(xué)受益,培養(yǎng)出更多的具有創(chuàng)新創(chuàng)業(yè)能力的大學(xué)生。

參考文獻(xiàn):

[2]韋程?hào)|.數(shù)學(xué)建模能力培養(yǎng)方法研究[m].北京:科學(xué)出版社,2012.

大學(xué)數(shù)學(xué)建模論文篇三

通過(guò)對(duì)高中數(shù)學(xué)新教材的教學(xué),結(jié)合新教材的編寫(xiě)特點(diǎn)和高中研究性學(xué)習(xí)的開(kāi)展,對(duì)如何加強(qiáng)高中數(shù)學(xué)建模教學(xué),培養(yǎng)學(xué)生的創(chuàng)新能力方面進(jìn)行探索。

創(chuàng)新能力;數(shù)學(xué)建模;研究性學(xué)習(xí)。

《全日制普通高級(jí)中學(xué)數(shù)學(xué)教學(xué)大綱(試驗(yàn)修訂版)》對(duì)學(xué)生提出新的教學(xué)要求,要求學(xué)生:

(1)學(xué)會(huì)提出問(wèn)題和明確探究方向;

(2)體驗(yàn)數(shù)學(xué)活動(dòng)的過(guò)程;

(3)培養(yǎng)創(chuàng)新精神和應(yīng)用能力。

其中,創(chuàng)新意識(shí)與實(shí)踐能力是新大綱中最突出的特點(diǎn)之一,數(shù)學(xué)學(xué)習(xí)不僅要在數(shù)學(xué)基礎(chǔ)知識(shí),基本技能和思維能力,運(yùn)算能力,空間想象能力等方面得到訓(xùn)練和提高,而且在應(yīng)用數(shù)學(xué)分析和解決實(shí)際問(wèn)題的能力方面同樣需要得到訓(xùn)練和提高,而培養(yǎng)學(xué)生的分析和解決實(shí)際問(wèn)題的能力僅僅靠課堂教學(xué)是不夠的,必須要有實(shí)踐、培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和實(shí)踐能力是數(shù)學(xué)教學(xué)的一個(gè)重要目的和一條基本原則,要使學(xué)生學(xué)會(huì)提出問(wèn)題并明確探究方向,能夠運(yùn)用已有的知識(shí)進(jìn)行交流,并將實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,就必須建立數(shù)學(xué)模型,從而形成比較完整的數(shù)學(xué)知識(shí)結(jié)構(gòu)。

數(shù)學(xué)模型是數(shù)學(xué)知識(shí)與數(shù)學(xué)應(yīng)用的橋梁,研究和學(xué)習(xí)數(shù)學(xué)模型,能幫助學(xué)生探索數(shù)學(xué)的應(yīng)用,產(chǎn)生對(duì)數(shù)學(xué)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和實(shí)踐能力,加強(qiáng)數(shù)學(xué)建模教學(xué)與學(xué)習(xí)對(duì)學(xué)生的智力開(kāi)發(fā)具有深遠(yuǎn)的意義,現(xiàn)就如何加強(qiáng)高中數(shù)學(xué)建模教學(xué)談幾點(diǎn)體會(huì)。

教材的每一章都由一個(gè)有關(guān)的實(shí)際問(wèn)題引入,可直接告訴學(xué)生,學(xué)了本章的教學(xué)內(nèi)容及方法后,這個(gè)實(shí)際問(wèn)題就能用數(shù)學(xué)模型得到解決,這樣,學(xué)生就會(huì)產(chǎn)生創(chuàng)新意識(shí),對(duì)新數(shù)學(xué)模型的渴求,實(shí)踐意識(shí),學(xué)完要在實(shí)踐中試一試。

這是培養(yǎng)創(chuàng)新意識(shí)及實(shí)踐能力的好時(shí)機(jī)要注意引導(dǎo),對(duì)所考察的實(shí)際問(wèn)題進(jìn)行抽象分析,建立相應(yīng)的數(shù)學(xué)模型,并通過(guò)新舊兩種思路方法,提出新知識(shí),激發(fā)學(xué)生的知欲,如不可挫傷學(xué)生的積極性,失去“亮點(diǎn)”。

這樣通過(guò)章前問(wèn)題教學(xué),學(xué)生明白了數(shù)學(xué)就是學(xué)習(xí),研究和應(yīng)用數(shù)學(xué)模型,同時(shí)培養(yǎng)學(xué)生追求新方法的意識(shí)及參與實(shí)踐的意識(shí)。因此,要重視章前問(wèn)題的教學(xué),還可據(jù)市場(chǎng)經(jīng)濟(jì)的建設(shè)與發(fā)展的需要及學(xué)生實(shí)踐活動(dòng)中發(fā)現(xiàn)的問(wèn)題,補(bǔ)充一些實(shí)例,強(qiáng)化這方面的教學(xué),使學(xué)生在日常生活及學(xué)習(xí)中重視數(shù)學(xué),培養(yǎng)學(xué)生數(shù)學(xué)建模意識(shí)。

學(xué)習(xí)幾何、三角的測(cè)量問(wèn)題,使學(xué)生多方面全方位地感受數(shù)學(xué)建模思想,讓學(xué)生認(rèn)識(shí)更多現(xiàn)在數(shù)學(xué)模型,鞏固數(shù)學(xué)建模思維過(guò)程、教學(xué)中對(duì)學(xué)生展示建模的如下過(guò)程:

現(xiàn)實(shí)原型問(wèn)題

數(shù)學(xué)模型

數(shù)學(xué)抽象

簡(jiǎn)化原則

演算推理

現(xiàn)實(shí)原型問(wèn)題的解

數(shù)學(xué)模型的解

反映性原則

返回解釋

列方程解應(yīng)用題體現(xiàn)了在數(shù)學(xué)建模思維過(guò)程,要據(jù)所掌握的信息和背景材料,對(duì)問(wèn)題加以變形,使其簡(jiǎn)單化,以利于解答的思想。且解題過(guò)程中重要的步驟是據(jù)題意更出方程,從而使學(xué)生明白,數(shù)學(xué)建模過(guò)程的重點(diǎn)及難點(diǎn)就是據(jù)實(shí)際問(wèn)題特點(diǎn),通過(guò)觀察、類(lèi)比、歸納、分析、概括等基本思想,聯(lián)想現(xiàn)成的數(shù)學(xué)模型或變換問(wèn)題構(gòu)造新的數(shù)學(xué)模型來(lái)解決問(wèn)題。如利息(復(fù)利)的數(shù)列模型、利潤(rùn)計(jì)算的方程模型決策問(wèn)題的函數(shù)模型以及不等式模型等。

高中新大綱要求每學(xué)期至少安排一個(gè)研究性課題,就是為了培養(yǎng)學(xué)生的數(shù)學(xué)建模能力,如“數(shù)列”章中的“分期付款問(wèn)題”、“平面向是‘章中’向量在物理中的應(yīng)用”等,同時(shí),還可設(shè)計(jì)類(lèi)似利潤(rùn)調(diào)查、洽談、采購(gòu)、銷(xiāo)售等問(wèn)題。設(shè)計(jì)了如下研究性問(wèn)題。

分析:這是一個(gè)確定人口增長(zhǎng)模型的問(wèn)題,為使問(wèn)題簡(jiǎn)化,應(yīng)作如下假設(shè):

(1)該國(guó)的政治、經(jīng)濟(jì)、社會(huì)環(huán)境穩(wěn)定;

(2)該國(guó)的人口增長(zhǎng)數(shù)由人口的生育,死亡引起;

(3)人口數(shù)量化是連續(xù)的?;谏鲜黾僭O(shè),我們認(rèn)為人口數(shù)量是時(shí)間函數(shù)。建模思路是根據(jù)給出的數(shù)據(jù)資料繪出散點(diǎn)圖,然后尋找一條直線或曲線,使它們盡可能與這些散點(diǎn)吻合,該直線或曲線就被認(rèn)為近似地描述了該國(guó)人口增長(zhǎng)規(guī)律,從而進(jìn)一步作出預(yù)測(cè)。

通過(guò)上題的研究,既復(fù)習(xí)鞏固了函數(shù)知識(shí)更培養(yǎng)了學(xué)生的數(shù)學(xué)建模能力和實(shí)踐能力及創(chuàng)新意識(shí)。在日常教學(xué)中注意訓(xùn)練學(xué)生用數(shù)學(xué)模型來(lái)解決現(xiàn)實(shí)生活問(wèn)題;培養(yǎng)學(xué)生做生活的有心人及生活中“數(shù)”意識(shí)和觀察實(shí)踐能力,如記住一些常用及常見(jiàn)的數(shù)據(jù),如:人行車(chē)、自行車(chē)的速度,自己的身高、體重等。利用學(xué)校條件,組織學(xué)生到操場(chǎng)進(jìn)行實(shí)習(xí)活動(dòng),活動(dòng)一結(jié)束,就回課堂把實(shí)際問(wèn)題化成相應(yīng)的數(shù)學(xué)模型來(lái)解決。如:推鉛球的角度與距離關(guān)系;全班同學(xué)手拉手圍成矩形圈,怎樣圍使圍成的面積最大等,用磚塊搭成多米諾牌骨等。

由于數(shù)學(xué)模型這一思想方法幾乎貫穿于整個(gè)中小學(xué)數(shù)學(xué)學(xué)習(xí)過(guò)程之中,小學(xué)解算術(shù)運(yùn)用題中學(xué)建立函數(shù)表達(dá)式及解析幾何里的軌跡方程等都孕育著數(shù)學(xué)模型的思想方法,熟練掌握和運(yùn)用這種方法,是培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)分析問(wèn)題、解決問(wèn)題能力的關(guān)鍵,我認(rèn)為這就要求培養(yǎng)學(xué)生以下幾點(diǎn)能力,才能更好的完善數(shù)學(xué)建模思想:

(1)理解實(shí)際問(wèn)題的能力;

(2)洞察能力,即關(guān)于抓住系統(tǒng)要點(diǎn)的能力;

(3)抽象分析問(wèn)題的能力;

(5)運(yùn)用數(shù)學(xué)知識(shí)的能力;

(6)通過(guò)實(shí)際加以檢驗(yàn)的能力。

只有各方面能力加強(qiáng)了,才能對(duì)一些知識(shí)觸類(lèi)旁通,舉一反三,化繁為簡(jiǎn),如下例就要用到各種能力,才能順利解出。

例2:解方程組

x+y+z=1

(1)x2+y2+z2=1/3

(2)x3+y3+z3=1/9

(3)分析:本題若用常規(guī)解法求相當(dāng)繁難,仔細(xì)觀察題設(shè)條件,挖掘隱含信息,聯(lián)想各種知識(shí),即可構(gòu)造各種等價(jià)數(shù)學(xué)模型解之。

t3-t2+1/3t-1/27=0

(4)函數(shù)模型:

由(1)(2)知若以xz(x+y+z)為一次項(xiàng)系數(shù),(x2+y2+z2)為常數(shù)項(xiàng),則以3=(12+12+12)為二次項(xiàng)系數(shù)的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2為完全平方函數(shù)3(t-1/3)2,從而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也適合(3)。

平面解析模型

方程(1)(2)有實(shí)數(shù)解的充要條件是直線x+y=1-z與圓x2+y2=1/3-z2有公共點(diǎn)后者有公共點(diǎn)的充要條件是圓心(o、o)到直線x+y的距離不大于半徑。

總之,只要教師在教學(xué)中通過(guò)自學(xué)出現(xiàn)的實(shí)際的問(wèn)題,根據(jù)當(dāng)?shù)丶皩W(xué)生的實(shí)際,使數(shù)學(xué)知識(shí)與生活、生產(chǎn)實(shí)際聯(lián)系起來(lái),就能增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)模型解決實(shí)際問(wèn)題的意識(shí),從而提高學(xué)生的創(chuàng)新意識(shí)與實(shí)踐能力。

大學(xué)數(shù)學(xué)建模論文篇四

1、海選和優(yōu)選有機(jī)結(jié)合借助紙質(zhì)宣傳單、大型講座等方式進(jìn)行數(shù)學(xué)建模競(jìng)賽的宣傳,對(duì)其作用以及影響進(jìn)行充分的講解,鼓勵(lì)校園內(nèi)的同學(xué)來(lái)積極的進(jìn)行參加。倘若想要參與其中的同學(xué)人數(shù)過(guò)多時(shí),畢竟參賽名額是有一定限制的,可以利用面試的方式對(duì)其進(jìn)行篩選。為不打擊學(xué)生的積極性,在條件允許的情況下,可以盡可能保留更多的參賽者,通過(guò)面試成績(jī)把大家劃分為正式參賽隊(duì)和業(yè)余參賽隊(duì)。

2、充分利用現(xiàn)有資源在進(jìn)行數(shù)學(xué)建模競(jìng)賽組隊(duì)時(shí),應(yīng)充分的全面考慮有效利用現(xiàn)有的資源。首先是要掌握不同隊(duì)伍中不同人員屬于什么年級(jí),其次了解她們的每個(gè)人學(xué)習(xí)狀況以及所學(xué)專(zhuān)業(yè)等等,通常來(lái)說(shuō),同一隊(duì)伍中的每個(gè)人最理想的狀態(tài)是學(xué)習(xí)不同專(zhuān)業(yè)的,如此一來(lái)大家可以做到取長(zhǎng)補(bǔ)短,理論知識(shí)與實(shí)踐動(dòng)手兩手抓,一個(gè)團(tuán)隊(duì)里需要出眾的知識(shí)更需要過(guò)人的文筆。如此一來(lái)才能保證隊(duì)伍的整體實(shí)力,力爭(zhēng)在建模競(jìng)賽中取得好成績(jī)。

3、重點(diǎn)培訓(xùn)在對(duì)學(xué)生進(jìn)行賽前相關(guān)培訓(xùn)時(shí),在培訓(xùn)的過(guò)程中,教師可根據(jù)自身的擅長(zhǎng)專(zhuān)題,來(lái)進(jìn)行相關(guān)內(nèi)容的講解,與此同時(shí)結(jié)合不同隊(duì)伍的自身特點(diǎn)劃設(shè)側(cè)重點(diǎn),同學(xué)之間的接受能力也是各不同的,能力強(qiáng)的可以開(kāi)小灶,沒(méi)有相關(guān)競(jìng)賽經(jīng)驗(yàn)的要進(jìn)行重點(diǎn)培訓(xùn),這種因人而異的講解模式確保不同能力的同學(xué),在培訓(xùn)中的過(guò)程中都能夠?qū)W有所獲。

