最新高等數(shù)學(xué)的心得體會(模板13篇)

格式:DOC 上傳日期:2023-10-31 04:44:10
最新高等數(shù)學(xué)的心得體會(模板13篇)
時間:2023-10-31 04:44:10     小編:文軒

心得體會可以促使我們不斷進(jìn)行自我反省和審視,并且發(fā)現(xiàn)自己的不足之處。切勿忽視總結(jié)的實際應(yīng)用價值,要明確總結(jié)的意義和對個人、團(tuán)隊或組織的幫助。接下來將給大家分享一些關(guān)于心得體會的寫作技巧和經(jīng)驗。

高等數(shù)學(xué)的心得體會篇一

高等數(shù)學(xué)是大學(xué)重要的數(shù)學(xué)基礎(chǔ)課程,涉及到微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計等多個學(xué)科領(lǐng)域,為學(xué)生的數(shù)學(xué)素養(yǎng)和綜合能力的提高帶來了巨大的幫助。如今,我已經(jīng)學(xué)習(xí)高等數(shù)學(xué)一年多,并考取了高分。在學(xué)習(xí)中,我積累了一些心得體會,現(xiàn)在愿意分享給大家。

一、認(rèn)真理解概念

高等數(shù)學(xué)中包含了大量的數(shù)學(xué)概念,這些概念是該學(xué)科的基礎(chǔ)。我們要經(jīng)常復(fù)習(xí)、深刻理解這些概念,才能更好地庖闡數(shù)學(xué)原理,推導(dǎo)出數(shù)學(xué)公式。對于某些難以理解的概念,可以尋找一些相關(guān)的實例進(jìn)行解釋,或者和同學(xué)一起討論,共同掌握這些概念,這樣才能更好地理解后面的內(nèi)容。

二、透徹掌握習(xí)題

高等數(shù)學(xué)的習(xí)題類型較多,需要我們不斷地練習(xí),從而鞏固和提高自己的掌握程度。在做習(xí)題時,我們要遵循“由易到難”的原則,先做容易的,逐漸增加難度,提升自身的解題水平。做題時,也要注意拓展視野,不要僅局限于老師講授的范圍,多嘗試一些新的方法和角度。

三、整合思維方式

高等數(shù)學(xué)的學(xué)習(xí)需要我們具有一定的數(shù)學(xué)思維能力,這也是高等數(shù)學(xué)和初等數(shù)學(xué)一份四的區(qū)別所在。在學(xué)習(xí)中,我們要注重培養(yǎng)自己的數(shù)學(xué)思考能力,學(xué)會用多種方式解決一道問題,整合不同的思維方式,拓展自己的思路。這種能力的培養(yǎng)要靠平時的訓(xùn)練,結(jié)合習(xí)題、考試和解題課等多種形式進(jìn)行。

四、注重細(xì)節(jié)處理

在高等數(shù)學(xué)課程中,一個小小的細(xì)節(jié)往往決定著整道題的成敗。因此,在學(xué)習(xí)高等數(shù)學(xué)時,我們必須將注意力集中在題目的細(xì)節(jié)上,嚴(yán)謹(jǐn)?shù)貙Υ恳徊接嬎?,避免出現(xiàn)計算錯誤。同時,在做習(xí)題和考試時,我們也要注意填寫卷面和計算器的使用規(guī)范,這樣才能避免走彎路,保證高分通過。

五、多方面尋求幫助

高等數(shù)學(xué)作為一門比較重要的基礎(chǔ)課程,難度比較大,我們學(xué)習(xí)中難免會遇到困難。遇到問題時,我們應(yīng)該多方面尋求幫助,可以找老師、同學(xué)或者其他渠道,與他人交流和探討,相互幫助提高解決問題的能力。此外,也要注重查找有關(guān)的參考書籍和一些網(wǎng)上的研究綜述,引領(lǐng)自己更快地掌握課程要點。

總之,高等數(shù)學(xué)雖然難,但只要認(rèn)真刻苦,多方尋求幫助,注重方向且扎實整合思維方式,嚴(yán)謹(jǐn)處理學(xué)習(xí)細(xì)節(jié),逐漸提升自己的數(shù)學(xué)素養(yǎng)和思維能力,就可以取得好成績,為自己的學(xué)業(yè)和未來的發(fā)展提供堅實的保障。

高等數(shù)學(xué)的心得體會篇二

高等數(shù)學(xué)下冊是大學(xué)數(shù)學(xué)專業(yè)的重要課程之一,通過學(xué)習(xí)高等數(shù)學(xué)下冊,我了解到這門課程主要包括多元函數(shù)微分學(xué)、多元函數(shù)積分學(xué)、無窮級數(shù)和函數(shù)項級數(shù)等內(nèi)容。學(xué)習(xí)這門課程的主要目標(biāo)是培養(yǎng)學(xué)生掌握多元函數(shù)微分和積分的方法和技巧,理解無窮級數(shù)和函數(shù)項級數(shù)的概念與性質(zhì),并能夠通過數(shù)學(xué)方法解決實際問題。

第二段:總結(jié)學(xué)習(xí)高等數(shù)學(xué)下冊的收獲

通過學(xué)習(xí)高等數(shù)學(xué)下冊,我對數(shù)學(xué)的認(rèn)識有了進(jìn)一步提高。多元函數(shù)微分學(xué)的學(xué)習(xí)讓我明白了微分的幾何意義,學(xué)會了使用微分來求解極值、拐點等問題。多元函數(shù)積分學(xué)的學(xué)習(xí)使我對積分的概念和性質(zhì)有了更加深刻的理解,掌握了多重積分的計算方法和應(yīng)用。無窮級數(shù)和函數(shù)項級數(shù)的學(xué)習(xí)則拓寬了我的數(shù)學(xué)視野,讓我認(rèn)識到數(shù)列和函數(shù)序列的收斂性與級數(shù)的收斂性之間的聯(lián)系。

第三段:談?wù)摳叩葦?shù)學(xué)下冊的難點

然而,學(xué)習(xí)高等數(shù)學(xué)下冊也存在一定的難點。對于多元函數(shù)微分學(xué)來說,掌握微分的方法和技巧需要比較高的抽象思維能力;而多元函數(shù)積分學(xué)中的多重積分更需要對于積分概念和性質(zhì)有深刻理解的基礎(chǔ)。無窮級數(shù)和函數(shù)項級數(shù)的學(xué)習(xí)中,則會遇到各種判斷級數(shù)收斂性的方法和技巧,需要一定的邏輯推理能力。對于這些難點,我通過反復(fù)的練習(xí)和查閱相關(guān)資料進(jìn)行了克服,逐漸提升了自己的數(shù)學(xué)水平和解題能力。

第四段:談?wù)搶W(xué)習(xí)高等數(shù)學(xué)下冊的感受和體會

學(xué)習(xí)高等數(shù)學(xué)下冊是一項挑戰(zhàn),但也是一種享受。在學(xué)習(xí)的過程中,我感受到了數(shù)學(xué)的魅力和無窮的潛力。多元函數(shù)微分學(xué)中,每一個微小變化都能產(chǎn)生巨大的影響,通過微分來描述變化率和局部性質(zhì),并將其運用于實際問題的求解。多元函數(shù)積分學(xué)中,通過積分來求解曲面面積、體積等問題,發(fā)現(xiàn)積分的應(yīng)用廣泛而深入。無窮級數(shù)和函數(shù)項級數(shù)則展示了數(shù)列和函數(shù)序列的奇妙性質(zhì)和各種數(shù)學(xué)推理的可能性。這些感受和體會使我對高等數(shù)學(xué)產(chǎn)生了更加濃厚的興趣,也激發(fā)了我繼續(xù)深入學(xué)習(xí)數(shù)學(xué)的動力。