4、合理分工密切合作在參加數(shù)學(xué)建模競(jìng)賽的同學(xué)得到競(jìng)賽試題之后,老師應(yīng)該及時(shí)幫助學(xué)生進(jìn)行試題分析與指導(dǎo),根據(jù)團(tuán)隊(duì)內(nèi)不同人員的實(shí)際情況以及試題的具體內(nèi)容難易,進(jìn)行針對(duì)性的講解從而對(duì)同學(xué)們進(jìn)行合理分工,確保每個(gè)人所負(fù)責(zé)的部分都是自己相較于其他人而言是最擅長(zhǎng)的。值得注意的是,雖然進(jìn)行分工,但這并不是絕對(duì)的分割,而是有側(cè)重的合理分工,彼此之間的密切合作才是核心,畢竟建模競(jìng)賽中需要的是團(tuán)隊(duì)協(xié)作,而不是英雄主義。

5、堅(jiān)持可持續(xù)發(fā)展培訓(xùn)師資隊(duì)伍必須要有新鮮血液不斷注入,以老帶新最佳的血液注入方式,面對(duì)朝氣蓬勃的參賽學(xué)生,培訓(xùn)師資隊(duì)伍既要有身經(jīng)百戰(zhàn)經(jīng)驗(yàn)豐富的老師,也要有跟他們擁有更多共同話題的青年教師。在此期間通過(guò)不斷的學(xué)習(xí),青年教師跟同學(xué)們共同成長(zhǎng),從而保證師資隊(duì)伍的可持續(xù)發(fā)展。

二、大學(xué)生數(shù)學(xué)建模競(jìng)賽組織和管理方式的探索

1、進(jìn)行課程教學(xué)并給出有效的教學(xué)計(jì)劃每個(gè)學(xué)生的知識(shí)儲(chǔ)備都有著各自的特點(diǎn),借助良好的教育對(duì)學(xué)生們的知識(shí)架構(gòu)進(jìn)行完善,實(shí)現(xiàn)培養(yǎng)出學(xué)生強(qiáng)大能力的目標(biāo),數(shù)學(xué)建模對(duì)學(xué)生來(lái)說(shuō)裨益良多,被視作是大學(xué)校園中必備課程之一。但是進(jìn)行課程開(kāi)展的時(shí)候,要根據(jù)不同的培訓(xùn)對(duì)象大致分為以下兩類(lèi):第一、以選修課形式開(kāi)設(shè)數(shù)學(xué)建模競(jìng)賽課程,選修課程所面向的群體為整個(gè)學(xué)校的所有學(xué)生。第二、以必修課的方式開(kāi)設(shè)數(shù)學(xué)建模競(jìng)賽課程,必修課就要有針對(duì)性,因?yàn)椴⒉皇撬械膶W(xué)生都需要學(xué)習(xí)數(shù)學(xué),所以必修課針對(duì)的群體應(yīng)該是數(shù)學(xué)專(zhuān)業(yè)的學(xué)生。不同性質(zhì)的課程在教授上應(yīng)該有所區(qū)分,內(nèi)容的深淺也要有適當(dāng)?shù)恼{(diào)整。

2、利用建模教學(xué)實(shí)現(xiàn)知識(shí)與能力雙培養(yǎng)有效的教學(xué)是獲得數(shù)學(xué)建模競(jìng)賽好成績(jī)的最佳途徑,但是教學(xué)的過(guò)程中要注重?cái)?shù)學(xué)知識(shí)與實(shí)踐能力的均衡共同培養(yǎng),不能過(guò)分的注重知識(shí)的灌輸,而忽略了建模相關(guān)能力的培養(yǎng),對(duì)二者的培養(yǎng)必須要并駕齊驅(qū),如此才能真正的'掌握數(shù)學(xué)建模的精髓,從而在競(jìng)賽中取得良好的成績(jī)。

3、數(shù)學(xué)建模競(jìng)賽隊(duì)員的篩選數(shù)學(xué)建模所需要的人才是全方面的人才,除此之外還要對(duì)數(shù)學(xué)建模有足夠的興趣,并且還要有足夠多的時(shí)間來(lái)參加培訓(xùn)。以上述條件為基礎(chǔ),報(bào)名之后通過(guò)面試的測(cè)試,然后再?gòu)闹泻Y選出相對(duì)優(yōu)秀的學(xué)生組成參賽隊(duì)伍,在篩選的時(shí)候要充分的考慮到團(tuán)隊(duì)整體知識(shí)的涵蓋面,不同人之間所擅長(zhǎng)的專(zhuān)業(yè)不同為最佳。

4、培訓(xùn)培訓(xùn)工作通常被劃分為不同的階段:首先是初級(jí)階段,這一階段所注重的是對(duì)相關(guān)知識(shí)的培訓(xùn)。從初等模型、簡(jiǎn)單優(yōu)化模型、常微分方程模型等建模的基礎(chǔ)知識(shí)和方法入手由淺入深;其次是拔高階段,主要以專(zhuān)家講座為主,邀請(qǐng)建模專(zhuān)家進(jìn)行系統(tǒng)的講解,并結(jié)合精典范例進(jìn)行深入剖析,在擴(kuò)大學(xué)生的知識(shí)面和視野的同時(shí)提升學(xué)生的建模能力。

三、結(jié)語(yǔ)

通過(guò)以上的一系列論述,我們已經(jīng)對(duì)大學(xué)數(shù)學(xué)建模競(jìng)賽的隊(duì)伍組織及管理方式,有了更加清晰的了解和掌握。大學(xué)數(shù)學(xué)建模競(jìng)賽對(duì)于大學(xué)生來(lái)說(shuō)好處頗多,一方面能夠使學(xué)生們對(duì)學(xué)習(xí)的數(shù)學(xué)知識(shí)有更深的理解與更為靈活的應(yīng)用,另一方面,通過(guò)競(jìng)賽中的組隊(duì)讓大家感受到合作的重要性,為以后步入社會(huì)的工作打下基礎(chǔ)。希望這篇文章能夠?qū)︶槍?duì)數(shù)學(xué)建模的研究有一定的借鑒作用!

參考文獻(xiàn):

[1]韓成標(biāo),賈進(jìn)濤、高職院校參加數(shù)學(xué)建模競(jìng)賽大有可為[j]、工程數(shù)學(xué)學(xué)報(bào),(8)

[2]全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽賽題講評(píng)與經(jīng)驗(yàn)交流會(huì)在廣西大學(xué)舉行[j]、數(shù)學(xué)建模及其應(yīng)用,(04)

[3]錢(qián)方紅、基于數(shù)學(xué)模型解決數(shù)學(xué)建模競(jìng)賽隊(duì)員選拔和組隊(duì)問(wèn)題[j]、信息與電腦:理論版,(3)

[4]肖帆,張?zhí)m、高職院校數(shù)學(xué)建模競(jìng)賽培訓(xùn)模式研究[j]、延安職業(yè)技術(shù)學(xué)院學(xué)報(bào),2017(2)

大學(xué)數(shù)學(xué)建模論文篇五

數(shù)學(xué)是一門(mén)應(yīng)用性較強(qiáng)的學(xué)科,與實(shí)際生活具有緊密的聯(lián)系,而數(shù)學(xué)建模主要是指將人們的現(xiàn)實(shí)問(wèn)題演變?yōu)閷W(xué)生的數(shù)學(xué)學(xué)習(xí)問(wèn)題的過(guò)程中,這種思想在教學(xué)過(guò)程中的有效應(yīng)用,有助于培養(yǎng)學(xué)生的數(shù)學(xué)思維能力和創(chuàng)新能力,有效提升數(shù)學(xué)教學(xué)質(zhì)量。所以對(duì)于數(shù)學(xué)建模思想在大學(xué)數(shù)學(xué)教學(xué)過(guò)程中應(yīng)用的探索具有重要意義。

一、建模思想在大學(xué)數(shù)學(xué)教學(xué)中應(yīng)用的重要性

(一)激發(fā)學(xué)生的學(xué)習(xí)興趣

建模思想在大學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用,對(duì)于激發(fā)學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣具有重要作用。文中提到,數(shù)學(xué)建模主要是指將人們的現(xiàn)實(shí)問(wèn)題演變?yōu)閷W(xué)生的數(shù)學(xué)學(xué)習(xí)問(wèn)題的過(guò)程中,通過(guò)這種教學(xué)方式,能夠?qū)?shù)學(xué)教學(xué)過(guò)程中的數(shù)學(xué)理論與學(xué)生的具體生活實(shí)踐有機(jī)結(jié)合,有利于學(xué)生對(duì)于數(shù)學(xué)理論知識(shí)的理解和把握,激發(fā)了學(xué)習(xí)興趣,增加了學(xué)習(xí)的主動(dòng)性和積極性,提升了學(xué)生解決實(shí)際問(wèn)題的能力。

(二)推進(jìn)教學(xué)改革

在實(shí)際教學(xué)過(guò)程中,大學(xué)數(shù)學(xué)教學(xué)越來(lái)越注重理論性知識(shí)的教學(xué),導(dǎo)致數(shù)學(xué)教學(xué)內(nèi)容比較抽象,使得學(xué)生對(duì)數(shù)學(xué)知識(shí)的理解變得越來(lái)越困難。但是建模思想在數(shù)學(xué)教學(xué)中的應(yīng)用,有效破解了這一問(wèn)題,將抽象的知識(shí)融合到解決實(shí)際問(wèn)題中,提升學(xué)生對(duì)于難點(diǎn)知識(shí)的理解,促進(jìn)學(xué)生吸收知識(shí)和消化知識(shí)。這種教學(xué)模式是傳統(tǒng)教學(xué)方法和教學(xué)手段的新突破。并且這種教學(xué)模式還打破了傳統(tǒng)的大學(xué)數(shù)學(xué)教學(xué)模式,對(duì)于推進(jìn)大學(xué)數(shù)學(xué)教學(xué)工作的改革具有重要作用。

(三)培養(yǎng)學(xué)生的數(shù)學(xué)能力

一方面利用建模思想進(jìn)行大學(xué)數(shù)學(xué)教學(xué)時(shí),通過(guò)將學(xué)生的實(shí)際生活問(wèn)題引入到教學(xué)之中,可以搭建起學(xué)生與數(shù)學(xué)知識(shí)之間的情感共鳴,激發(fā)學(xué)生探究數(shù)學(xué)知識(shí)的興趣,使學(xué)生主動(dòng)地融入到課堂教學(xué)之中,從而培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神。另一方面這種教學(xué)模式有利于學(xué)生吸收知識(shí),消化知識(shí),提升今后工作或?qū)W習(xí)中運(yùn)用所學(xué)的數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力[1]。

二、建模思想在大學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用探索

(一)注重引導(dǎo)學(xué)生的自主學(xué)習(xí)

實(shí)際應(yīng)用建模思想進(jìn)行大學(xué)數(shù)學(xué)教學(xué)工作時(shí),教師要注重引導(dǎo)學(xué)生進(jìn)行自主學(xué)習(xí),以提高學(xué)生的實(shí)際學(xué)習(xí)質(zhì)量和效率,培養(yǎng)學(xué)生的探索精神和學(xué)習(xí)意識(shí)。當(dāng)前我國(guó)的大學(xué)數(shù)學(xué)教學(xué)中主要有微積分、線性代數(shù)和概率論以及數(shù)理統(tǒng)計(jì)等三門(mén)主干課程。在實(shí)際教學(xué)中,教學(xué)框架和教學(xué)模式比較固定,數(shù)學(xué)教學(xué)概念比較抽象,數(shù)學(xué)公式的推導(dǎo)比較嚴(yán)謹(jǐn)。所以在應(yīng)用建模思想進(jìn)行大學(xué)數(shù)學(xué)教學(xué)時(shí),就需要在總體教學(xué)框架下,對(duì)教學(xué)內(nèi)容進(jìn)行適當(dāng)改進(jìn),注重對(duì)學(xué)生自主學(xué)習(xí)的引導(dǎo)。

(二)注重激發(fā)學(xué)生的學(xué)習(xí)興趣

合理激發(fā)學(xué)生的學(xué)習(xí)效果對(duì)于促進(jìn)建模思想在大學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用具有重要作用和意義。在實(shí)際教學(xué)過(guò)程中,教師可以針對(duì)學(xué)生感興趣的話題或數(shù)學(xué)知識(shí)點(diǎn),導(dǎo)入相關(guān)的數(shù)學(xué)知識(shí),以激發(fā)學(xué)生的學(xué)習(xí)興趣。例如:教師在進(jìn)行大學(xué)數(shù)學(xué)的數(shù)學(xué)概率及其相關(guān)知識(shí)的實(shí)際教學(xué)工作時(shí),可以引入學(xué)生比較感興趣的緣分話題,引導(dǎo)學(xué)生進(jìn)行擇偶最佳法則的推導(dǎo)。通過(guò)這種教學(xué)模式,既能夠滿足學(xué)生的學(xué)習(xí)興趣,同時(shí)又能夠?qū)W(xué)生的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際的生活之中,可以起到事半功倍的教學(xué)效果,對(duì)于促進(jìn)建模思想在大學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用具有重要作用。

(三)注重改進(jìn)教學(xué)考核形式

在大學(xué)數(shù)學(xué)教學(xué)中應(yīng)用數(shù)學(xué)建模思想,教師還應(yīng)注重對(duì)教學(xué)考核形式的`改革。當(dāng)前大學(xué)的數(shù)學(xué)教學(xué)考核形式大都采用傳統(tǒng)的閉卷考試的考核形式,這種考核方式嚴(yán)重不利于教師對(duì)學(xué)生整體學(xué)習(xí)情況的了解,同時(shí)也沒(méi)有突出對(duì)學(xué)生的實(shí)際數(shù)學(xué)應(yīng)用能力和解決問(wèn)題能力的考核。所以在應(yīng)用建模思想進(jìn)行大學(xué)數(shù)學(xué)教學(xué)時(shí),要注重對(duì)教學(xué)考核形式的改進(jìn)。例如:教師在實(shí)際教學(xué)時(shí)可以突出學(xué)生的平時(shí)成績(jī)考核。教師可以對(duì)學(xué)生的課堂表現(xiàn)以及對(duì)數(shù)學(xué)問(wèn)題的探索等進(jìn)行記錄,將其作為學(xué)生的考核依據(jù),從而保障教學(xué)考核的有效性[2]。建模思想在大學(xué)數(shù)學(xué)教學(xué)中的引用,對(duì)于激發(fā)學(xué)生的學(xué)習(xí)興趣,提高教學(xué)質(zhì)量和效率具有重要作用。在大學(xué)數(shù)學(xué)教學(xué)大學(xué)未來(lái)發(fā)展中,要更加注重對(duì)建模思想的應(yīng)用和探索,促進(jìn)大學(xué)數(shù)學(xué)教學(xué)工作的未來(lái)發(fā)展。

參考文獻(xiàn):

[1]宋志廣.對(duì)高校數(shù)學(xué)建模方法教學(xué)策略的研究[j].教育,(2):82.