第五段:總結(jié)優(yōu)化學(xué)習(xí)高等數(shù)學(xué)下冊的方法和建議

為了優(yōu)化學(xué)習(xí)高等數(shù)學(xué)下冊的效果,我總結(jié)了一些方法和建議。首先,要善于理論聯(lián)系實際,將數(shù)學(xué)知識與實際問題相結(jié)合,找到問題與數(shù)學(xué)模型之間的對應(yīng)關(guān)系。其次,要注重練習(xí),多做習(xí)題并及時查缺補漏。還可以積極參與討論和交流,與同學(xué)互相學(xué)習(xí)、互相啟發(fā)。而且,在學(xué)習(xí)過程中要保持積極的心態(tài),相信自己能夠解決遇到的難題。通過這些方法和建議,我相信能夠更加有效地學(xué)習(xí)高等數(shù)學(xué)下冊,取得更好的成績。

通過學(xué)習(xí)高等數(shù)學(xué)下冊,我對數(shù)學(xué)的認(rèn)識得到了提高,數(shù)學(xué)知識的應(yīng)用能力得到了加強(qiáng)。雖然學(xué)習(xí)過程中會遇到一些困難和挑戰(zhàn),但通過刻苦努力和持續(xù)學(xué)習(xí),我相信自己能夠取得更好的成績,為今后的學(xué)習(xí)和發(fā)展打下堅實的基礎(chǔ)。

高等數(shù)學(xué)的心得體會篇三

高等數(shù)學(xué)是大學(xué)數(shù)學(xué)教學(xué)中的一門重要課程,它深入探討了微積分、常微分方程、多元函數(shù)等數(shù)學(xué)領(lǐng)域的理論與應(yīng)用。作為一名學(xué)習(xí)高等數(shù)學(xué)的學(xué)生,通過學(xué)習(xí)本學(xué)期下冊的高等數(shù)學(xué)課程,我有了一些心得體會。在這篇文章中,我將分享我對于高等數(shù)學(xué)下冊的認(rèn)識和體悟,以及它對于我的學(xué)習(xí)和思維方式的影響。

第一段:高等數(shù)學(xué)下冊的知識體系

高等數(shù)學(xué)下冊是高等數(shù)學(xué)課程的延續(xù),它包含了微分方程、重積分、無窮級數(shù)和場論等內(nèi)容。與上冊相比,下冊的內(nèi)容更加深入和細(xì)致。通過學(xué)習(xí)下冊的課程,我對高等數(shù)學(xué)的整體框架有了更加清晰的認(rèn)識,同時也加深了對微積分的理解。微分方程是高等數(shù)學(xué)下冊的重點之一,它在科學(xué)研究和工程應(yīng)用中具有重要意義。通過學(xué)習(xí)微分方程,我對于它在實際問題中的應(yīng)用有了更深刻的認(rèn)識,從而增強(qiáng)了我的問題解決能力。

第二段:高等數(shù)學(xué)下冊的邏輯思維

高等數(shù)學(xué)下冊的學(xué)習(xí)過程強(qiáng)調(diào)了邏輯思維的培養(yǎng)。在解題過程中,我學(xué)會了運用嚴(yán)密的邏輯推理和抽象思維來分析問題,從而解決復(fù)雜的數(shù)學(xué)問題。在學(xué)習(xí)重積分和無窮級數(shù)時,尤其需要運用邏輯思維進(jìn)行推導(dǎo)和證明。通過這些習(xí)題的解答,我逐漸培養(yǎng)出了邏輯思維的能力,提高了自己的數(shù)學(xué)素養(yǎng)。我相信,邏輯思維的培養(yǎng)不僅對于學(xué)習(xí)數(shù)學(xué)有著重要意義,也對于我們?nèi)粘I詈吐殬I(yè)發(fā)展具有積極影響。

第三段:高等數(shù)學(xué)下冊的實踐能力

學(xué)習(xí)高等數(shù)學(xué)下冊的過程中,我發(fā)現(xiàn)課本中的理論和知識需要通過實踐來加深理解。例如,在學(xué)習(xí)微分方程時,我們需要通過實際問題的建模和求解,來驗證所學(xué)知識的正確性和適用性。通過課堂上的實例和作業(yè)的練習(xí),我提高了自己的實踐能力。而這種實踐能力也是在工程和科技領(lǐng)域中所必須具備的。通過實踐能力的培養(yǎng),我相信自己在未來的學(xué)習(xí)和工作中能夠更好地應(yīng)對各種挑戰(zhàn)。

第四段:高等數(shù)學(xué)下冊的學(xué)習(xí)方法

面對高等數(shù)學(xué)下冊的內(nèi)容,我深刻體會到了合理的學(xué)習(xí)方法的重要性。在解決數(shù)學(xué)問題時,我逐漸掌握了一些學(xué)習(xí)技巧。例如,在學(xué)習(xí)微分方程和重積分時,我會先了解和理解基本概念,然后通過刻意練習(xí)來掌握解題方法,并在課后復(fù)習(xí)中加深對知識的理解。這些學(xué)習(xí)方法的應(yīng)用使我在高等數(shù)學(xué)下冊的學(xué)習(xí)中事半功倍。我認(rèn)為,學(xué)習(xí)方法的培養(yǎng)是學(xué)習(xí)高等數(shù)學(xué)下冊的必要過程,也是提高學(xué)習(xí)效率的關(guān)鍵。

第五段:高等數(shù)學(xué)下冊的啟示和反思

通過學(xué)習(xí)高等數(shù)學(xué)下冊,我認(rèn)識到高等數(shù)學(xué)不僅僅是一門課程,更是培養(yǎng)學(xué)生綜合素質(zhì)的重要途徑。通過學(xué)習(xí)高等數(shù)學(xué),我不僅僅掌握了數(shù)學(xué)知識,更學(xué)會了思考問題、理解問題和解決問題的方法。高等數(shù)學(xué)下冊的學(xué)習(xí),培養(yǎng)了我對于數(shù)學(xué)的興趣和學(xué)術(shù)追求。同時,我也反思了自己在學(xué)習(xí)中存在的不足,例如在理解概念和應(yīng)用推導(dǎo)方面有待提高。在今后的學(xué)業(yè)中,我會更加注重培養(yǎng)自己的邏輯思維和實踐能力,提高學(xué)習(xí)方法的靈活應(yīng)用,以達(dá)到更好的學(xué)習(xí)效果。

總結(jié)起來,通過對高等數(shù)學(xué)下冊的學(xué)習(xí),我對于高等數(shù)學(xué)的知識體系、邏輯思維、實踐能力和學(xué)習(xí)方法有了更深入的理解和認(rèn)識。同時,我也發(fā)現(xiàn)高等數(shù)學(xué)不僅僅是一門學(xué)科,更是培養(yǎng)學(xué)生思維能力和解決問題能力的過程。通過學(xué)習(xí)高等數(shù)學(xué)下冊,我不僅提高了自己的數(shù)學(xué)水平,也增強(qiáng)了自信和對學(xué)習(xí)的熱愛。我相信,在今后的學(xué)習(xí)和人生中,我會繼續(xù)努力,追求更高的數(shù)學(xué)境界和學(xué)術(shù)成就。