[2]王洋.如何激發(fā)高職院校學(xué)生對(duì)大學(xué)數(shù)學(xué)的學(xué)習(xí)興趣――以數(shù)學(xué)建模為突破口[j].時(shí)代教育,(7):249.

大學(xué)數(shù)學(xué)建模論文篇六

數(shù)學(xué)是一切科學(xué)與技術(shù)的基礎(chǔ),它的產(chǎn)生與發(fā)展都是為了推動(dòng)社會(huì)的發(fā)展。因此,數(shù)學(xué)在社會(huì)生活中的地位是不可動(dòng)搖的。然而,很多人都習(xí)慣把數(shù)學(xué)知識(shí)說(shuō)成理論性的知識(shí),覺(jué)得數(shù)學(xué)知識(shí)對(duì)社會(huì)的發(fā)展起不到促進(jìn)作用,故從心底對(duì)數(shù)學(xué)產(chǎn)生了數(shù)學(xué)無(wú)用論的思想。20世紀(jì)70年代,數(shù)學(xué)建模進(jìn)入了一些西方國(guó)家大學(xué),它的出現(xiàn)帶動(dòng)了數(shù)學(xué)領(lǐng)域的發(fā)展,也駁斥了數(shù)學(xué)無(wú)用論的思想,使得數(shù)學(xué)理論很好地實(shí)踐于生活當(dāng)中的各個(gè)領(lǐng)域。20世紀(jì)80年代開(kāi)始,隨著改革開(kāi)放,我國(guó)的數(shù)學(xué)建模教學(xué)和數(shù)學(xué)建模競(jìng)賽活動(dòng)也日益蓬勃地發(fā)展起來(lái)。1982年復(fù)旦大學(xué)首先在應(yīng)用數(shù)學(xué)專(zhuān)業(yè)學(xué)生中開(kāi)設(shè)了數(shù)學(xué)模型課程,隨后很多院校也相繼開(kāi)設(shè)。由于數(shù)學(xué)建模在各個(gè)高校中成功地引入,1994年教育部高教司決定每年在全國(guó)舉行全國(guó)大學(xué)生數(shù)學(xué)數(shù)模競(jìng)賽。隨著每年數(shù)學(xué)建模競(jìng)賽的發(fā)展,目前數(shù)學(xué)建模課程和競(jìng)賽在本科院校得到了普及,從而推動(dòng)了數(shù)學(xué)教學(xué)的發(fā)展。

隨著數(shù)學(xué)建模競(jìng)賽在本科院校的普及,開(kāi)始增設(shè)了高校大專(zhuān)組的數(shù)學(xué)建模競(jìng)賽。數(shù)學(xué)建模競(jìng)賽的引入,提高了高職院校數(shù)學(xué)課程的重視度,改變了古板、簡(jiǎn)單地傳授數(shù)學(xué)理論知識(shí)給學(xué)生的課程方式。另外,隨著計(jì)算機(jī)技術(shù)的迅速發(fā)展,數(shù)學(xué)的應(yīng)用不僅在工程技術(shù)、自然科學(xué)等領(lǐng)域發(fā)揮著越來(lái)越重要的作用,而且以空前的廣度和深度向經(jīng)濟(jì)、金融、生物、醫(yī)學(xué)、環(huán)境、地質(zhì)、人口、交通等新的領(lǐng)域滲透,數(shù)學(xué)建模和與之相伴的科學(xué)計(jì)算正在成為眾多領(lǐng)域中的關(guān)鍵工具。

一、數(shù)學(xué)建模的概念及競(jìng)賽模式

用數(shù)學(xué)方法解決科技生產(chǎn)領(lǐng)域的實(shí)際問(wèn)題,關(guān)鍵第一步是建立相應(yīng)的數(shù)學(xué)模型。也就是說(shuō),當(dāng)需要從定量的角度分析或者探究一個(gè)實(shí)際問(wèn)題時(shí),就要在調(diào)查研究的基礎(chǔ)上,充分了解對(duì)象信息,做出合理的假設(shè),分析其內(nèi)部規(guī)律等,運(yùn)用數(shù)學(xué)的符號(hào)或者語(yǔ)言表示出來(lái),這就是數(shù)學(xué)模型。通過(guò)計(jì)算得到的模型結(jié)果來(lái)解釋實(shí)際問(wèn)題,并接受實(shí)際的檢驗(yàn),這個(gè)建立數(shù)學(xué)模型的全過(guò)程就稱(chēng)為數(shù)學(xué)建模。

一般來(lái)說(shuō),數(shù)學(xué)建模過(guò)程按照以下步驟來(lái)進(jìn)行:

為了激勵(lì)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提高學(xué)生建立數(shù)學(xué)模型和運(yùn)用計(jì)算機(jī)技術(shù)解決實(shí)際問(wèn)題的綜合能力,鼓勵(lì)廣大學(xué)生踴躍參加課外科技活動(dòng),開(kāi)拓知識(shí)而,培養(yǎng)創(chuàng)造精神及合作意識(shí),同時(shí)推動(dòng)大學(xué)數(shù)學(xué)教學(xué)體系、教學(xué)內(nèi)容和方法的改革,國(guó)家教育部高教司和中國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)共同主辦而向全國(guó)大學(xué)生的群眾性科技活動(dòng),即全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽。數(shù)學(xué)建模競(jìng)賽遵循的模式:

1)參賽隊(duì)由三名大學(xué)生和一名指導(dǎo)教師組成,指導(dǎo)教師負(fù)責(zé)學(xué)生的訓(xùn)練,競(jìng)賽時(shí)指導(dǎo)教師不得參與。

2)參賽者從所給的題目當(dāng)中選擇一道題目來(lái)進(jìn)行競(jìng)賽,競(jìng)賽期間可以運(yùn)用各種方式進(jìn)行查閱自己所需要的資料,如:計(jì)算機(jī)網(wǎng)絡(luò),學(xué)校圖書(shū)館等等。

3)競(jìng)賽時(shí)間為三天,到時(shí)參賽者須提交一篇有關(guān)數(shù)學(xué)建模競(jìng)賽的論文,其中論文內(nèi)容包括:摘要,問(wèn)題的重述,問(wèn)題的分析,模型的假設(shè),符號(hào)說(shuō)明,模型的建立,模型的求解,模型評(píng)價(jià),參考文獻(xiàn)等。

4)競(jìng)賽期間,時(shí)間由參賽者自由安排,但是不允許參賽者與其他組的參賽者進(jìn)行討論、交流。

二、高職院校進(jìn)行數(shù)學(xué)建模教育存在不足

高職院校教育以培養(yǎng)實(shí)用型、技能型人才為目標(biāo),側(cè)重于培養(yǎng)學(xué)生的應(yīng)用能力。數(shù)學(xué)建模正是運(yùn)用數(shù)學(xué)知識(shí)建立數(shù)學(xué)模型的方式,解決實(shí)際問(wèn)題。因此,數(shù)學(xué)建模的目的與高職院校教育的目的不謀而合。在高職院校推廣數(shù)學(xué)建模競(jìng)賽,不但可以提高高職院校的競(jìng)爭(zhēng)力,而且符合它的辦學(xué)理念。然而,在許多高職院校中,對(duì)學(xué)生進(jìn)行數(shù)學(xué)建模能力培訓(xùn)重視的力度不夠。

在學(xué)生方面,高職院校的學(xué)生認(rèn)知水平低下,擁有的數(shù)學(xué)基礎(chǔ)比較差、應(yīng)用數(shù)學(xué)軟件能力不強(qiáng)、解決實(shí)際問(wèn)題的意識(shí)不強(qiáng)等種種因素,導(dǎo)致了學(xué)生害怕數(shù)學(xué),學(xué)習(xí)數(shù)學(xué)只是為了應(yīng)付考試,對(duì)數(shù)學(xué)產(chǎn)生了恐懼感,同時(shí)心里也產(chǎn)生了數(shù)學(xué)無(wú)用論的思想。

在教師方面,師資不足,數(shù)學(xué)教學(xué)方法單一,教學(xué)方式陳舊,只是采取填鴨式的教學(xué)方法。大部分?jǐn)?shù)學(xué)教師對(duì)數(shù)學(xué)建模課程的研究不是很滲透,只是簡(jiǎn)單地了解數(shù)學(xué)建模課程的初等模型.對(duì)于較為深入的模型沒(méi)有深入地進(jìn)行研究,以致在教學(xué)方面,沒(méi)有能夠很好地帶動(dòng)學(xué)生去學(xué)習(xí)數(shù)學(xué)建模課程,使學(xué)生對(duì)數(shù)學(xué)建模課程產(chǎn)生學(xué)習(xí)的興趣。

在學(xué)校方面,由于學(xué)生數(shù)學(xué)底子較差,有些學(xué)校不開(kāi)設(shè)高等數(shù)學(xué)和數(shù)學(xué)建模課程。高職院校學(xué)生競(jìng)賽項(xiàng)目較多,很多競(jìng)賽都與本專(zhuān)業(yè)鉤掛,導(dǎo)致學(xué)校較重視與相關(guān)專(zhuān)業(yè)競(jìng)賽的項(xiàng)目,而忽略了數(shù)學(xué)建模競(jìng)賽。學(xué)校對(duì)數(shù)學(xué)建模選修課給予課時(shí)不足,使得學(xué)生只能了解數(shù)學(xué)建模選修課的皮毛,且學(xué)校對(duì)全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽支持的力度不夠。

三、數(shù)學(xué)建模對(duì)高職院校的影響

(一)對(duì)課程教改方面的影響

數(shù)學(xué)教育本質(zhì)上是一種素質(zhì)教育,傳統(tǒng)的數(shù)學(xué)教學(xué)方法僅僅介紹數(shù)學(xué)的理論知識(shí),對(duì)問(wèn)題的應(yīng)用背景等方面介紹較少,另外高職院校學(xué)生的數(shù)學(xué)底子相對(duì)薄弱,單純地向他們灌輸數(shù)學(xué)的理論知識(shí),不但沒(méi)有提升他們的數(shù)學(xué)理論水平,反而使他們對(duì)數(shù)學(xué)知識(shí)失去了學(xué)習(xí)的興趣。然而,在數(shù)學(xué)教學(xué)課程中引入數(shù)學(xué)建模思想,將數(shù)學(xué)建模的思想和方法融入數(shù)學(xué)教學(xué)課程中,為數(shù)學(xué)與外部世界打開(kāi)了一個(gè)通道,打造了一種以學(xué)生為中心的全新的、有效的數(shù)學(xué)教學(xué)模式,為學(xué)生提供將所學(xué)的知識(shí)應(yīng)用于解決實(shí)際問(wèn)題的機(jī)會(huì),給學(xué)生以更大的思維空間,提高學(xué)生的思維能力和數(shù)學(xué)素質(zhì),也大大增加了學(xué)生學(xué)習(xí)數(shù)學(xué)理論知識(shí)的興趣。

隨著數(shù)學(xué)建模的`概念以及電子計(jì)算機(jī)的出現(xiàn),數(shù)學(xué)知識(shí)的應(yīng)用已經(jīng)以空前的廣度和深度向其他各個(gè)行業(yè)滲透。數(shù)學(xué)模型這個(gè)詞越來(lái)越多地出現(xiàn)在現(xiàn)代人的生產(chǎn)、工作和社會(huì)活動(dòng)中。例如:公司要根據(jù)產(chǎn)品的需求狀況、生產(chǎn)成本等信息,建立一個(gè)投資方案模型,認(rèn)真核準(zhǔn)投資的收益率和風(fēng)險(xiǎn)損失率,在投資前較好地對(duì)投資進(jìn)行預(yù)測(cè)和評(píng)估,確定投資方案,以取得最佳經(jīng)濟(jì)效益;氣象工作者為了得到準(zhǔn)確的天氣預(yù)報(bào),一刻也離不開(kāi)根據(jù)氣象衛(wèi)星匯集的氣壓、雨量、風(fēng)速等數(shù)據(jù)建立起來(lái)的數(shù)學(xué)模型等等。高職院校的各個(gè)專(zhuān)業(yè)都是以實(shí)踐性為主要目標(biāo),在各個(gè)專(zhuān)業(yè)教學(xué)中輸入數(shù)學(xué)建模的思想,不但能夠增加學(xué)生學(xué)習(xí)數(shù)學(xué)理論知識(shí)的興趣,而且還可以提高他們對(duì)專(zhuān)業(yè)知識(shí)的理解能力.同時(shí)提升他們分析以及解決問(wèn)題的能力;另外,數(shù)學(xué)建模思想的引入,改變了原專(zhuān)業(yè)課程的授課方式,相當(dāng)于向?qū)I(yè)課程注入了一個(gè)新鮮的血液,其教學(xué)方式也達(dá)到了促進(jìn)的作用。因此,引入數(shù)學(xué)建模思想,可以有效地?cái)U(kuò)大數(shù)學(xué)的實(shí)用性更好地為專(zhuān)業(yè)課程服務(wù),達(dá)到雙贏的目的。

例如:求汽車(chē)在公路上做勻速直線運(yùn)動(dòng)的路程。

相對(duì)于這道題來(lái)說(shuō),估計(jì)每個(gè)人都會(huì)求解,都知道答案應(yīng)該為:路程等于速度乘以時(shí)間,即s=v*t。

然而,對(duì)于這樣答案理解的人,也僅僅局限于初中階段。對(duì)于大學(xué)階段,我們還能單一地這樣認(rèn)為嗎?汽車(chē)在做直線運(yùn)動(dòng)過(guò)程中,每時(shí)每刻的速度都會(huì)一樣嗎?顯然,汽車(chē)在做直線運(yùn)動(dòng)過(guò)程中,每時(shí)每刻的速度肯定不會(huì)一樣的,上述問(wèn)題只是一種理想的狀態(tài),它忽略了空氣阻力等其他因素,即在求解汽車(chē)在公路上做勻速直線運(yùn)動(dòng)的路程的模型中,首先假設(shè)空氣阻力忽略不計(jì),公路上的阻力都是一致的,這樣我們才可以得出汽車(chē)在公路上做勻速直線運(yùn)動(dòng)的數(shù)學(xué)模型:s=v*t。通過(guò)學(xué)習(xí)數(shù)學(xué)建模課程,經(jīng)過(guò)這樣地處理,既向?qū)W生灌輸了數(shù)學(xué)建模的概念,增加了他們學(xué)習(xí)數(shù)學(xué)的興趣,又使得學(xué)生對(duì)問(wèn)題的來(lái)龍去脈產(chǎn)生了清晰的認(rèn)識(shí)。因此,在高職院校各個(gè)專(zhuān)業(yè)課中引入數(shù)學(xué)建模思想,不但使得學(xué)生對(duì)知識(shí)有了更清晰的認(rèn)識(shí),而且也可以促進(jìn)專(zhuān)業(yè)課程的改革。