高等數(shù)學(xué)的心得體會篇四

高等代數(shù),是數(shù)學(xué)中的一個分支,也是數(shù)學(xué)中的一個重要的組成部分。在進(jìn)行高等代數(shù)的學(xué)習(xí)過程中,最關(guān)鍵的便是入門與基礎(chǔ)的掌握。因此,在高等代數(shù)學(xué)習(xí)的初步階段,我們必須要重視數(shù)學(xué)的基礎(chǔ)知識的補充和鞏固。比如: 在進(jìn)行多項式的運算時,我們需要熟練掌握加減乘除等基礎(chǔ)運算;同時,在進(jìn)行矩陣計算時,我們也需要理解矩陣的基本概念,例如:矩陣中的行列,矩陣求逆的方法等等。這些基礎(chǔ)知識和基本概念的掌握,對于我們學(xué)好高等代數(shù),具有重要的意義和作用。

Part 2:學(xué)習(xí)方法與習(xí)慣

在高等代數(shù)的學(xué)習(xí)過程中,單純的記憶與背誦并不能夠體現(xiàn)出代數(shù)的思維與推理。因此,我們在進(jìn)行高等代數(shù)的學(xué)習(xí)時,必須強(qiáng)調(diào)學(xué)習(xí)方法和學(xué)習(xí)習(xí)慣。首先,我們需要學(xué)會運用邏輯推理的方法,例如:推導(dǎo)題意,分析題目中的限制條件等等;其次,我們需要掌握數(shù)學(xué)公式的套路,為了更好地記憶數(shù)學(xué)公式,我們可以采用分類記憶的方法,例如:將相似的公式歸納到一起,便于記憶和理解;最后,我們還需要培養(yǎng)良好的習(xí)慣,例如: 經(jīng)常復(fù)習(xí)鞏固所學(xué)知識,獨立思考思考問題的方法等等。

Part 3:知識點的掌握

高等代數(shù)中知識點繁雜,其中多項式的運算、向量、矩陣等是學(xué)好高等代數(shù)的關(guān)鍵要素。因此,我們必須要花時間和精力深入地研究相關(guān)知識點,并將其熟練掌握。 運用代數(shù)學(xué)習(xí),我們可以了解到多項式除法的原理和計算方法,可以進(jìn)行多項式的因式分解、求解方程等;同時,在學(xué)習(xí)向量和矩陣中,我們也需要掌握它們的基本概念、運算規(guī)則、求解方法等。只有熟悉掌握了這些知識點,我們才能夠更好地進(jìn)行高等代數(shù)的學(xué)習(xí)。

Part 4:能力的提高

通過高等代數(shù)的學(xué)習(xí),我們必須能夠培養(yǎng)高效的計算能力和強(qiáng)大的推理能力。 在進(jìn)行代數(shù)的計算時,我們需要培養(yǎng)快速掌握運算規(guī)律的能力,循序漸進(jìn)地進(jìn)行計算;同時,在進(jìn)行代數(shù)的推理時,我們需要培養(yǎng)歸納總結(jié)、演繹推理、思維活動的能力。這些必備的能力,可以反映出我們對高等代數(shù)學(xué)習(xí)的掌握程度,也是我們在工作生活中不可或缺的優(yōu)點。

Part 5:思考與應(yīng)用

高等代數(shù)的學(xué)習(xí)過程中,不僅僅是知識的學(xué)習(xí),也是思維方法的轉(zhuǎn)化。在對常見的代數(shù)問題的掌握之后,我們必須要進(jìn)行思考和應(yīng)用。 比如:在解決工程技術(shù)問題時,我們需要將代數(shù)的思維模式與實際問題相結(jié)合,尋找到解決問題的有效方法;同時,在學(xué)術(shù)研究和創(chuàng)新領(lǐng)域中,也需要有深入思考和探討的精神,將理論與實踐相結(jié)合,拓寬我們對代數(shù)的認(rèn)知和應(yīng)用。因此,我們在進(jìn)行高等代數(shù)學(xué)習(xí)時,應(yīng)該不斷地學(xué)習(xí)、思考、總結(jié)與應(yīng)用,將所學(xué)知識轉(zhuǎn)化到實踐中,才能夠取得更好的效果。

總結(jié):高等代數(shù)不僅僅是學(xué)科領(lǐng)域的一部分,同時也是我們個人素質(zhì)的提升和學(xué)習(xí)能力的基礎(chǔ)。在進(jìn)行高等代數(shù)的學(xué)習(xí)過程中,我們既要關(guān)注基本知識和基礎(chǔ)概念的掌握,同時也要重視學(xué)習(xí)方法和習(xí)慣的培養(yǎng),對于高等代數(shù)中的繁雜知識點,需要深入地研究掌握并進(jìn)行實際運用,不斷地培養(yǎng)自己的計算和推理能力,將理論轉(zhuǎn)化到實踐、應(yīng)用于生活中。

高等數(shù)學(xué)的心得體會篇五

高等數(shù)學(xué)是大學(xué)必修課程之一,是數(shù)學(xué)學(xué)科的重要組成部分。在我小學(xué)和初中的數(shù)學(xué)課上,我一直都是數(shù)學(xué)的優(yōu)等生,但是對于高等數(shù)學(xué),我卻感到了困惑和挑戰(zhàn)。在大學(xué)一年級的時候,我開始接觸高等數(shù)學(xué)課程,剛開始覺得不太適應(yīng),因此在此期間感覺相當(dāng)壓抑。隨著時間的推移,我開始更深入地研究這門學(xué)科,并嘗試各種不同的學(xué)習(xí)方法,以便提高自己的成績。最終,在經(jīng)過無數(shù)次的努力后,我克服了困難,考出了令人滿意的高等數(shù)學(xué)成績。

第二段:回顧高等數(shù)學(xué)的考試經(jīng)驗

在學(xué)習(xí)高等數(shù)學(xué)的過程中,我不僅學(xué)到了許多知識和技能,也經(jīng)歷了很多考試。這些考試無疑是對我學(xué)習(xí)成果的檢驗,也讓我有機(jī)會去發(fā)現(xiàn)自己的弱點,找到不足之處,并嘗試改進(jìn)和克服它們。另外,這些考試還讓我體會到了競爭的壓力和緊張氣氛,這些因素都激發(fā)了我更深入地學(xué)習(xí)高等數(shù)學(xué)的熱情。

第三段:總結(jié)高等數(shù)學(xué)的重要性

高等數(shù)學(xué)的學(xué)習(xí)不僅僅關(guān)乎學(xué)習(xí)數(shù)學(xué)知識,更重要的是培養(yǎng)了我學(xué)習(xí)的能力。在學(xué)習(xí)過程中,我不斷努力,練習(xí)思考和分析的能力,提高了自己的邏輯推理和解決問題的能力。這些都是遠(yuǎn)遠(yuǎn)超出課程范圍的技能,對我的職業(yè)生涯和個人發(fā)展有著深遠(yuǎn)的影響。此外,學(xué)習(xí)高等數(shù)學(xué)還讓我感受到了知識的博大精深和對未知事物探索的熱情,這些元素也能夠?qū)ξ椅磥淼陌l(fā)展起到重要的支持作用。

第四段:點評吳昊的體會和經(jīng)驗

吳昊是我身邊一個優(yōu)秀的同學(xué),在高等數(shù)學(xué)的學(xué)習(xí)中他取得了出色的成績。他的學(xué)習(xí)經(jīng)驗和體會也對我啟發(fā)和影響很大。從吳昊的學(xué)習(xí)經(jīng)驗中,我們可以看到他在學(xué)習(xí)過程中非常注重理論知識的掌握和實踐能力的培養(yǎng)。而且,吳昊非常善于把理論知識和實踐技能有機(jī)結(jié)合起來,不斷地總結(jié)和反思,從而實現(xiàn)了對高等數(shù)學(xué)的深入理解。這些學(xué)習(xí)方法和態(tài)度對我指引良多,讓我對高等數(shù)學(xué)的學(xué)習(xí)也有了更多的信心和動力。