(二)對(duì)學(xué)生的影響

開(kāi)展數(shù)學(xué)建?;顒?dòng),能擴(kuò)大學(xué)生的知識(shí)而。數(shù)學(xué)建模所涉及的內(nèi)容廣泛,用到的知識(shí)而寬廣,運(yùn)用涉及的領(lǐng)域在物理學(xué)、經(jīng)濟(jì)學(xué)、管理學(xué)等各方面。學(xué)生參加數(shù)學(xué)建模課程的培訓(xùn),可以學(xué)習(xí)到多種類(lèi)型的數(shù)學(xué)模型,比如:線性規(guī)劃模型、人口預(yù)測(cè)模型、層次分析法模型等等。這些模型都是擁有實(shí)際的背景,使得學(xué)生不僅對(duì)問(wèn)題的實(shí)際背景來(lái)源有了更深地認(rèn)識(shí),而且增加了他們課外知識(shí)的知識(shí)面。其次,建立和解決數(shù)學(xué)建模模型,一般都會(huì)運(yùn)用到數(shù)學(xué)編輯器和數(shù)學(xué)軟件;開(kāi)展數(shù)學(xué)建模競(jìng)賽活動(dòng),使得學(xué)生對(duì)數(shù)學(xué)編輯器mathtype和數(shù)學(xué)軟件 matlab、lingo產(chǎn)生了了解,熟悉它們基本的運(yùn)用,擴(kuò)展他們的模型解決能力。

開(kāi)展數(shù)學(xué)建?;顒?dòng),有利于培養(yǎng)學(xué)生的自主創(chuàng)新和實(shí)踐能力。數(shù)學(xué)建模是一個(gè)富有創(chuàng)造性思維的活動(dòng),它不等同于簡(jiǎn)單的應(yīng)用題目。對(duì)于給予一道數(shù)學(xué)建模應(yīng)用題目,它沒(méi)有絕對(duì)統(tǒng)一的答案,這給予了很大的思維空間。將數(shù)學(xué)建模的方法和思想融入教學(xué)課程中,有助于激發(fā)學(xué)生的原創(chuàng)性沖動(dòng),喚醒學(xué)生對(duì)工作的創(chuàng)造性意識(shí)。通過(guò)建立模型,學(xué)生要從錯(cuò)綜復(fù)雜的實(shí)際問(wèn)題中,抓住問(wèn)題的本質(zhì),明確問(wèn)題的要求,將問(wèn)題與實(shí)際聯(lián)系在一起,做出合理的假設(shè),運(yùn)用所給問(wèn)題的條件尋求解決問(wèn)題的最佳方案和途徑,這一過(guò)程能充分發(fā)揮學(xué)生豐富的想象力和創(chuàng)新能力。另一方面,數(shù)學(xué)建模是科學(xué)運(yùn)用到實(shí)踐的過(guò)程,高職院校當(dāng)中開(kāi)展數(shù)學(xué)建?;顒?dòng)可以有效地培養(yǎng)高職學(xué)生的實(shí)踐能力和動(dòng)手能力以及分析問(wèn)題和解決問(wèn)題的能力,為學(xué)生今后從事技術(shù)性工作奠定良好的基礎(chǔ)。

開(kāi)展數(shù)學(xué)建模活動(dòng),有助于激發(fā)學(xué)生學(xué)習(xí)的興趣。數(shù)學(xué)建模的主要目的是把所學(xué)到的知識(shí)運(yùn)用到實(shí)踐中,數(shù)學(xué)建模的很多題目都與我們自身息息相關(guān)的。例如:的c題目,問(wèn)題針對(duì)腦卒中(俗稱(chēng)腦中風(fēng))是目前威脅人類(lèi)生命的嚴(yán)重疾病之一,為了進(jìn)行疾病的風(fēng)險(xiǎn)評(píng)估,對(duì)腦卒中高危人群能夠及時(shí)采取干預(yù)措施,也讓尚未得病的健康人,或者亞健康人了解自己得腦卒中風(fēng)險(xiǎn)程度,進(jìn)行自我保護(hù)。題目給出了中國(guó)某城市各家醫(yī)院1月至12月的腦卒中發(fā)病病例信息以及相應(yīng)期間當(dāng)?shù)氐闹鹑諝庀筚Y料,讓我們建立數(shù)學(xué)模型研究腦中風(fēng)的發(fā)病率與什么因素有關(guān),我們?nèi)绾晤A(yù)防腦中風(fēng)的發(fā)生。因此,這樣的題目貼近生活,很容易激發(fā)學(xué)生想去進(jìn)一步研究的興趣,想知道究竟何種原因產(chǎn)生這種疾病,這種疾病有何危害,如何去預(yù)防等等。

開(kāi)展數(shù)學(xué)建模競(jìng)賽活動(dòng),有助于增強(qiáng)學(xué)生之間的團(tuán)結(jié)合作精神。在當(dāng)今世界上,團(tuán)結(jié)合作是每個(gè)人應(yīng)該具備的一種品質(zhì)。在團(tuán)結(jié)合作過(guò)程中,我們可以學(xué)會(huì)如何與人相處,如何尊重他人,如何寬容他人,如何培養(yǎng)我們的責(zé)任心。數(shù)學(xué)建模競(jìng)賽由三個(gè)人組成一個(gè)小組,在競(jìng)賽期間,我們要順利、完整地完成一道題目,成員間必須擁有合作的意識(shí),以及分工要合理。因此,學(xué)生參加數(shù)學(xué)建模競(jìng)賽,不僅可以培養(yǎng)同組隊(duì)員之間的默契,而且也可以增強(qiáng)學(xué)生之間的團(tuán)結(jié)合作精神。

四、結(jié)論

數(shù)學(xué)建模已是當(dāng)今時(shí)代所需要的,數(shù)學(xué)建模競(jìng)賽是全國(guó)各個(gè)學(xué)科大競(jìng)賽當(dāng)中參賽者人數(shù)最多的一項(xiàng)比賽。高職院校開(kāi)設(shè)數(shù)學(xué)建模課程以及參加數(shù)學(xué)建模競(jìng)賽,不但可以提高課程的教學(xué)效果和質(zhì)量,而且還可以有效地提升學(xué)生的基本素質(zhì),激發(fā)他們的潛能。

大學(xué)數(shù)學(xué)建模論文篇七

1.數(shù)學(xué)建模對(duì)學(xué)生創(chuàng)新思維和創(chuàng)新精神的培養(yǎng)

數(shù)學(xué)建模解決的都是與我們生活息息相關(guān)的實(shí)際問(wèn)題,很多都是當(dāng)前社會(huì)比較關(guān)注的熱點(diǎn)問(wèn)題,比如開(kāi)放性小區(qū)的建立,人工智能機(jī)器人在工作中的應(yīng)用,這些問(wèn)題開(kāi)放性比較強(qiáng),有明確的目的和要求,但它沒(méi)有唯一的結(jié)果和方法。因此留給學(xué)生很大的創(chuàng)新空間,使學(xué)生對(duì)數(shù)學(xué)產(chǎn)生了極大的興趣,他們發(fā)現(xiàn)這幾年學(xué)習(xí)的高數(shù)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)終于派上了用場(chǎng)。數(shù)學(xué)建模課程會(huì)結(jié)合《高等數(shù)學(xué)》,《線性代數(shù)》,《概率論與數(shù)理統(tǒng)計(jì)》等數(shù)學(xué)基礎(chǔ)學(xué)科,還會(huì)經(jīng)常涉及到物理,工程,經(jīng)濟(jì),金融,農(nóng)林等各個(gè)領(lǐng)域各個(gè)學(xué)科,從不同的學(xué)科中找最熱門(mén)最真實(shí)的案例進(jìn)行教學(xué),這要求學(xué)生有很強(qiáng)的自學(xué)能力,要不得學(xué)習(xí)新知識(shí),新思路和新方法,讓學(xué)生結(jié)合所學(xué)的數(shù)學(xué)知識(shí)把自己學(xué)科的專(zhuān)業(yè)知識(shí)轉(zhuǎn)化成數(shù)學(xué)模型,讓數(shù)學(xué)充分發(fā)揮它的優(yōu)勢(shì),以達(dá)到培養(yǎng)學(xué)生的創(chuàng)新能力,更重要的是對(duì)學(xué)生的知識(shí)體系起到了完善的作用。在整個(gè)競(jìng)賽中從模型建立與求解到寫(xiě)作,都是由學(xué)生獨(dú)立完成,充分發(fā)揮了他們的自主性和創(chuàng)造性。

2.數(shù)學(xué)建模能培養(yǎng)學(xué)生團(tuán)隊(duì)合作精神和創(chuàng)新創(chuàng)業(yè)能力

數(shù)學(xué)建模競(jìng)賽是由三個(gè)人組成一個(gè)小團(tuán)隊(duì)共同處理一個(gè)問(wèn)題,在這個(gè)團(tuán)隊(duì)中每個(gè)人都各有分工,有的人擅長(zhǎng)建立模型,有的人擅長(zhǎng)計(jì)算機(jī)編程求解模型,有的人擅長(zhǎng)寫(xiě)作,這三個(gè)人缺一不可,任何一個(gè)人都發(fā)揮著舉足輕重的作用。通常我們還會(huì)設(shè)一個(gè)隊(duì)長(zhǎng)能協(xié)調(diào)隊(duì)員之間的關(guān)系和對(duì)題目的把控。每個(gè)人都有不同的性格,能力,學(xué)識(shí),知識(shí)結(jié)構(gòu),在做題的過(guò)程中會(huì)產(chǎn)生不同的想法,比如在模型的建立中,數(shù)據(jù)的處理過(guò)程中,算法的選取,編程語(yǔ)言的選取,寫(xiě)作的過(guò)程中都會(huì)有很多的不同,所以每個(gè)成員都要有團(tuán)隊(duì)精神、相互信任、相互溝通、相互尊重、取長(zhǎng)補(bǔ)短、充分發(fā)揮集體的力量共同完成一個(gè)項(xiàng)目。同時(shí)每年無(wú)論在培訓(xùn)還是正式比賽過(guò)程中由于高強(qiáng)度的腦力活動(dòng),強(qiáng)大的心理壓力以及隊(duì)員之間的不和睦都會(huì)造成中途退賽,這樣無(wú)疑是最可惜的。所以,在競(jìng)賽中除了培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和團(tuán)隊(duì)合作精神,還培養(yǎng)了大家的心理承受能力,強(qiáng)大的意志力以及與他人溝通交往的能力,是對(duì)自己綜合素質(zhì)的一個(gè)提高,對(duì)未來(lái)考研、出國(guó)、就業(yè)都有很大的幫助。

3.數(shù)學(xué)建模培養(yǎng)學(xué)生的創(chuàng)新創(chuàng)業(yè)的.綜合能力

通過(guò)在大二一年的數(shù)學(xué)建模選修課,以及假期的集中培訓(xùn)培養(yǎng)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,很大程度上提高了他們思考問(wèn)題解決問(wèn)題的能力等綜合素質(zhì),同時(shí)還培養(yǎng)了他們應(yīng)用計(jì)算機(jī)去處理各種問(wèn)題的科技能力。他們學(xué)會(huì)了各種軟件、語(yǔ)言,很多同學(xué)會(huì)數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí)以及人工智能,這些都是未來(lái)科技的前沿,科技創(chuàng)新是企業(yè)發(fā)展的動(dòng)力,現(xiàn)代教育不能只停留在教授學(xué)生理論知識(shí)的學(xué)習(xí),更重要的是理論與實(shí)踐的結(jié)合,走產(chǎn)學(xué)研相結(jié)合的道路,數(shù)學(xué)建模很好的把理論與實(shí)踐相結(jié)合,激發(fā)學(xué)生科研熱情,提高學(xué)生科研積極性,激發(fā)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,為以后工作生活奠定了扎實(shí)的基礎(chǔ)。為了讓建模更好的服務(wù)學(xué)生,我們將不斷的努力,探索和改進(jìn)培養(yǎng)模式和方法,爭(zhēng)取通過(guò)數(shù)學(xué)建模平臺(tái)使更多的同學(xué)受益,培養(yǎng)出更多的具有創(chuàng)新創(chuàng)業(yè)能力的大學(xué)生。

參考文獻(xiàn):

[2]韋程?hào)|.數(shù)學(xué)建模能力培養(yǎng)方法研究[m].北京:科學(xué)出版社,.