第五段:思考未來發(fā)展方向

在未來的學(xué)習(xí)過程中,我還需要不斷地探索和尋求新的機(jī)遇和挑戰(zhàn),以提高自己的學(xué)習(xí)能力和職業(yè)素養(yǎng)。高等數(shù)學(xué)作為一門必修課程,是培養(yǎng)我學(xué)習(xí)能力和解決問題能力的重要途徑。在今后的學(xué)習(xí)和生活中,我將會更加努力和專注于高等數(shù)學(xué)的學(xué)習(xí),以完成自己的職業(yè)規(guī)劃和個人發(fā)展目標(biāo)。

高等數(shù)學(xué)的心得體會篇六

高等數(shù)學(xué)作為理工科大學(xué)生的一門必修的基礎(chǔ)課,具有高度的抽象性、嚴(yán)密的邏輯性和廣泛的應(yīng)用性的特點,可以培養(yǎng)學(xué)生的抽象概括能力、邏輯思維能力、解決分析問題的能力,對科技進(jìn)步也起著基礎(chǔ)性推動作用。隨著國家高等教育從精英型轉(zhuǎn)入大眾型,學(xué)生素質(zhì)呈下降趨勢,大部分學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時感到困難,從而提高高等數(shù)學(xué)教學(xué)質(zhì)量、改革高等數(shù)學(xué)教育教學(xué)方法已成為一個亟需解決的問題。

一、高等數(shù)學(xué)教學(xué)中學(xué)生存在的誤區(qū) 1.誤區(qū)一很多學(xué)生認(rèn)為學(xué)數(shù)學(xué)沒有用

高中階段學(xué)生已經(jīng)接觸到了高等數(shù)學(xué)中比較簡單的極限、導(dǎo)數(shù)、定積分,但沒有深入學(xué)習(xí)其概念、定義,高考也只是考了一點點,學(xué)生認(rèn)為自己掌握了高等數(shù)學(xué)的知識,再學(xué)了也沒有什么用,在將來實際工作中也用不到數(shù)學(xué)。

2.誤區(qū)二高等數(shù)學(xué)具有很高的抽象性,很多學(xué)生覺得學(xué)也學(xué)不會

現(xiàn)在學(xué)生不愿意動腦、動筆,碰到題目就在想答案。往往因為大學(xué)的高數(shù)題運算步驟比較多,想是想不出來的,不動筆又不畫圖,學(xué)生坐一會就有點困了,自然就認(rèn)為高等數(shù)學(xué)非常難。

3.誤區(qū)三學(xué)生習(xí)慣于用中學(xué)的思維來解題

很多學(xué)生學(xué)習(xí)數(shù)學(xué)的一些簡單想法就是來解數(shù)學(xué)題,愿意用中學(xué)的方法去解決高等數(shù)學(xué)里的題目,只要能做出答案就行。在這種思想的影響下,不愿意去掌握定義、定理,做題少步驟或只有答案,但是有的題目肯本做不出來。隨著學(xué)習(xí)的深入學(xué)生發(fā)現(xiàn)題目越來越不會做。

二、提高高等數(shù)學(xué)教學(xué)質(zhì)量的方法 1.端正學(xué)生學(xué)習(xí)態(tài)度

許多同學(xué)認(rèn)為,考上大學(xué)就可以放松了,自我要求標(biāo)準(zhǔn)降低了。只有有了明確的學(xué)習(xí)目標(biāo),端正學(xué)習(xí)態(tài)度,才能增加學(xué)習(xí)高等數(shù)學(xué)的動力。教師要以身作則,這要求教師熱愛數(shù)學(xué),對每節(jié)課都要以飽滿的激情、對數(shù)學(xué)美的無限欣賞呈現(xiàn)在學(xué)生面前,教師積極地態(tài)度從而感染學(xué)生學(xué)習(xí)高等數(shù)學(xué)的熱情。部分同學(xué)在應(yīng)試教育的影響下,應(yīng)經(jīng)形成了消極的數(shù)學(xué)態(tài)度,教師還應(yīng)該全方位、多角度扭轉(zhuǎn)學(xué)生學(xué)習(xí)態(tài)度,如課下談心談話、建立互助興趣小組、“一對一”結(jié)對子等方法,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的動力。端正學(xué)生的學(xué)習(xí)態(tài)度首先從數(shù)學(xué)字母的寫法、發(fā)信做起,很多學(xué)生古希臘字母不會寫也不會讀,上課多練習(xí)幾遍,老師在做題過程中要注重解題的每一步驟,告訴學(xué)生每一步驟的重要性,做題中感受數(shù)學(xué)題的美。

2.激發(fā)學(xué)生學(xué)習(xí)興趣

興趣是最好的老師,只有有了學(xué)習(xí)高等數(shù)學(xué)的興趣,學(xué)生才有了學(xué)習(xí)動力。在教學(xué)過程中,可以穿插一些關(guān)于數(shù)學(xué)的歷史,數(shù)學(xué)家的故事,數(shù)學(xué)文化,來激發(fā)學(xué)生的興趣。如定積分的講解時,自然引入牛頓、萊布尼茨兩位數(shù)學(xué)家的故事。教師在課堂講解時,把抽象的問題具體化,通過幾何畫圖提高學(xué)生的理解能力,這樣學(xué)生才更容易接受。

3.提高教師自身素質(zhì)

教師是課堂教育的主導(dǎo)者,是良好課堂氛圍的主要營造者,要想學(xué)生緊跟教師講課的思路,教師必須具有良好的人格魅力和深厚的專業(yè)功底。這就要求教師一方面要提高自身的文化底蘊,多讀一些與另一方面刻苦專研專業(yè)知識、完善知識結(jié)構(gòu)、提高教育教學(xué)能力,只有做到這樣,教師的課堂教育才能吸引學(xué)生,課下學(xué)生才愿意并主動與教師交流、溝通。教師在上課的時候要身體力行,做題要在步驟上下功夫,解釋每一步驟的重要性,既要用最少的步驟把題做完,又要講解每一步驟的重要性。這樣雖然浪費了一點時間,但是學(xué)生還是會做的,同時學(xué)生也得到了怎樣去做題以及真正的理解數(shù)學(xué)題,并從中發(fā)現(xiàn)數(shù)學(xué)美,時間長了能培養(yǎng)學(xué)生良好的數(shù)學(xué)興趣、數(shù)學(xué)能力和創(chuàng)新能力。對所講授的課程要有深入的了解,知識的內(nèi)在聯(lián)系及在學(xué)生專業(yè)上的應(yīng)用要有所了解,可以給學(xué)生提一提,以便引起學(xué)生足夠的重視。

4.創(chuàng)新教師教學(xué)方法

好的教學(xué)方法能激發(fā)學(xué)生思維能力,啟迪學(xué)生的思維悟性。教師在教學(xué)方法上進(jìn)行創(chuàng)新能有效改善課堂教學(xué)的效果。如教師在講授極限時,可以采用情景教學(xué)方法,把抽象的定義、定理與實際生活相聯(lián)系,營造學(xué)生認(rèn)知懸念,從而激發(fā)學(xué)生自主探索的積極性,從而提高學(xué)生思維能力和發(fā)現(xiàn)、分析問題的能力。在教學(xué)空閑的時候、或者學(xué)生比較累的時候、或者在講到某一個問題時,可以講一些實際的東西。如在剛開始學(xué)極限時,現(xiàn)在學(xué)生都在教學(xué)樓上課,教室里到處可見支撐樓的柱子。柱子不能太細(xì),細(xì)了樓就有可能倒掉,也不能非常粗,那樣雖然結(jié)實了,但是浪費材料,建筑商也不會同意。這樣柱子肯定要通過數(shù)學(xué)計算得到一個合理的數(shù)值,既要能承重又要節(jié)約材料,這個確定的數(shù)就可以認(rèn)為是一個極限。

5.建立良好的師生關(guān)系

在教育教學(xué)活動中,良好的師生關(guān)系是保證教育效果和質(zhì)量的前提。新時代的大學(xué)生具有自我意識強(qiáng),個性張揚等特點,要提高課堂教育效果,必須建立良好的師生關(guān)系。只有師生間相互了解、相互尊重、相互賞識,把教學(xué)過程看做是教師與學(xué)生的交流、交往過程,才能建立輕松、和諧的課堂氛圍,從而才能提高課堂教育效果和教學(xué)質(zhì)量。教師在教學(xué)的過程中,要學(xué)會換位思考,站在學(xué)生的角度估計講授問題的難易程度。對學(xué)生容易出錯或者經(jīng)常犯錯誤的地方,上課要強(qiáng)調(diào)知識的重要性,舉例說明讓學(xué)生理解知識點及了解出錯的原因。

6.重視作業(yè)中存在的問題

作業(yè)是學(xué)生學(xué)習(xí)知識好壞的一面鏡子,雖然現(xiàn)在學(xué)生有抄襲作業(yè)的現(xiàn)象,但是大部分學(xué)生還是自己做作業(yè)。從作業(yè)中可以看出學(xué)生對知識掌握的程度,沒掌握好的話,想辦法用最簡單的題目來說明問題。也許作業(yè)有可能做的非常好,這就要求教師對知識有很好的理解,對學(xué)生容易出錯的地方,上課時可以提問學(xué)生做過的題目或者讓學(xué)生課前上黑板重新做。這樣一學(xué)期下來,學(xué)生對難點重點會掌握的很好,考試成績自然會很好,同時對高等數(shù)學(xué)理解的程度也會很高。學(xué)生取得了好的成績,對高等數(shù)學(xué)了解的多了,自然對高等數(shù)學(xué)學(xué)習(xí)興趣提高了。在以后的學(xué)習(xí)過程中,自然會對各種數(shù)學(xué)課更加努力的去學(xué)習(xí),從而對其本專業(yè)課也起到了很好的促進(jìn)作用。最終學(xué)生會發(fā)現(xiàn)大學(xué)生活是非常快樂的,學(xué)到了很多知識,學(xué)校也培養(yǎng)出了合格的大學(xué)生。

高等數(shù)學(xué)的心得體會篇七

作為一門數(shù)學(xué)專業(yè)的必修課程,高等數(shù)學(xué)對學(xué)生來說并不易于掌握,需要在學(xué)習(xí)中不斷地消化吸收。而吳昊,則是一位對高等數(shù)學(xué)有深入研究,并且在教學(xué)中取得了較好成績的老師。因此,我們會特別關(guān)注吳昊的高等數(shù)學(xué)心得體會,從中汲取經(jīng)驗,提高學(xué)習(xí)效率。

第二段:心得體會一:高等數(shù)學(xué)需要系統(tǒng)性學(xué)習(xí)

吳昊表示,高等數(shù)學(xué)知識體系龐雜,而且知識之間的聯(lián)系非常緊密。因此,學(xué)生需要先從系統(tǒng)性入手,掌握高等數(shù)學(xué)的整體框架和學(xué)習(xí)路線。在學(xué)習(xí)中要注意先后順序,不能掉以輕心,否則就會遇到迷失方向的情況。

第三段:心得體會二:掌握基礎(chǔ)知識是關(guān)鍵

高等數(shù)學(xué)中的每一個概念,都是建立在基礎(chǔ)之上的。如果基礎(chǔ)學(xué)習(xí)不扎實,那么后期的學(xué)習(xí)也無從談起。因此,吳昊建議學(xué)生在學(xué)習(xí)高等數(shù)學(xué)之前,先重視基礎(chǔ)概念的學(xué)習(xí),鞏固數(shù)學(xué)的基礎(chǔ)知識,才能更好地理解和掌握高等數(shù)學(xué)。

第四段:心得體會三:靈活運用解題思路

高等數(shù)學(xué)中的問題并不單一,其解題方法也需要靈活變通。吳昊提醒學(xué)生,在學(xué)習(xí)高等數(shù)學(xué)時,不能僅僅停留在概念和公式的記憶,而應(yīng)該注重解決具體問題的能力。在解題過程中,應(yīng)該運用多種思路,靈活變換解題方法,從而提高解題的效率和準(zhǔn)確性。

第五段:結(jié)尾及總結(jié)

高等數(shù)學(xué)在數(shù)學(xué)專業(yè)中占據(jù)著重要的地位,不僅有助于理論的研究,還能為工程應(yīng)用提供數(shù)學(xué)依據(jù)。吳昊的高等數(shù)學(xué)心得體會不僅是學(xué)生能夠?qū)W好高等數(shù)學(xué)的經(jīng)驗之談,也能幫助教師對高等數(shù)學(xué)教學(xué)的優(yōu)化。通過吳昊的經(jīng)驗與體會,我們可以更加準(zhǔn)確地把握高等數(shù)學(xué)的學(xué)習(xí)方向,提高學(xué)習(xí)效率,做好學(xué)科的拓展與深化。

高等數(shù)學(xué)的心得體會篇八

隨著科技日新月異的發(fā)展和電腦無孔不入的應(yīng)用.高等數(shù)學(xué)課程作為一種數(shù)學(xué)工具的功能正在逐步縮減.但作為一種思維方法的載體的功能(例如訓(xùn)練學(xué)生辯證思維、邏輯推理、發(fā)現(xiàn)同題及分析同題的能力)卻愈顯風(fēng)采。一個多元線性方程組如何去解?我們可以交給電腦去完成,只要會正確使用數(shù)學(xué)軟件。但一個實際問題如何通過數(shù)學(xué)建模轉(zhuǎn)化為一個數(shù)學(xué)同題,除了必須具備許多綜合的知識,還需要具備一定的分析推理能力,這種素質(zhì)自然可以通過生活來積累,但如果能夠通過象高等數(shù)學(xué)這樣的課程作為載體來進(jìn)行系統(tǒng)訓(xùn)練,將是事半功倍的。

以往對工科學(xué)生來講,高等數(shù)學(xué)的教學(xué)比較偏重于計算方法的訓(xùn)練,例如,如何計算極限,計算導(dǎo)數(shù),計算積分,通過熟練掌握計算方法來加深對概念的理解,這是學(xué)習(xí)高等數(shù)學(xué)的一條捷便之徑。但是從二十一世紀(jì)更加需要創(chuàng)新人才的觀點看,從高等數(shù)學(xué)的概念中直接去提煉一種分析推理能力及實際應(yīng)用能力,將是更加重要的。(當(dāng)然,在改革的力度還未到位時,由于教學(xué)要求及教材等原因.學(xué)習(xí)高等數(shù)學(xué)并不能僅偏重于概念,對基本的計算方法必須熟練地掌握。如今就如何學(xué)好高等數(shù)學(xué)的基本概念。提出一些拙見供同學(xué)參考。