大學(xué)數(shù)學(xué)建模論文篇八

探究式教學(xué)與數(shù)學(xué)建模

探究式教學(xué)法,不同于傳統(tǒng)將知識(shí)直接由老師進(jìn)行傳授的教學(xué)方法,而將其重心放在學(xué)生的“探與究”上?!疤健笔侵仡^,學(xué)生在新接觸某個(gè)概念和原理時(shí),教師只提供事例和問(wèn)題,學(xué)生通過(guò)查閱、觀察、記錄、實(shí)驗(yàn)等途徑獨(dú)立探索?!熬俊笔呛诵模瑢W(xué)生在獨(dú)立探索的基礎(chǔ)上,通過(guò)思考、討論自行發(fā)現(xiàn)掌握相應(yīng)的原理和結(jié)論。

最后老師結(jié)合學(xué)生的探究過(guò)程對(duì)他們的結(jié)論進(jìn)行評(píng)價(jià)和矯正。在探究過(guò)程中,始終強(qiáng)調(diào)以學(xué)生為主體,學(xué)生的自主學(xué)習(xí)能力都得到加強(qiáng),相比被動(dòng)接受教師傳授的知識(shí)和結(jié)論,通過(guò)這種方式獲取的知識(shí),學(xué)生理解更透徹,掌握更牢固。數(shù)學(xué)建模課程教學(xué)中大量源于實(shí)際生活的實(shí)例,也使得這門(mén)課程在教學(xué)手段和教學(xué)形式上的得以有大量創(chuàng)新,探究式的教學(xué)模式尤其適合在本課程的教學(xué)中使用,筆者長(zhǎng)期承擔(dān)數(shù)學(xué)建模課程的教學(xué)工作和指導(dǎo)學(xué)生開(kāi)展數(shù)學(xué)建模競(jìng)賽及有關(guān)活動(dòng),結(jié)合多年的實(shí)踐談一談。

探究過(guò)程的具體實(shí)施

問(wèn)題驅(qū)動(dòng)

實(shí)踐探索

這是探究過(guò)程的關(guān)鍵環(huán)節(jié),在教師的組織下,學(xué)生自己動(dòng)手實(shí)踐如何制訂研究計(jì)劃,如何收集必要的資料和有關(guān)的'研究方法?;谂囵B(yǎng)學(xué)生團(tuán)隊(duì)合作精神的目的,這個(gè)過(guò)程可將學(xué)生分組來(lái)完成。例如:包湯圓的問(wèn)題中,引導(dǎo)學(xué)生把問(wèn)題梳理和抽象出來(lái),一張面積為s的皮,可以包體積為v的餡,如今把這張面積為s的皮,分成n張面積為s的皮,每張面積為s的皮可以包體積為v的餡,那么問(wèn)題就轉(zhuǎn)化為了討論,究竟是v大還是nv大的問(wèn)題了。這個(gè)過(guò)程中,一定要讓學(xué)生思考,是不是需要某些合理的假設(shè),如:不論面皮大小,其厚度都應(yīng)該一致;不論湯圓大小,其形狀都一致(這兩個(gè)假設(shè)很關(guān)鍵)。

思考討論

學(xué)生把通過(guò)實(shí)踐探索得到的資料進(jìn)行思考、梳理、總結(jié),形成自己的結(jié)論。各團(tuán)隊(duì)就同一問(wèn)題將自己的結(jié)論清楚地表達(dá)出來(lái),針對(duì)各種不同的觀點(diǎn),共同討論。評(píng)價(jià)矯正在集體討論、辯論過(guò)程中,教師適時(shí)給予評(píng)價(jià)和矯正,分析獨(dú)特,立意清晰的給予肯定,觀點(diǎn)模糊的給予指正,通過(guò)融洽的學(xué)術(shù)交流使大家發(fā)現(xiàn)自己的問(wèn)題所在,不準(zhǔn)確、不深入的地方繼續(xù)完善。

探究式教學(xué)中應(yīng)注意的問(wèn)題

精心設(shè)計(jì)

第一,選擇適合探究的教學(xué)內(nèi)容。課堂中的探究其根本目的是引導(dǎo)學(xué)生主動(dòng)獲取知識(shí),教師要注意不要僅僅為了體現(xiàn)探究的形式而忽略了探究的目的。第二,教師精心組織、編排探究的問(wèn)題。大學(xué)數(shù)學(xué)課程探究式教學(xué)關(guān)鍵是通過(guò)問(wèn)題的驅(qū)動(dòng),讓學(xué)生在探究過(guò)程中自主的把握問(wèn)題解決的方向,所有同學(xué)都在考慮同一個(gè)問(wèn)題,在討論探究中產(chǎn)生思維的火花。要達(dá)到預(yù)期效果,沒(méi)有教師課前精心組織、設(shè)計(jì)是很難做到的。第三,控制好各個(gè)環(huán)節(jié)。根據(jù)實(shí)際情況,設(shè)計(jì)好探究過(guò)程中各環(huán)節(jié)的時(shí)間。將學(xué)生探究討論的時(shí)間和教師點(diǎn)評(píng)的時(shí)間都事先做一個(gè)安排,形成一定的慣例,學(xué)生課前充分準(zhǔn)備,通過(guò)細(xì)致的安排,確保探究過(guò)程高效完成。

注重引導(dǎo)

學(xué)生由于認(rèn)知水平參差不齊導(dǎo)致探究過(guò)程有顯著差異,教師要充分發(fā)揮引領(lǐng)作用,及時(shí)給予引導(dǎo)和矯正。

及時(shí)總結(jié)和評(píng)價(jià)

教師在學(xué)生討論完成后,及時(shí)對(duì)探究過(guò)程進(jìn)行總結(jié),講解正確的分析和理解,讓同學(xué)對(duì)自己的思考形成判斷和比較,通過(guò)鼓勵(lì),調(diào)動(dòng)學(xué)生積極性,喚起學(xué)習(xí)熱情。

大學(xué)數(shù)學(xué)建模論文篇九

計(jì)算數(shù)學(xué)建模是用數(shù)學(xué)的思考方式,采用數(shù)學(xué)的方法和語(yǔ)言,通過(guò)簡(jiǎn)化,抽象的方式來(lái)解決實(shí)際問(wèn)題的一種數(shù)學(xué)手段。數(shù)學(xué)建模所解決的問(wèn)題不止現(xiàn)實(shí)的,還包括對(duì)未來(lái)的一種預(yù)見(jiàn)。數(shù)學(xué)建模可以說(shuō)和我們的生活息息相關(guān),尤其是如今科技發(fā)達(dá)的今天。數(shù)學(xué)建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達(dá)到無(wú)所不及的程度,隨著數(shù)學(xué)建模在大學(xué)教學(xué)中的廣泛使用,使數(shù)學(xué)建模不止成為一種學(xué)科,更重要的是指導(dǎo)新生代更好的利用現(xiàn)代科學(xué)技術(shù),成為高科技人才,把我國(guó)人才強(qiáng)國(guó),科教興國(guó)的戰(zhàn)略推向一個(gè)新的高度。

1.數(shù)學(xué)建模對(duì)教學(xué)過(guò)程的作用

1.1數(shù)學(xué)建模引進(jìn)大學(xué)數(shù)學(xué)教學(xué)的必要。教學(xué)過(guò)程,是教師根據(jù)社會(huì)發(fā)展要求和當(dāng)代學(xué)生身心發(fā)展的特點(diǎn),借助教學(xué)條件,指導(dǎo)學(xué)生通過(guò)認(rèn)識(shí)教學(xué)內(nèi)容從而認(rèn)識(shí)客觀世界,并在此基礎(chǔ)之上發(fā)展自身的過(guò)程,即教學(xué)活動(dòng)的展開(kāi)過(guò)程。以往高工專(zhuān)的數(shù)學(xué)教學(xué)存在著知識(shí)單一,內(nèi)容陳舊,脫離實(shí)際等缺陷,已經(jīng)不能滿足時(shí)代的發(fā)展,如今的數(shù)學(xué)教學(xué)過(guò)程不是單純的傳授數(shù)學(xué)學(xué)科知識(shí),而是通過(guò)數(shù)學(xué)教學(xué)過(guò)程引導(dǎo)學(xué)生認(rèn)識(shí)科學(xué),理解科學(xué),從而指導(dǎo)實(shí)踐,促進(jìn)學(xué)生的德智體美勞全面的進(jìn)步和發(fā)展。因此數(shù)學(xué)建模成為一門(mén)學(xué)科,被各大高等院校廣泛引用和推廣,其實(shí)數(shù)學(xué)建模不止應(yīng)用在大學(xué)數(shù)學(xué)教學(xué)中,其他一切教學(xué)過(guò)程多可引進(jìn)數(shù)學(xué)建模。1.2數(shù)學(xué)建模在大學(xué)數(shù)學(xué)教學(xué)中的運(yùn)用。大學(xué)數(shù)學(xué)教師通過(guò)這個(gè)數(shù)學(xué)建模過(guò)程來(lái)引導(dǎo)學(xué)生解決問(wèn)題和指導(dǎo)實(shí)踐的能力。再次建模結(jié)果對(duì)現(xiàn)實(shí)生活的指導(dǎo),這是大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模所需要達(dá)到的效果和要求。不再停留在理論學(xué)習(xí),而是通過(guò)理論指導(dǎo)實(shí)踐,從而為科學(xué)的進(jìn)步和人才綜合水平的提高提供可能。

2.數(shù)學(xué)建模對(duì)當(dāng)代大學(xué)生的作用

2.1數(shù)學(xué)建模對(duì)數(shù)學(xué)學(xué)科和其他學(xué)科學(xué)生的巨大影響力學(xué)習(xí)數(shù)學(xué)建模,能夠使一個(gè)單獨(dú)的數(shù)學(xué)家變成經(jīng)濟(jì)學(xué)家,物理學(xué)家還有金融學(xué)家,甚至是藝術(shù)家,只要正握數(shù)學(xué)建模就能指導(dǎo)學(xué)生通過(guò)掌握數(shù)學(xué)建模的思維和方法向其他領(lǐng)域?qū)W習(xí)和進(jìn)步。數(shù)學(xué)建模成為連接數(shù)學(xué)和其他領(lǐng)域的紐帶,是當(dāng)今數(shù)學(xué)科學(xué)在其他領(lǐng)導(dǎo)應(yīng)用的橋梁,是數(shù)學(xué)技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學(xué)建模在學(xué)生中越來(lái)越受到關(guān)注和歡迎,越來(lái)越多的學(xué)生開(kāi)始學(xué)習(xí)數(shù)學(xué)建模,尤其是數(shù)學(xué)界和工程界的學(xué)生,這成為當(dāng)今學(xué)生成為現(xiàn)代科技工作者必須掌握的只是能力之一。

2.2數(shù)學(xué)建模對(duì)學(xué)生綜合能力的提高數(shù)學(xué)建模是大學(xué)數(shù)學(xué)教師運(yùn)用數(shù)學(xué)科學(xué)去分析和解決實(shí)際問(wèn)題,在數(shù)學(xué)建模學(xué)習(xí)的過(guò)程中,大學(xué)生的數(shù)學(xué)能力得到提高,其分析問(wèn)題、解決問(wèn)題的能力得到提高,這對(duì)大學(xué)生畢業(yè)走向社會(huì)具有著重大意義。通過(guò)數(shù)學(xué)建模的學(xué)習(xí)和應(yīng)用,激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的能力,運(yùn)用數(shù)學(xué)的思維和方法,利用現(xiàn)代計(jì)算機(jī)科學(xué),來(lái)解決數(shù)學(xué)及其他領(lǐng)域的問(wèn)題。

3.數(shù)學(xué)建模對(duì)大學(xué)數(shù)學(xué)及其他學(xué)科教師的作用

數(shù)學(xué)建模引入大學(xué)數(shù)學(xué)教學(xué),這是時(shí)代的進(jìn)步,是時(shí)代對(duì)當(dāng)代大學(xué)教師提出的新要求,尤其是大學(xué)數(shù)學(xué)教師,其不再停留在以往的單純的數(shù)學(xué)知識(shí)講授方向,而是將數(shù)學(xué)科學(xué)作為基礎(chǔ),引導(dǎo)當(dāng)代大學(xué)生發(fā)散思維,發(fā)揮主觀能動(dòng)性,從而學(xué)習(xí)數(shù)學(xué)科學(xué),并運(yùn)用數(shù)學(xué)科學(xué)解決現(xiàn)實(shí)問(wèn)題。在這個(gè)過(guò)程中大學(xué)教師的專(zhuān)業(yè)知識(shí)得到提高,其創(chuàng)新精神也得到了極大的豐富。大學(xué)數(shù)學(xué)教師不止完成數(shù)學(xué)教學(xué),更重要的是培養(yǎng)了高科技的人才,這對(duì)大學(xué)數(shù)學(xué)教師的社會(huì)地位也有了相應(yīng)的改變,在尊重人才,尊重科學(xué)的氛圍中,大學(xué)數(shù)學(xué)教師及其他學(xué)科的教師得到了鼓舞,得到了進(jìn)步,得到了認(rèn)可。數(shù)學(xué)建模越來(lái)越重要,關(guān)于數(shù)學(xué)建模的各種國(guó)內(nèi)國(guó)際大賽頻頻舉辦,這對(duì)大學(xué)數(shù)學(xué)教師在知識(shí),體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學(xué)建模比賽,大學(xué)數(shù)學(xué)教師投入更多的時(shí)間和經(jīng)歷在學(xué)生教育和數(shù)學(xué)建模中,他們成為真正的臺(tái)前和幕后的指揮者。

隨著現(xiàn)代大學(xué)學(xué)科的豐富,尤其是計(jì)算機(jī)科學(xué)的廣泛應(yīng)用,大學(xué)數(shù)學(xué)教學(xué)的跨時(shí)代發(fā)展,數(shù)學(xué)建模成為各個(gè)高校數(shù)學(xué)教學(xué)的重點(diǎn)內(nèi)容,數(shù)學(xué)建模教學(xué)吸納數(shù)學(xué)家,計(jì)算機(jī)學(xué)家等多個(gè)學(xué)科專(zhuān)家的意見(jiàn),從而為培養(yǎng)出綜合行的高科技人才做好充分的準(zhǔn)備??梢哉f(shuō)數(shù)學(xué)建模教學(xué)是當(dāng)今大學(xué)數(shù)學(xué)教學(xué)的主旋律,是數(shù)學(xué)科學(xué)和其他科學(xué)進(jìn)步發(fā)展的方向和原動(dòng)力。

參考文獻(xiàn):

[1]李進(jìn)華.教育教學(xué)改革與教育創(chuàng)新探索.安徽:安徽大學(xué)出版社,20xx.8.

[2]于駿.現(xiàn)代數(shù)學(xué)思想方法.山東:石油大學(xué)出版社,1997.