1)從正反兩個層面理解概念

我們觀察一個物體,如果僅僅通過平視去進(jìn)行,那么對這個物體的認(rèn)識往往是局部的,甚至是扭曲的,只有從正視、俯視、側(cè)視的多角度去觀察與綜合,方能得到物體正確的空間定位。觀察事物尚且如此,要理解一個抽象的概念,如果只有單向的思維方法,肯定只能淺嘗輒止.只有從正反兩個方向去透視概念,才能較深地抓住概念中一些本質(zhì)的東西。這里所說的正方向思維應(yīng)該包含幾層意思:一是概念的定義是如何敘述的,二是概念所尉帶的條件是必要的.還是充分的?三是概念產(chǎn)生的實際背景是什么?這里所說的反方向思維又應(yīng)該包含兩層意思:一是對一個概念的否定是怎樣表達(dá)的?二是如果錯誤的理解了概念中的一些條件會導(dǎo)致什么樣的錯誤結(jié)果。

2)學(xué)與問

發(fā)現(xiàn)問題呢?首先要提倡自學(xué),在自己預(yù)習(xí)教材(也鍛煉了一種自學(xué)能力)的過程中很容易發(fā)現(xiàn)不懂的同題,帶著同題再去聽課就會有的放矢。其次是聽課之后做習(xí)題之前要認(rèn)真復(fù)習(xí)消化課上的內(nèi)容,只要積極地開動腦筋,從中是會發(fā)現(xiàn)很多問題的,在這個較深層次上發(fā)現(xiàn)問題又去解決問題(可以通過同學(xué)與老師的幫助),那么分析問題的能力就會有一個質(zhì)的提高。

3)做習(xí)題與想習(xí)題

學(xué)習(xí)數(shù)學(xué),不做習(xí)題是絕對不行的.因為耐概念究竟理解與否檢驗的最后關(guān)口是習(xí)題。一道習(xí)題不會做或者做錯了,肯定是某些概念投有消化好,帶著習(xí)題再來復(fù)習(xí)理解概念,拄往會摩擦出新的思想火花。學(xué)習(xí)高等數(shù)學(xué)的過程中,我們不主張采用中學(xué)的題海戰(zhàn),但對每道習(xí)題不但要弄懂正確的解法,而且盡量要考慮能否有多種解法。這還不夠,進(jìn)一步的思考是一些似是而非的錯誤解法究竟錯在哪里?必定是對概念理解的偏差才導(dǎo)致的錯誤結(jié)果.經(jīng)過又一次正反兩個層面的開掘.思考深入了,學(xué)習(xí)的興趣也會逐步培育起來。

高等數(shù)學(xué)的心得體會篇九

高等數(shù)學(xué)導(dǎo)論是大學(xué)數(shù)學(xué)專業(yè)的一門重要課程,它為學(xué)生打下了數(shù)學(xué)思維的基礎(chǔ),培養(yǎng)了他們的抽象思維能力和邏輯推理能力。在這門課程中,教師扮演著重要的角色,他們的教學(xué)方法和態(tài)度直接影響著學(xué)生的學(xué)習(xí)效果和興趣。以下是我對高等數(shù)學(xué)導(dǎo)論教師的一些體會和感悟。

首先,教師的知識儲備是非常重要的。高等數(shù)學(xué)導(dǎo)論作為一門專業(yè)課程,需要一定的數(shù)學(xué)基礎(chǔ)和深厚的專業(yè)知識。一個真正好的教師應(yīng)該對該課程的知識體系有清晰的認(rèn)知,并且能夠靈活運用這些知識。在我的學(xué)習(xí)過程中,我遇到過一位教師,他不僅對高等數(shù)學(xué)導(dǎo)論的每個知識點了如指掌,而且還能夠結(jié)合實際應(yīng)用生動地講解,使我們更加容易理解和接受。由于他的深厚知識儲備,我在學(xué)習(xí)高等數(shù)學(xué)導(dǎo)論時感到非常有信心。

其次,教師的教學(xué)方法也非常重要。高等數(shù)學(xué)導(dǎo)論是一門理論性較強(qiáng)的課程,需要學(xué)生掌握一定的概念和方法。一個優(yōu)秀的教師應(yīng)該能夠?qū)⒊橄蟮臄?shù)學(xué)概念通過語言和圖形生動地呈現(xiàn)給學(xué)生,激發(fā)他們的學(xué)習(xí)興趣。在我的學(xué)習(xí)中,我遇到過一位教師,他使用了很多生動形象的比喻和具體實例來解釋抽象概念,使得我能夠更好地理解和記憶。他還利用教學(xué)軟件和多媒體設(shè)備,將數(shù)學(xué)圖形和符號展示給我們,這使得抽象的數(shù)學(xué)概念變得直觀起來。他的教學(xué)方法為我們提供了很多啟發(fā),使我們的學(xué)習(xí)變得更加輕松和愉快。

另外,教師的態(tài)度和鼓勵也至關(guān)重要。學(xué)習(xí)高等數(shù)學(xué)導(dǎo)論是一項困難的任務(wù),其中涉及了許多抽象的概念和復(fù)雜的推理過程。在學(xué)習(xí)中遇到困難時,一個好的教師應(yīng)該給予學(xué)生鼓勵和幫助,使他們能夠克服困難,繼續(xù)堅持下去。在我的學(xué)習(xí)中,我遇到過一位教師,他總是鼓勵我們勇敢嘗試,提高自己的解題能力。他也鼓勵我們相互討論和合作,互相之間共同進(jìn)步。他的鼓勵和幫助使我對學(xué)習(xí)高等數(shù)學(xué)導(dǎo)論更加有信心,也激發(fā)了我對數(shù)學(xué)研究的興趣。

最后,教師的耐心和責(zé)任心是培養(yǎng)學(xué)生學(xué)習(xí)興趣和學(xué)習(xí)態(tài)度的重要因素。學(xué)習(xí)高等數(shù)學(xué)導(dǎo)論可能會遇到各種各樣的問題和困難,一個好的教師應(yīng)該耐心地解答學(xué)生的問題,并且對學(xué)生的學(xué)習(xí)情況負(fù)責(zé)。在我的學(xué)習(xí)中,遇到了很多難題和困惑,但是我的老師總是耐心地為我解答,不厭其煩地講解,使我能夠更好地理解和掌握知識。他還會在上課后和我進(jìn)行交流,詳細(xì)了解我的學(xué)習(xí)情況,提供個性化的指導(dǎo)和幫助。他的耐心和責(zé)任心使我感到溫暖和受到關(guān)注,也讓我更加珍惜這門課程的學(xué)習(xí)機(jī)會。

總之,高等數(shù)學(xué)導(dǎo)論是大學(xué)數(shù)學(xué)學(xué)習(xí)的一個重要環(huán)節(jié),教師在其中起著不可替代的作用。他們的知識儲備、教學(xué)方法、態(tài)度和責(zé)任心直接影響著學(xué)生的學(xué)習(xí)效果和興趣。優(yōu)秀的教師能夠通過靈活的教學(xué)方法和耐心的指導(dǎo),培養(yǎng)學(xué)生的抽象思維能力和邏輯推理能力,并且激發(fā)他們對數(shù)學(xué)研究的熱情。我相信,只有教師們不斷提高自己的教學(xué)水平和能力,才能培養(yǎng)出更多具有數(shù)學(xué)思維能力和創(chuàng)新能力的優(yōu)秀人才。

高等數(shù)學(xué)的心得體會篇十

高等數(shù)學(xué)作為大一學(xué)生的必修課程之一,對于我來說,是一個全新的挑戰(zhàn)。在這一學(xué)期的學(xué)習(xí)過程中,我體會到了高等數(shù)學(xué)的重要性,同時也收獲了一些學(xué)習(xí)方法和體會,接下來我將和大家分享我的心得體會。

首先,高等數(shù)學(xué)的學(xué)習(xí)需要我們建立良好的數(shù)學(xué)基礎(chǔ)。在大學(xué)入學(xué)前,我曾經(jīng)通過小學(xué)和中學(xué)的教育學(xué)習(xí)了一些基礎(chǔ)的數(shù)學(xué)知識,但是我發(fā)現(xiàn)這些知識只是大學(xué)高等數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),無法滿足大學(xué)高等數(shù)學(xué)的學(xué)習(xí)要求。所以,在開學(xué)伊始,我們就進(jìn)行了一系列數(shù)學(xué)基礎(chǔ)的復(fù)習(xí),比如函數(shù)的概念、極限的計算方法以及導(dǎo)數(shù)和積分的運算規(guī)則等。通過復(fù)習(xí)和掌握這些基礎(chǔ)知識,我們才能更好地理解和掌握高等數(shù)學(xué)的內(nèi)容。

其次,高等數(shù)學(xué)的學(xué)習(xí)需要注重理論和實踐相結(jié)合。高等數(shù)學(xué)雖然受到了許多學(xué)生的抱怨,但是作為一門科學(xué),它的理論性和實踐性是相輔相成的。我們需要通過理論知識學(xué)習(xí)和數(shù)學(xué)模型的建立來理解高等數(shù)學(xué)的概念和定理,并且通過習(xí)題和實例的練習(xí)來讓我們學(xué)以致用。在學(xué)習(xí)高等數(shù)學(xué)的過程中,我發(fā)現(xiàn),只有理論和實踐相結(jié)合,我們才能真正掌握高等數(shù)學(xué)的知識,運用到實際問題中。

然后,高等數(shù)學(xué)的學(xué)習(xí)需要培養(yǎng)良好的思維習(xí)慣和解決問題的能力。高等數(shù)學(xué)的學(xué)習(xí)不僅僅是掌握一些定理和公式,更重要的是培養(yǎng)我們的思維能力和解決問題的能力。在解決高等數(shù)學(xué)的問題中,我們需要靈活運用所學(xué)到的知識,善于分析問題,找出問題的解決方法,并將解決方法轉(zhuǎn)化為數(shù)學(xué)公式和計算過程。通過這個過程,我們能夠提高我們的邏輯思維和數(shù)學(xué)思維能力,這對于我們以后的學(xué)習(xí)和工作都是非常重要的。

最后,高等數(shù)學(xué)的學(xué)習(xí)需要我們合理安排時間并保持良好的學(xué)習(xí)習(xí)慣。學(xué)習(xí)高等數(shù)學(xué)需要我們有足夠的時間來進(jìn)行概念的理解和習(xí)題的練習(xí)。而且,高等數(shù)學(xué)的內(nèi)容非常龐大,需要我們進(jìn)行系統(tǒng)性的學(xué)習(xí)和整理。因此,我們需要制定合理的學(xué)習(xí)計劃,并保持良好的學(xué)習(xí)習(xí)慣,比如每天定時復(fù)習(xí)課堂內(nèi)容,及時解決學(xué)習(xí)中遇到的問題,以及參加課外數(shù)學(xué)競賽和討論,這些都能夠幫助我們更好地學(xué)習(xí)高等數(shù)學(xué)。

綜上所述,高等數(shù)學(xué)是大一學(xué)生必修的一門課程,通過學(xué)習(xí)高等數(shù)學(xué),我們能夠更好地理解和應(yīng)用數(shù)學(xué)知識。通過建立良好的數(shù)學(xué)基礎(chǔ)、注重理論和實踐相結(jié)合、培養(yǎng)思維習(xí)慣和合理安排時間等方法,我們能夠更好地學(xué)習(xí)高等數(shù)學(xué)。希望我的心得體會能夠?qū)Υ蠹矣兴鶈l(fā),并且能夠在大一的高等數(shù)學(xué)學(xué)習(xí)中取得更好的成績。

高等數(shù)學(xué)的心得體會篇十一

在我的意識里,但凡數(shù)學(xué)成績好的同學(xué),一定都是天資聰穎;而對數(shù)學(xué)一往情深的同學(xué),都絕非等閑之輩。自從上了高中,數(shù)學(xué)對我來說就成了軟肋,硬傷,成了讓我神傷的科目,突然間變得對數(shù)學(xué)一竅不通,才猛然間發(fā)覺自己的思維不知道被什么所禁錮,變得呆板而僵硬,做題猶如啃磚頭。

大一的時候,意外地發(fā)現(xiàn)我們必須學(xué)習(xí)高數(shù)課,我雖然很敬佩我們的高數(shù)老師,他和藹可親,對我們關(guān)愛有加,把高數(shù)講得清楚易懂,還告訴我們?nèi)绾螌W(xué)好高數(shù)以便更好地發(fā)展中醫(yī)。盡管如此,結(jié)局還是悲涼的,我終日以淚洗面,甚至產(chǎn)生了輕生的念頭,大一對我來說是不堪重負(fù),不忍回首的一年,期末了,還一道題都不會做,考完了,才發(fā)現(xiàn)自己是班上的墊底。高數(shù),讓我開始懷疑自己的智商,懷疑我以后能否自食其力。每一次上課,我都像個呆子,鉆進(jìn)耳朵的那些專業(yè)術(shù)語不知道該怎么去消化,而周圍的同學(xué)也都還是能回答問題,自信滿滿,這種強(qiáng)烈的對比讓我受挫,我開始重新審視自己。高數(shù),帶給我改變的動力,我感謝高數(shù),但僅僅因為它是高“樹”,而我被掛在了上面。

在后來的學(xué)習(xí)中,我再也不敢對專業(yè)課掉以輕心,我開始覺得期末考試的內(nèi)容其實也沒有那么難,那么高數(shù)呢?究竟是它太難還是我從心里對它產(chǎn)生畏懼,以至我沒有勇氣相信自己可以認(rèn)識它?我怕,怕有朝一日終會再次遇到它,因為陌生,所以恐懼。

經(jīng)歷了一年多的成長,我發(fā)現(xiàn)其實很多事情都沒有想象中那么難,也沒有想象中那么簡單,關(guān)鍵在于你如何對待它。我想起我可以為了自己做一個筆袋而一動不動坐一下午,并且為了解決出現(xiàn)的不足而把數(shù)據(jù)計算一遍又一遍,一遍遍拆,一遍遍改,在探索中前進(jìn),樂此不疲。而學(xué)習(xí)高數(shù)呢,一開始我怕,遇到不懂了,我更怕,最后呢,我只能逃課,不去聽,不去想,以為這樣就能躲過一切,我才發(fā)現(xiàn),我是個徹徹底底的懦夫,我只會做逃兵,我并沒有盡最大的努力。

在選課的時候,我發(fā)現(xiàn)還能選修高數(shù),這次,我不想再錯過。我想起了《追風(fēng)箏的人》的一句話:“那里,有再一次成為好人的路?!笔堑?,我選擇重新認(rèn)識高數(shù),我要為自己過去的罪行贖罪。