大學(xué)數(shù)學(xué)建模論文篇十

為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重?cái)?shù)學(xué)建模思想的有效培養(yǎng),促進(jìn)學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過(guò)程中,教師應(yīng)充分考慮小學(xué)生的性格特點(diǎn),提高數(shù)學(xué)建模思想培養(yǎng)的有效性。基于此,文章將從不同的方面對(duì)小學(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進(jìn)行初步的探討。

作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動(dòng)的順利開(kāi)展,有利于提高復(fù)雜數(shù)學(xué)問(wèn)題的處理效率,保持?jǐn)?shù)學(xué)課堂教學(xué)的高效性。要實(shí)現(xiàn)這樣的發(fā)展目標(biāo),增強(qiáng)小學(xué)生數(shù)學(xué)建模思想的實(shí)際培養(yǎng)效果,需要加強(qiáng)對(duì)學(xué)生動(dòng)手實(shí)踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過(guò)程涉及問(wèn)題表述、求解、必要解釋及有效驗(yàn)證,在這四個(gè)環(huán)節(jié)中,可能會(huì)存在一定的問(wèn)題,影響著數(shù)學(xué)教學(xué)計(jì)劃的實(shí)施。因此,教師需要利用學(xué)生動(dòng)手實(shí)踐能力的作用,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過(guò)程中享受到更多的快樂(lè)。比如,在講解“認(rèn)識(shí)角”知識(shí)的過(guò)程中,某些學(xué)生認(rèn)為邊越長(zhǎng)角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R(shí)點(diǎn)有更加正確而全面的認(rèn)識(shí),教師可以通過(guò)在黑板上設(shè)置一些能夠活動(dòng)的三角板,讓學(xué)生親自動(dòng)手操作,以此得出角與邊長(zhǎng)的正確關(guān)系,為后續(xù)教學(xué)計(jì)劃的實(shí)施打下堅(jiān)實(shí)的基礎(chǔ)。通過(guò)這種教學(xué)方法的合理運(yùn)用,可以激發(fā)出學(xué)生們?cè)跀?shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對(duì)數(shù)學(xué)建模思想有一定的了解,在未來(lái)學(xué)習(xí)過(guò)程中能夠保持良好的`數(shù)學(xué)建模能力。

通過(guò)對(duì)小學(xué)階段各種數(shù)學(xué)實(shí)踐教學(xué)活動(dòng)實(shí)際概況的深入分析,可知構(gòu)建良好的數(shù)學(xué)模型有利于加深學(xué)生對(duì)各知識(shí)(福建省莆田市秀嶼區(qū)東嶠前江小學(xué),福建莆田351164)點(diǎn)的深入理解,增強(qiáng)其主動(dòng)參與數(shù)學(xué)建模教學(xué)活動(dòng)的積極性。因此,為了使小學(xué)生數(shù)學(xué)建模思想培養(yǎng)能夠達(dá)到預(yù)期的效果,教師需要結(jié)合實(shí)際的教學(xué)內(nèi)容,建立必要的數(shù)學(xué)參考模型,提升學(xué)生對(duì)數(shù)學(xué)建模思想的整體認(rèn)知水平。比如,在講授“異分母分?jǐn)?shù)加減法”這部分知識(shí)的過(guò)程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問(wèn)題,向?qū)W生提問(wèn)是否可以直接計(jì)算,并說(shuō)出原因。當(dāng)學(xué)生通過(guò)對(duì)問(wèn)題的深入思考,總結(jié)出“單位不同不能直接計(jì)算”的結(jié)論后,繼續(xù)向?qū)W生提問(wèn)小數(shù)計(jì)算中為什么每一位都要對(duì)齊,實(shí)現(xiàn)“計(jì)數(shù)單位統(tǒng)一后才能計(jì)算”這一數(shù)學(xué)模型的構(gòu)建。在這樣的教學(xué)過(guò)程中,學(xué)生可以加深對(duì)知識(shí)點(diǎn)的理解,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng)。

加強(qiáng)小學(xué)生數(shù)學(xué)建模思想的有效培養(yǎng),需要在具體的教學(xué)活動(dòng)開(kāi)展中注重對(duì)數(shù)學(xué)思想的靈活運(yùn)用,增強(qiáng)相關(guān)模型構(gòu)建的可靠性,促使學(xué)生在長(zhǎng)期的數(shù)學(xué)學(xué)習(xí)中能夠不斷提高自身的數(shù)學(xué)能力,運(yùn)用各種數(shù)學(xué)知識(shí)處理實(shí)際問(wèn)題。比如,在“角的度量”這部分內(nèi)容講解的過(guò)程中,為了提高學(xué)生對(duì)角的分類(lèi)及畫(huà)角相關(guān)知識(shí)點(diǎn)的深入理解,教師可以將所有的學(xué)生分為不同的小組,讓學(xué)生們通過(guò)小組討論的方式,對(duì)角的正確分類(lèi)及如何畫(huà)角有一定的了解,并讓每個(gè)小組代表在講臺(tái)上演示畫(huà)角的過(guò)程。此時(shí),教師可以通過(guò)對(duì)多媒體教學(xué)設(shè)備的合理運(yùn)用,利用動(dòng)態(tài)化的文字與圖片對(duì)其中的知識(shí)要點(diǎn)進(jìn)行展示,確保學(xué)生們能夠在良好的教學(xué)模式中提升自身的認(rèn)知水平,并在不斷的思考過(guò)程中逐漸形成良好的創(chuàng)造性思維,強(qiáng)化自身的創(chuàng)新意識(shí)。比如,在講解“圖形變換”中的軸對(duì)稱(chēng)、旋轉(zhuǎn)知識(shí)點(diǎn)的過(guò)程中,教師應(yīng)通過(guò)對(duì)學(xué)生的正確引導(dǎo),運(yùn)用三角板、圓柱等教學(xué)輔助工具,讓學(xué)生從不同的角度對(duì)各種軸對(duì)稱(chēng)圖形、旋轉(zhuǎn)后得到的圖形進(jìn)行深入思考,提高自身數(shù)學(xué)建模過(guò)程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過(guò)程,對(duì)這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學(xué)生數(shù)學(xué)建模思想培養(yǎng)中多方位思考方式的針對(duì)性培養(yǎng),提高學(xué)生的創(chuàng)新能力,優(yōu)化學(xué)生的思維方式,全面提升小學(xué)數(shù)學(xué)建模教學(xué)水平。

總之,加強(qiáng)小學(xué)生數(shù)學(xué)建模思想培養(yǎng)策略的制定與實(shí)施,有利于滿足素質(zhì)教育的更高要求,實(shí)現(xiàn)對(duì)小學(xué)生數(shù)學(xué)能力的有效鍛煉,確保相關(guān)的教學(xué)計(jì)劃能夠在規(guī)定的時(shí)間內(nèi)順利地完成。與此同時(shí),結(jié)合當(dāng)前小學(xué)數(shù)學(xué)教育教學(xué)的實(shí)際發(fā)展概況,可知靈活運(yùn)用各種科學(xué)的數(shù)學(xué)建模思想培養(yǎng)策略,有利于滿足學(xué)生數(shù)學(xué)建模學(xué)習(xí)中的多樣化需求,為相關(guān)教學(xué)目標(biāo)的順利實(shí)現(xiàn)提供可靠的保障。

[1]童小艷.小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生建模思想的策略[j].學(xué)子(教育新理念),20xx(6).

[2]白寧.先學(xué)而后教——小學(xué)生數(shù)學(xué)建模思想培養(yǎng)的捷徑[j].數(shù)學(xué)學(xué)習(xí)與研究,20xx(16).

大學(xué)數(shù)學(xué)建模論文篇十一

眾所周知,高等數(shù)學(xué)是所有自然學(xué)科的基礎(chǔ),一個(gè)大學(xué)生要想在以后的工作、學(xué)習(xí)中大展宏圖,那么就一定少不了堅(jiān)實(shí)的高等數(shù)學(xué)基礎(chǔ)。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問(wèn)題?如何調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來(lái)好好學(xué)習(xí)高等數(shù)學(xué),努力為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。一直以來(lái),各所高校的教師們都在努力的想辦法、找對(duì)策,一些實(shí)用有效的方法已經(jīng)提出并且在逐步推廣,比如,問(wèn)題驅(qū)動(dòng)式的教學(xué)方法和基于pbl的教學(xué)方法等。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來(lái)的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。該方法在筆者所教授的班級(jí)中已經(jīng)實(shí)際應(yīng)用過(guò)幾屆,學(xué)生普遍反映效果較好,任課老師也認(rèn)為該方法確實(shí)能極大地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。

提到高等數(shù)學(xué),學(xué)生們的第一反應(yīng)往往是:各種公式塞滿黑板,各種運(yùn)算充斥腦海;定義、定理、推論一個(gè)連著一個(gè);極限、連續(xù)、可導(dǎo)可積一個(gè)涵蓋另一個(gè)[1]。和高中數(shù)學(xué)相比,記憶的負(fù)擔(dān)輕了(實(shí)際上是知識(shí)點(diǎn)太多,記不住了),而對(duì)思維的要求卻提高了。對(duì)大學(xué)生來(lái)說(shuō),每一次的高數(shù)課,都是一次大腦的思維訓(xùn)練,時(shí)刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內(nèi)容就不知所云了。這樣的要求短時(shí)間可以達(dá)到,長(zhǎng)久下去學(xué)生們會(huì)覺(jué)得很辛苦,很有壓力,會(huì)出現(xiàn)抱怨。筆者碰到過(guò)這樣的學(xué)生,剛開(kāi)始時(shí),興致勃勃,雄心萬(wàn)丈,可到后來(lái)興趣索然,馬虎應(yīng)對(duì)。怪學(xué)生嗎?誠(chéng)然學(xué)生有責(zé)任,但任課老師也該負(fù)很大的責(zé)任。作為高等數(shù)學(xué)的老師我們經(jīng)常要面對(duì)學(xué)生提的這些問(wèn)題:(1)我學(xué)的專(zhuān)業(yè)和高等數(shù)學(xué)相差甚遠(yuǎn),有可能這一輩子都不會(huì)用到高等數(shù)學(xué)的知識(shí),那我學(xué)高等數(shù)學(xué)的目的何在?(2)老師您天天鼓吹高等數(shù)學(xué)的強(qiáng)大功能和廣泛用途,但是通過(guò)一學(xué)期的學(xué)習(xí),我發(fā)現(xiàn)除了對(duì)付考試有用,真不知高等數(shù)學(xué)可以用在何處?這些問(wèn)題不及時(shí)解決,時(shí)間長(zhǎng)了一定會(huì)影響到大學(xué)生對(duì)高等數(shù)學(xué)的學(xué)習(xí)積極性,甚至有可能會(huì)產(chǎn)生厭學(xué)的情緒和氛圍。有些極端的學(xué)生,期末考試之后,一聽(tīng)到自己高等數(shù)學(xué)考過(guò)了,立馬將高等數(shù)學(xué)的課本給撕了,可想而知高等數(shù)學(xué)對(duì)其造成的壓力有多大[2]。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問(wèn)題?如何調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來(lái)好好學(xué)習(xí)高等數(shù)學(xué),努力地為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來(lái)的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。

一、以實(shí)際問(wèn)題反推解決問(wèn)題時(shí)我們需要的高等數(shù)學(xué)知識(shí)

有這樣一個(gè)實(shí)際問(wèn)題:報(bào)童每天清晨從報(bào)社購(gòu)進(jìn)報(bào)紙零售,晚上將沒(méi)賣(mài)掉的報(bào)紙退回給報(bào)社。假設(shè)報(bào)紙每份的購(gòu)進(jìn)價(jià)為b元,零售價(jià)為a元,退回價(jià)為c元,自然地有abc。這就是說(shuō),報(bào)童每售出一份報(bào)紙賺a-b元,每退回一份報(bào)紙賠b-c元,報(bào)童每天如果購(gòu)進(jìn)的報(bào)紙?zhí)?,那么?huì)不夠賣(mài),就會(huì)少賺錢(qián);如果每天購(gòu)進(jìn)的報(bào)紙?zhí)啵敲磿?huì)賣(mài)不完,將要賠錢(qián)。請(qǐng)為報(bào)童規(guī)劃一下,他該如何確定每天購(gòu)進(jìn)的報(bào)紙份數(shù),以獲得最大的收入[3]。

現(xiàn)在我們來(lái)反推該問(wèn)題涉及到的高等數(shù)學(xué)的知識(shí):首先,通過(guò)分析題目可知,問(wèn)題解決的關(guān)鍵在于——如何確定每天的報(bào)紙需求量,注意每天的報(bào)紙需求量是隨機(jī)變化的?解決這個(gè)關(guān)鍵問(wèn)題的知識(shí)我們?cè)缇驼莆樟?,分別是數(shù)理統(tǒng)計(jì)中的頻率連續(xù)化、概率論中的概率密度與期望和高等數(shù)學(xué)中的定積分[4]。

二、利用高等數(shù)學(xué)的解決實(shí)際問(wèn)題

f(r)[4]。如果求出了f(r),那么

g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)

現(xiàn)在我們來(lái)求f(r),假定報(bào)童已經(jīng)通過(guò)自己的經(jīng)驗(yàn)和其他渠道掌握了一年(365天)中每天報(bào)紙的售出份數(shù),那么在他的銷(xiāo)售范圍內(nèi),每天報(bào)紙日需求量r的概率f(r)為:

f(r)=,r=(0,1,2,3,…)

其中k表示為賣(mài)出r份的天數(shù)。

g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)

通過(guò)上面的分析,可知實(shí)際問(wèn)題歸結(jié)為,在p(r)和a,b,c已知時(shí),求n使得g(n)最大。

=-(b-c)p(r)dr+(a-b)p(r)dr.(3)

令=0,得到=,又因?yàn)閜(r)dr+p(r)dr=1,所以p(r)dr=.(4)

在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識(shí)一定可以求出n。也即可以確定每天購(gòu)進(jìn)的報(bào)紙份數(shù),使報(bào)童每天獲得最大的收入。

三、利用現(xiàn)實(shí)問(wèn)題,讓學(xué)生學(xué)會(huì)思考,給他們提供創(chuàng)造成就感的機(jī)會(huì)

通過(guò)上面碰到的實(shí)際問(wèn)題,可以很容易地說(shuō)服同學(xué)們靜下心來(lái)好好學(xué)習(xí)高等數(shù)學(xué)。因?yàn)橥ㄟ^(guò)實(shí)際問(wèn)題的求解,學(xué)生們了解到了,要想解決一個(gè)實(shí)際問(wèn)題(哪怕是很小的問(wèn)題),也需要大量的高等數(shù)學(xué)知識(shí)的儲(chǔ)備;學(xué)生們也大概領(lǐng)略到了高等數(shù)學(xué)的用途與功能。這樣的教學(xué)方法簡(jiǎn)單、直接,勝過(guò)老師課堂上反復(fù)的嘮叨與強(qiáng)調(diào)。有了這樣的一些實(shí)際問(wèn)題,老師們就可以大膽地將數(shù)學(xué)建模思想引入高等數(shù)學(xué)的教學(xué)當(dāng)中,讓學(xué)生們?cè)诮鉀Q實(shí)際問(wèn)題中學(xué)會(huì)思考,掌握知識(shí),提高能力。

通過(guò)訓(xùn)練后,碰到實(shí)際問(wèn)題,同學(xué)們會(huì)自然的想到我們的教學(xué)方法:(1)這些實(shí)際問(wèn)題涉及到的高等數(shù)學(xué)知識(shí)?那些自己掌握了,那些還沒(méi)有弄明白,學(xué)要加強(qiáng)學(xué)習(xí)。(2)知識(shí)點(diǎn)找到后,如何建立起數(shù)學(xué)與實(shí)際問(wèn)題求解之間的關(guān)系?也即如何建立數(shù)學(xué)模型。(3)除了老師給的題目,自己本專(zhuān)業(yè)中的實(shí)際問(wèn)題,能否用高等數(shù)學(xué)的知識(shí)去解決?通過(guò)思考、分析、解決這些問(wèn)題,學(xué)生們會(huì)有一種創(chuàng)造創(chuàng)新的成就感,會(huì)愿意自主學(xué)習(xí),自然而然其學(xué)習(xí)高等數(shù)學(xué)的積極性也會(huì)大大提高了。

大學(xué)數(shù)學(xué)建模論文篇十二

一、在高等數(shù)學(xué)教學(xué)中運(yùn)用數(shù)學(xué)建模思想的重要性

(1)將教材中的數(shù)學(xué)知識(shí)運(yùn)用現(xiàn)實(shí)生活中的對(duì)象進(jìn)行還原,讓學(xué)生樹(shù)立數(shù)學(xué)知識(shí)來(lái)源于現(xiàn)實(shí)生活的思想觀念。

(2)數(shù)學(xué)建模思想要求學(xué)生能夠通過(guò)運(yùn)用相應(yīng)的數(shù)學(xué)工具和數(shù)學(xué)語(yǔ)言,對(duì)現(xiàn)實(shí)生活中的特定對(duì)象的信息、數(shù)據(jù)或者現(xiàn)象進(jìn)行簡(jiǎn)化,對(duì)抽象的數(shù)學(xué)對(duì)象進(jìn)行翻譯和歸納,將所求解的數(shù)學(xué)問(wèn)題中的數(shù)量關(guān)系運(yùn)用數(shù)學(xué)關(guān)系式、數(shù)學(xué)圖形或者數(shù)學(xué)表格等形式進(jìn)行表達(dá),這種方式有利于培養(yǎng)、鍛煉學(xué)生的數(shù)學(xué)表達(dá)能力。

(3)在運(yùn)用數(shù)學(xué)建模思想獲得實(shí)際的答案后,需要運(yùn)用現(xiàn)實(shí)生活對(duì)象的相關(guān)信息對(duì)其進(jìn)行檢驗(yàn),對(duì)計(jì)算結(jié)果的準(zhǔn)確性進(jìn)行檢驗(yàn)和確定。該流程能夠培養(yǎng)學(xué)生運(yùn)用合理的數(shù)學(xué)方法對(duì)數(shù)學(xué)問(wèn)題進(jìn)行主動(dòng)性、客觀性以及辯證性的分析,最后得到最有效的解決問(wèn)題的方法。

二、高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模能力的培養(yǎng)策略

1.教師要具備數(shù)學(xué)建模思想意識(shí)

在對(duì)高等數(shù)學(xué)進(jìn)行教學(xué)的過(guò)程中,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)建模思想,首先教師要具備足夠的數(shù)學(xué)建模意識(shí)。教師在進(jìn)行高等數(shù)學(xué)教學(xué)之前,首先,要對(duì)所講數(shù)學(xué)內(nèi)容的相關(guān)實(shí)例進(jìn)行查找,有意識(shí)的實(shí)現(xiàn)高等數(shù)學(xué)內(nèi)容和各個(gè)不同領(lǐng)域之間的聯(lián)系;其次,教師要實(shí)現(xiàn)高等數(shù)學(xué)教學(xué)內(nèi)容與教學(xué)要求的轉(zhuǎn)變,及時(shí)的更新自身的教學(xué)觀念和教學(xué)思想。例如,教師細(xì)心發(fā)現(xiàn)現(xiàn)實(shí)生活中的小事,然后運(yùn)用這些小事建造相應(yīng)的數(shù)學(xué)模型,這樣不僅有利于營(yíng)造活躍的課堂環(huán)境,而且還有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。

2.實(shí)現(xiàn)數(shù)學(xué)建模思想和高等數(shù)學(xué)教材的互相結(jié)合

教師在講解高等數(shù)學(xué)時(shí),對(duì)其中能夠引入數(shù)學(xué)模型的章節(jié),要構(gòu)建相關(guān)的數(shù)學(xué)模型,對(duì)其提出相應(yīng)的問(wèn)題,進(jìn)行分析和處理。在該基礎(chǔ)上,提出假設(shè),實(shí)現(xiàn)數(shù)學(xué)模型的完善。教師在高等數(shù)學(xué)的教學(xué)中融入建模意識(shí),讓學(xué)生潛移默化的感受到建模思想在高等數(shù)學(xué)教學(xué)中應(yīng)用的效果。這樣有利于提高學(xué)生數(shù)學(xué)知識(shí)的運(yùn)用能力和學(xué)習(xí)興趣。例如,在進(jìn)行教學(xué)時(shí),針對(duì)學(xué)生所學(xué)專(zhuān)業(yè)的特點(diǎn),選擇科學(xué)、合理的數(shù)學(xué)案例,運(yùn)用數(shù)學(xué)建模思想對(duì)其進(jìn)行相應(yīng)的加工后,作為高等數(shù)學(xué)講授的應(yīng)用例題。這樣不僅能夠讓學(xué)生發(fā)現(xiàn)數(shù)學(xué)發(fā)揮的巨大作用,而且還能夠有效的提高學(xué)生的數(shù)學(xué)解題水平。另外,數(shù)學(xué)課結(jié)束后,轉(zhuǎn)變以往的作業(yè)模式,給學(xué)生布置一些具有專(zhuān)業(yè)性、數(shù)學(xué)性的習(xí)題,讓學(xué)生充分利用網(wǎng)絡(luò)資源,自主建立數(shù)學(xué)模型,有效的解決問(wèn)題。

3.理清高等數(shù)學(xué)名詞的概念

教材中,導(dǎo)數(shù)和定積分是其中的比較重要的概念,因此,教師在進(jìn)行教學(xué)時(shí),要引導(dǎo)學(xué)生理清這兩個(gè)的概念。比如導(dǎo)數(shù)概念是由幾何曲線中的切線斜率引導(dǎo)出來(lái)的,定積分的概念是由局部取近似值引出的,將常量轉(zhuǎn)變?yōu)樽兞俊?/p>

4.加強(qiáng)數(shù)學(xué)應(yīng)用問(wèn)題的培養(yǎng)

高等數(shù)學(xué)中,主要有以下幾種應(yīng)用問(wèn)題:

(1)最值問(wèn)題

在高等數(shù)學(xué)教材中,最值問(wèn)題是導(dǎo)數(shù)應(yīng)用中最重要的問(wèn)題。教師在教學(xué)過(guò)程中通過(guò)對(duì)最值問(wèn)題的解題步驟進(jìn)行歸納,能夠有效地將數(shù)學(xué)建模的基本思想進(jìn)行反映。因此,在對(duì)這部分內(nèi)容進(jìn)行教學(xué)時(shí),要增加例題,加大學(xué)生的練習(xí),開(kāi)拓學(xué)生的思維,讓學(xué)生熟練掌握最值問(wèn)題的解決辦法。

(2)微分方程

在微分方程的教學(xué)中運(yùn)用數(shù)學(xué)建模思想,能夠有效地解決實(shí)際問(wèn)題。微分方程所構(gòu)建的數(shù)學(xué)模型不具有通用的規(guī)則。首先,要確定方程中的變量,對(duì)變量和變化率、微元之間的關(guān)系進(jìn)行分析,然后運(yùn)用相關(guān)的物理理論、化學(xué)理論或者工程學(xué)理論對(duì)其進(jìn)行實(shí)驗(yàn),運(yùn)用所得出的定理、規(guī)律來(lái)構(gòu)建微分方程;其次,對(duì)其進(jìn)行求解和驗(yàn)證結(jié)果。微分方程的概念主要從實(shí)際引入,堅(jiān)持由淺入深的原則,來(lái)對(duì)現(xiàn)實(shí)問(wèn)題進(jìn)行解決。例如,在對(duì)學(xué)生講解外有引力定律時(shí),讓學(xué)生對(duì)萬(wàn)有引力的提出、猜想進(jìn)行探究,了解到在其發(fā)展的整個(gè)過(guò)程中,數(shù)學(xué)發(fā)揮著十分重要的作用。

(3)定積分

微元法思想用途比較廣泛,其主要以定積分概念為基礎(chǔ),在數(shù)學(xué)中滲入定積分概念,讓學(xué)生對(duì)定積分概念的意義進(jìn)行分析和了解,這樣有利于在對(duì)實(shí)際問(wèn)題進(jìn)行解決時(shí),樹(shù)立“欲積先分”意識(shí),意識(shí)到運(yùn)用定積分是解決微元實(shí)際問(wèn)題的重要方法。教師在布置作業(yè)題時(shí),要增加該問(wèn)題的實(shí)例。

三、結(jié)語(yǔ)

總之,在高等數(shù)學(xué)中對(duì)學(xué)生的數(shù)學(xué)建模能力進(jìn)行培養(yǎng),讓學(xué)生在解題的過(guò)程中運(yùn)用數(shù)學(xué)建模思想和數(shù)學(xué)建模方法,能夠有效地激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的分析、解決問(wèn)題的能力以及提高學(xué)生數(shù)學(xué)知識(shí)的運(yùn)用能力。

大學(xué)數(shù)學(xué)建模論文篇十三

計(jì)算數(shù)學(xué)建模是用數(shù)學(xué)的思考方式,采用數(shù)學(xué)的方法和語(yǔ)言,通過(guò)簡(jiǎn)化,抽象的方式來(lái)解決實(shí)際問(wèn)題的一種數(shù)學(xué)手段。數(shù)學(xué)建模所解決的問(wèn)題不止現(xiàn)實(shí)的,還包括對(duì)未來(lái)的一種預(yù)見(jiàn)。數(shù)學(xué)建??梢哉f(shuō)和我們的生活息息相關(guān),尤其是如今科技發(fā)達(dá)的今天。數(shù)學(xué)建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達(dá)到無(wú)所不及的程度,隨著數(shù)學(xué)建模在大學(xué)教學(xué)中的廣泛使用,使數(shù)學(xué)建模不止成為一種學(xué)科,更重要的是指導(dǎo)新生代更好的利用現(xiàn)代科學(xué)技術(shù),成為高科技人才,把我國(guó)人才強(qiáng)國(guó),科教興國(guó)的戰(zhàn)略推向一個(gè)新的高度。

1.1數(shù)學(xué)建模引進(jìn)大學(xué)數(shù)學(xué)教學(xué)的必要。教學(xué)過(guò)程,是教師根據(jù)社會(huì)發(fā)展要求和當(dāng)代學(xué)生身心發(fā)展的特點(diǎn),借助教學(xué)條件,指導(dǎo)學(xué)生通過(guò)認(rèn)識(shí)教學(xué)內(nèi)容從而認(rèn)識(shí)客觀世界,并在此基礎(chǔ)之上發(fā)展自身的過(guò)程,即教學(xué)活動(dòng)的展開(kāi)過(guò)程。以往高工專(zhuān)的數(shù)學(xué)教學(xué)存在著知識(shí)單一,內(nèi)容陳舊,脫離實(shí)際等缺陷,已經(jīng)不能滿足時(shí)代的發(fā)展,如今的數(shù)學(xué)教學(xué)過(guò)程不是單純的傳授數(shù)學(xué)學(xué)科知識(shí),而是通過(guò)數(shù)學(xué)教學(xué)過(guò)程引導(dǎo)學(xué)生認(rèn)識(shí)科學(xué),理解科學(xué),從而指導(dǎo)實(shí)踐,促進(jìn)學(xué)生的德智體美勞全面的進(jìn)步和發(fā)展。因此數(shù)學(xué)建模成為一門(mén)學(xué)科,被各大高等院校廣泛引用和推廣,其實(shí)數(shù)學(xué)建模不止應(yīng)用在大學(xué)數(shù)學(xué)教學(xué)中,其他一切教學(xué)過(guò)程多可引進(jìn)數(shù)學(xué)建模。1.2數(shù)學(xué)建模在大學(xué)數(shù)學(xué)教學(xué)中的運(yùn)用。大學(xué)數(shù)學(xué)教師通過(guò)這個(gè)數(shù)學(xué)建模過(guò)程來(lái)引導(dǎo)學(xué)生解決問(wèn)題和指導(dǎo)實(shí)踐的能力。再次建模結(jié)果對(duì)現(xiàn)實(shí)生活的指導(dǎo),這是大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模所需要達(dá)到的效果和要求。不再停留在理論學(xué)習(xí),而是通過(guò)理論指導(dǎo)實(shí)踐,從而為科學(xué)的進(jìn)步和人才綜合水平的提高提供可能。

2.1數(shù)學(xué)建模對(duì)數(shù)學(xué)學(xué)科和其他學(xué)科學(xué)生的巨大影響力學(xué)習(xí)數(shù)學(xué)建模,能夠使一個(gè)單獨(dú)的數(shù)學(xué)家變成經(jīng)濟(jì)學(xué)家,物理學(xué)家還有金融學(xué)家,甚至是藝術(shù)家,只要正握數(shù)學(xué)建模就能指導(dǎo)學(xué)生通過(guò)掌握數(shù)學(xué)建模的思維和方法向其他領(lǐng)域?qū)W習(xí)和進(jìn)步。數(shù)學(xué)建模成為連接數(shù)學(xué)和其他領(lǐng)域的紐帶,是當(dāng)今數(shù)學(xué)科學(xué)在其他領(lǐng)導(dǎo)應(yīng)用的橋梁,是數(shù)學(xué)技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學(xué)建模在學(xué)生中越來(lái)越受到關(guān)注和歡迎,越來(lái)越多的學(xué)生開(kāi)始學(xué)習(xí)數(shù)學(xué)建模,尤其是數(shù)學(xué)界和工程界的學(xué)生,這成為當(dāng)今學(xué)生成為現(xiàn)代科技工作者必須掌握的只是能力之一。

2.2數(shù)學(xué)建模對(duì)學(xué)生綜合能力的提高數(shù)學(xué)建模是大學(xué)數(shù)學(xué)教師運(yùn)用數(shù)學(xué)科學(xué)去分析和解決實(shí)際問(wèn)題,在數(shù)學(xué)建模學(xué)習(xí)的過(guò)程中,大學(xué)生的數(shù)學(xué)能力得到提高,其分析問(wèn)題、解決問(wèn)題的能力得到提高,這對(duì)大學(xué)生畢業(yè)走向社會(huì)具有著重大意義。通過(guò)數(shù)學(xué)建模的學(xué)習(xí)和應(yīng)用,激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的能力,運(yùn)用數(shù)學(xué)的思維和方法,利用現(xiàn)代計(jì)算機(jī)科學(xué),來(lái)解決數(shù)學(xué)及其他領(lǐng)域的問(wèn)題。

數(shù)學(xué)建模引入大學(xué)數(shù)學(xué)教學(xué),這是時(shí)代的進(jìn)步,是時(shí)代對(duì)當(dāng)代大學(xué)教師提出的新要求,尤其是大學(xué)數(shù)學(xué)教師,其不再停留在以往的單純的數(shù)學(xué)知識(shí)講授方向,而是將數(shù)學(xué)科學(xué)作為基礎(chǔ),引導(dǎo)當(dāng)代大學(xué)生發(fā)散思維,發(fā)揮主觀能動(dòng)性,從而學(xué)習(xí)數(shù)學(xué)科學(xué),并運(yùn)用數(shù)學(xué)科學(xué)解決現(xiàn)實(shí)問(wèn)題。在這個(gè)過(guò)程中大學(xué)教師的專(zhuān)業(yè)知識(shí)得到提高,其創(chuàng)新精神也得到了極大的豐富。大學(xué)數(shù)學(xué)教師不止完成數(shù)學(xué)教學(xué),更重要的是培養(yǎng)了高科技的人才,這對(duì)大學(xué)數(shù)學(xué)教師的社會(huì)地位也有了相應(yīng)的改變,在尊重人才,尊重科學(xué)的氛圍中,大學(xué)數(shù)學(xué)教師及其他學(xué)科的教師得到了鼓舞,得到了進(jìn)步,得到了認(rèn)可。數(shù)學(xué)建模越來(lái)越重要,關(guān)于數(shù)學(xué)建模的各種國(guó)內(nèi)國(guó)際大賽頻頻舉辦,這對(duì)大學(xué)數(shù)學(xué)教師在知識(shí),體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學(xué)建模比賽,大學(xué)數(shù)學(xué)教師投入更多的時(shí)間和經(jīng)歷在學(xué)生教育和數(shù)學(xué)建模中,他們成為真正的臺(tái)前和幕后的指揮者。

隨著現(xiàn)代大學(xué)學(xué)科的豐富,尤其是計(jì)算機(jī)科學(xué)的廣泛應(yīng)用,大學(xué)數(shù)學(xué)教學(xué)的跨時(shí)代發(fā)展,數(shù)學(xué)建模成為各個(gè)高校數(shù)學(xué)教學(xué)的重點(diǎn)內(nèi)容,數(shù)學(xué)建模教學(xué)吸納數(shù)學(xué)家,計(jì)算機(jī)學(xué)家等多個(gè)學(xué)科專(zhuān)家的意見(jiàn),從而為培養(yǎng)出綜合行的高科技人才做好充分的準(zhǔn)備??梢哉f(shuō)數(shù)學(xué)建模教學(xué)是當(dāng)今大學(xué)數(shù)學(xué)教學(xué)的主旋律,是數(shù)學(xué)科學(xué)和其他科學(xué)進(jìn)步發(fā)展的方向和原動(dòng)力。

[1]李進(jìn)華.教育教學(xué)改革與教育創(chuàng)新探索.安徽:安徽大學(xué)出版社,20xx.8.

[2]于駿.現(xiàn)代數(shù)學(xué)思想方法.山東:石油大學(xué)出版社,1997.

大學(xué)數(shù)學(xué)建模論文篇十四

(一)教學(xué)觀念陳舊化

就當(dāng)前高等數(shù)學(xué)的教育教學(xué)而言,高數(shù)老師對(duì)學(xué)生的計(jì)算能力、思考能力以及邏輯思維能力過(guò)于重視,一切以課本為基礎(chǔ)開(kāi)展教學(xué)活動(dòng)。作為一門(mén)充滿活力并讓人感到新奇的學(xué)科,由于教育觀念和思想的落后,課堂教學(xué)之中沒(méi)有穿插應(yīng)用實(shí)例,在工作的時(shí)候?qū)W生不知道怎樣把問(wèn)題解決,工作效率無(wú)法進(jìn)一步提升,不僅如此,陳舊的教學(xué)理念和思想讓學(xué)生漸漸的失去學(xué)習(xí)的興趣和動(dòng)力。

(二)教學(xué)方法傳統(tǒng)化

教學(xué)方法的優(yōu)秀與否在學(xué)生學(xué)習(xí)的過(guò)程中發(fā)揮著重要的作用,也直接影響著學(xué)生的學(xué)習(xí)成績(jī)。一般高數(shù)老師在授課的時(shí)候都是以課本的順次進(jìn)行,也就意味著老師“由定義到定理”、“由習(xí)題到練習(xí)”,這種默守陳規(guī)的教學(xué)方式無(wú)法為學(xué)生營(yíng)造活躍的學(xué)習(xí)氛圍,讓學(xué)生獨(dú)自學(xué)習(xí)、思考的能力進(jìn)一步下降。這就要求教師致力于和諧課堂氛圍營(yíng)造以及使用新穎的教育教學(xué)方法,讓學(xué)生在課堂中主動(dòng)參與學(xué)習(xí)。

二、建模在高等數(shù)學(xué)教學(xué)中的作用

對(duì)學(xué)生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問(wèn)題的能力進(jìn)行培養(yǎng)的過(guò)程中,數(shù)學(xué)建模發(fā)揮著重要的作用。最近幾年,國(guó)內(nèi)出現(xiàn)很多以數(shù)學(xué)建模為主體的賽事活動(dòng)以及教研活動(dòng),其在學(xué)生學(xué)習(xí)興趣的提升、激發(fā)學(xué)生主動(dòng)學(xué)習(xí)的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模還能培養(yǎng)學(xué)生不畏困難的品質(zhì),培養(yǎng)踏實(shí)的工作精神,在協(xié)調(diào)學(xué)生學(xué)習(xí)的知識(shí)、實(shí)際應(yīng)用能力等上有突出的作用。雖然國(guó)內(nèi)高等院校大都開(kāi)設(shè)了數(shù)學(xué)建模選修課或者培訓(xùn)班,但是由于課程的要求和學(xué)生的認(rèn)知水平差異較大,所以課程無(wú)法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對(duì)學(xué)生的整體素質(zhì)進(jìn)行培養(yǎng),提升學(xué)生的創(chuàng)新精神以及創(chuàng)造力,讓學(xué)生滿足社會(huì)對(duì)復(fù)合型人才的需求,而最好的載體則是高等數(shù)學(xué)。

高等數(shù)學(xué)作為工科類(lèi)學(xué)生的一門(mén)基礎(chǔ)課,由于其必修課的性質(zhì),把數(shù)學(xué)建模引入高等數(shù)學(xué)課堂中具有較廣的影響力。把數(shù)學(xué)建模思想滲入高等數(shù)學(xué)教學(xué)中,不僅能讓數(shù)學(xué)知識(shí)的本來(lái)面貌得以還原,更讓學(xué)生在日常中應(yīng)用數(shù)學(xué)知識(shí)的能力得到很好的培養(yǎng)。數(shù)學(xué)建模要求學(xué)生在簡(jiǎn)化、抽象、翻譯部分現(xiàn)實(shí)世界信息的過(guò)程中使用數(shù)學(xué)的語(yǔ)言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來(lái),以便于提升學(xué)生的表達(dá)能力。在實(shí)際的學(xué)習(xí)數(shù)學(xué)建模之后,需要檢驗(yàn)現(xiàn)實(shí)的信息,確定最后的結(jié)果是否正確,通過(guò)這一過(guò)程中的鍛煉,學(xué)生在分析問(wèn)題的過(guò)程中可以主動(dòng)地、客觀的辯證的運(yùn)用數(shù)學(xué)方法,最終得出解決問(wèn)題的最好方法。因此,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模思想具有重要的意義。

三、將建模思想應(yīng)用在高等數(shù)學(xué)教學(xué)中的具體措施

(一)在公式中使用建模思想

在高數(shù)教材中占有重要位置的是公式,也是要求學(xué)生必須掌握的內(nèi)容之一。為了讓教師的'教學(xué)效果進(jìn)一步提升,在課堂上老師不僅要讓學(xué)生對(duì)計(jì)算的技巧進(jìn)一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學(xué)生對(duì)公式中使用建模思想理解的更透徹,老師還應(yīng)該結(jié)合實(shí)例開(kāi)展教學(xué)。

(二)講解習(xí)題的時(shí)候使用數(shù)學(xué)模型的方式

課本例題使用建模思想進(jìn)行解決,老師通過(guò)對(duì)例題的講解,很好的講述使用數(shù)學(xué)建模解決問(wèn)題的方式,讓學(xué)生清醒的認(rèn)識(shí)在解決問(wèn)題的過(guò)程中怎樣使用數(shù)學(xué)建模。完成每章學(xué)習(xí)的內(nèi)容之后,充分的利用時(shí)間為學(xué)生解疑答惑,以學(xué)生所學(xué)的專(zhuān)業(yè)情況和學(xué)生水平的高低選擇合適的例題,完成建模、解決問(wèn)題的全部過(guò)程,提升學(xué)生解決問(wèn)題的效率。

(三)組織學(xué)生積極參加數(shù)學(xué)建模競(jìng)賽

一般而言,在競(jìng)賽中可以很好地鍛煉學(xué)生競(jìng)爭(zhēng)意識(shí)以及獨(dú)立思考的能力。這就要求學(xué)校充分的利用資源并廣泛的宣傳,讓學(xué)生積極的參加競(jìng)賽,在實(shí)踐中鍛煉學(xué)生的實(shí)際能力。在日常生活中使用數(shù)學(xué)建模解決問(wèn)題,讓學(xué)生獨(dú)自思考,然后在競(jìng)爭(zhēng)的過(guò)程中意識(shí)到自己的不足,今后也會(huì)努力學(xué)習(xí),改正錯(cuò)誤,提升自身的能力。

四、結(jié)束語(yǔ)

高等數(shù)學(xué)主要對(duì)學(xué)生從理論學(xué)習(xí)走向解決實(shí)際問(wèn)題的能力進(jìn)行培養(yǎng),在高等數(shù)學(xué)中應(yīng)用建模思想,促使學(xué)生對(duì)高數(shù)知識(shí)更充分的理解,學(xué)習(xí)的難度進(jìn)一步降低,提升應(yīng)用能力和探索能力。當(dāng)前,在高等教學(xué)過(guò)程中引入建模思想還存在一定的不足,需要高校高等數(shù)學(xué)老師進(jìn)行深入的研究和探索的同時(shí)也需要學(xué)生很好的配合,以便于今后的教學(xué)中進(jìn)一步提升教學(xué)的質(zhì)量。

參考文獻(xiàn)

[1]謝鳳艷,楊永艷。高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。齊齊哈爾師范高等專(zhuān)科學(xué)校學(xué)報(bào),20xx(02):119—120。

[2]李薇。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的探索與實(shí)踐[j]。教育實(shí)踐與改革,20xx(04):177—178,189。

[3]楊四香。淺析高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想的滲透[j]。長(zhǎng)春教育學(xué)院學(xué)報(bào),20xx(30):89,95。

[4]劉合財(cái)。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。貴陽(yáng)學(xué)院學(xué)報(bào),20xx(03):63—65。

大學(xué)數(shù)學(xué)建模論文篇十五

摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過(guò)程中數(shù)學(xué)建模入手,對(duì)如何將數(shù)學(xué)建模運(yùn)用到學(xué)生解題過(guò)程中進(jìn)行了分析。

關(guān)鍵詞:小學(xué)數(shù)學(xué);建模;運(yùn)用

數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實(shí)際中遇到的問(wèn)題,換句話說(shuō),就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問(wèn)題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過(guò)一段時(shí)間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問(wèn)題利用簡(jiǎn)單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f(shuō),小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對(duì)今后的學(xué)習(xí)起到極大的影響。因此,對(duì)于小學(xué)數(shù)學(xué)教師來(lái)說(shuō),不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實(shí)際問(wèn)題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進(jìn),如何有效的將數(shù)學(xué)建模運(yùn)用在小學(xué)數(shù)學(xué)教學(xué)過(guò)程中,是每個(gè)小學(xué)數(shù)學(xué)教師都值得思考的問(wèn)題。

一、培養(yǎng)學(xué)生數(shù)學(xué)建模意識(shí)

數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問(wèn)題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門(mén)較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識(shí),讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問(wèn)題。在這一過(guò)程中,數(shù)學(xué)教師要注意以下兩個(gè)問(wèn)題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問(wèn)題也必須要符合生活實(shí)際,讓學(xué)生對(duì)所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問(wèn)題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進(jìn)行數(shù)學(xué)建模的過(guò)程中要利用多鼓勵(lì)的方式調(diào)動(dòng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的積極性,讓他們?cè)跀?shù)學(xué)建模中獲得成就感,增加自信心,以此來(lái)提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。

二、提高學(xué)生想象力,用數(shù)學(xué)建模簡(jiǎn)化問(wèn)題

對(duì)于小學(xué)生來(lái)說(shuō),他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會(huì)得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點(diǎn),提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問(wèn)題,讓題目簡(jiǎn)單化。具體來(lái)說(shuō),就是在面對(duì)復(fù)雜的'數(shù)學(xué)問(wèn)題時(shí),教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們?cè)敢庵鲃?dòng)去深入的研究遇到的題目。之后教師再去對(duì)他們進(jìn)行引導(dǎo),讓他們能夠理解題目中所提問(wèn)題的含義,并能夠運(yùn)用他們的想象能力思考解決問(wèn)題的方式。最后再引導(dǎo)他們進(jìn)行數(shù)學(xué)建模,解決問(wèn)題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問(wèn)題簡(jiǎn)單化。

三、選擇合適的題目作為建模案例

在數(shù)學(xué)建模過(guò)程中,教師也要時(shí)刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實(shí)際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過(guò)程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時(shí)教師主要應(yīng)該注意以下兩點(diǎn):首先,教師在選擇建模案例時(shí)要盡量選擇比較典型的問(wèn)題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類(lèi)的解題方法,達(dá)到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對(duì)題目進(jìn)行深入的分析,看是否在擁有趣味性、真實(shí)性的同時(shí)符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過(guò)對(duì)題目中已知條件的改變讓學(xué)生進(jìn)行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。

四、引導(dǎo)學(xué)生主動(dòng)進(jìn)行數(shù)學(xué)建模

在教師經(jīng)過(guò)反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識(shí),了解了數(shù)學(xué)建模過(guò)程,并且能夠在解題過(guò)程中簡(jiǎn)單的使用數(shù)學(xué)建模。此時(shí),教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問(wèn)題,就要在解題過(guò)程中多對(duì)學(xué)生進(jìn)行這一方面的鼓勵(lì),讓他們提高建模信心。在這一過(guò)程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進(jìn)行數(shù)學(xué)建模方法的探討,并在探討的過(guò)程中吸取他人的經(jīng)驗(yàn),提高自己數(shù)學(xué)建模水平,同時(shí)這樣的方式能夠讓數(shù)學(xué)建模深入到每一個(gè)學(xué)生的心中,逐漸影響每一個(gè)學(xué)生的解題思路,讓他們能夠在解題過(guò)程中熟練運(yùn)用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過(guò)去的傳統(tǒng)教學(xué)思路,增加學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對(duì)于小學(xué)數(shù)學(xué)教師來(lái)說(shuō),值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。

【本文地址:http://mlvmservice.com/zuowen/5622354.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