再次接觸高數(shù),捧著2年前讓我頭疼的課本,我發(fā)現(xiàn)其實真的可以懂,老師講的比較簡單,思路也很清晰。重新認(rèn)識了牛頓萊布尼茲的微積分,驚嘆他們天才般的才智,運用無限的模糊理論,可以解決許多醫(yī)學(xué)上的問題,我才覺得高數(shù)真的是充滿了魅力和魔力,它能讓我們把簡單的問題先給復(fù)雜化最后再簡單化,培養(yǎng)我們的思維,更智慧巧妙地解決生活中的問題。學(xué)好了高數(shù),就像給你增添了一雙隱形的翅膀,你擁有了更開闊縝密的思維,許多問題突然變得迎刃而解了。

當(dāng)然,學(xué)好高數(shù)并非那么簡單,但探索其中的奧秘確實非常有價值,我想,如果能把自己學(xué)到的高數(shù)知識運用到自己的生活,學(xué)習(xí),工作上,才算是真正學(xué)好了高數(shù),感謝高數(shù),這次不僅僅因為它是高“樹”,而是我明白,攀登上這棵高樹,我看見了前所未有的迷人風(fēng)景。

高等數(shù)學(xué)的心得體會篇十二

高等數(shù)學(xué)作為一門理工科的重要基礎(chǔ)課程,對于大學(xué)生的綜合素質(zhì)提升具有重要意義。在我的學(xué)習(xí)生涯中,我通過自主學(xué)習(xí)高等數(shù)學(xué),獲得了一些寶貴的心得和體會。我將在下文中用五段式的連貫結(jié)構(gòu),分享我在高等數(shù)學(xué)自主學(xué)習(xí)中所體會到的成果和感悟。

第一段:方法論的啟示

高等數(shù)學(xué)自主學(xué)習(xí)的過程中,我深刻體會到方法的重要性。在掌握了基本的概念和定理后,我開始不斷探索適合自己的學(xué)習(xí)方法。我善于使用圖形和實例幫助理解抽象的數(shù)學(xué)概念,通過構(gòu)思問題的背后原理,提高了自己的數(shù)學(xué)思維能力。同時,我還結(jié)合了多種學(xué)習(xí)資源,例如教材、課堂講義以及網(wǎng)絡(luò)資源,形成了一個較為完整的學(xué)習(xí)體系。這種有目的、有計劃的學(xué)習(xí)策略,讓我在高等數(shù)學(xué)學(xué)習(xí)中事半功倍。

第二段:獨立思考的培養(yǎng)

高等數(shù)學(xué)自主學(xué)習(xí)的最大收獲之一是培養(yǎng)了我獨立思考的能力。傳統(tǒng)的教學(xué)模式往往以老師為中心,學(xué)生只需要機(jī)械地接受知識。而自主學(xué)習(xí)模式則更加注重學(xué)生的主動性和獨立思考能力,通過探索問題、解決問題的過程,培養(yǎng)了我多角度思考的能力。在數(shù)學(xué)問題處理中,我逐漸習(xí)慣于獨立思考,提出問題,尋找解決方案。有時候,我還會選擇與同學(xué)們進(jìn)行討論,傾聽他們不同的思考方式,不斷修正自己的想法。通過這樣的實踐,我逐漸理解到,獨立思考是學(xué)習(xí)高等數(shù)學(xué)的重要基礎(chǔ)。

第三段:解決困難的耐心與堅持

在自主學(xué)習(xí)高等數(shù)學(xué)的過程中,我深刻體會到了解決困難所需要的耐心和堅持。數(shù)學(xué)學(xué)習(xí)中常常會遇到一些難以理解或者解決的問題,這時候需要我保持耐心,不斷細(xì)致地思考,并且進(jìn)行嘗試。有時候,我會遇到一道題目反復(fù)思考多日,但只要堅持下去,總會找到突破的方法。通過這樣的過程,我也培養(yǎng)了面對困難時堅持不懈的品質(zhì),這對我今后的學(xué)習(xí)和工作都有著積極的影響。

第四段:形成批判性思維

自主學(xué)習(xí)高等數(shù)學(xué)也幫助我形成了批判性思維。傳統(tǒng)的教學(xué)模式往往會強(qiáng)調(diào)記憶和重復(fù),鮮有對知識的深入思考和質(zhì)疑。而自主學(xué)習(xí)模式則要求學(xué)生對所學(xué)知識進(jìn)行評估和批判。在高等數(shù)學(xué)學(xué)習(xí)中,我不僅要學(xué)會應(yīng)用,還需要理解其背后的原理和適用范圍。而這又需要我對所學(xué)知識進(jìn)行剖析和評判的能力。通過培養(yǎng)批判性思維,我不僅可以科學(xué)地理解和應(yīng)用高等數(shù)學(xué)知識,還可以將其運用到其他學(xué)科中,提高解決問題的能力。

第五段:追求深度與廣度的平衡

通過自主學(xué)習(xí)高等數(shù)學(xué),我學(xué)會了追求深度與廣度的平衡。在學(xué)習(xí)新知識的同時,我也會回顧鞏固已學(xué)的知識,確保自己的基礎(chǔ)扎實。同時,我會根據(jù)自己的興趣和需求,選擇適當(dāng)?shù)难由旌屯卣?。期間,我發(fā)現(xiàn)廣度的拓寬能夠幫助我更好地理解和應(yīng)用高等數(shù)學(xué)的知識,在實踐中不斷深化對數(shù)學(xué)的理解。

通過自主學(xué)習(xí)高等數(shù)學(xué),我不僅掌握了基本的數(shù)學(xué)概念和方法,還培養(yǎng)了獨立思考、耐心與堅持、批判性思維以及深度與廣度平衡的能力。這些收獲讓我在學(xué)業(yè)和生活中都受益匪淺。在未來的學(xué)習(xí)中,我將繼續(xù)運用這些心得,不斷挑戰(zhàn)自己,完善自我。

高等數(shù)學(xué)的心得體會篇十三

第一段:學(xué)習(xí)動機(jī)與目標(biāo)(引言)

高等數(shù)學(xué)是一門對于大部分大學(xué)生來說充滿挑戰(zhàn)的學(xué)科。作為一名大學(xué)生,我對高等數(shù)學(xué)學(xué)習(xí)非常重視,因為它是我專業(yè)學(xué)習(xí)的基礎(chǔ)課程之一。在學(xué)習(xí)高等數(shù)學(xué)的過程中,我經(jīng)歷了許多辛苦和困惑,但也從中收獲了很多。在這篇文章中,我將與大家分享我的高等數(shù)學(xué)學(xué)習(xí)心得體會。

第二段:規(guī)劃和時間管理(學(xué)習(xí)方法和技巧)

在面對高等數(shù)學(xué)這門課程時,我意識到規(guī)劃和時間管理是非常重要的。高等數(shù)學(xué)包含了大量的知識點和公式,因此我制定了一個學(xué)習(xí)計劃,將每個知識點分配到不同的時間段,并給自己留出足夠的時間進(jìn)行復(fù)習(xí)和鞏固。我還學(xué)會了合理安排每天的學(xué)習(xí)時間,將重點放在疑難問題上,以便更好地掌握知識。

第三段:找到適合自己的學(xué)習(xí)方式(學(xué)習(xí)方法和技巧)

在高等數(shù)學(xué)學(xué)習(xí)的過程中,我發(fā)現(xiàn)找到適合自己的學(xué)習(xí)方式能夠提高學(xué)習(xí)效果。有些人更適合通過聽講座和課堂上的互動來學(xué)習(xí),而我更喜歡通過自學(xué)和解題來掌握知識。我經(jīng)常和同學(xué)們一起組隊討論問題,通過交流和互幫互助來解決難題。這種學(xué)習(xí)方式不僅鞏固了我的知識,還提高了我的解題能力和思維靈活性。

第四段:克服困難與堅持學(xué)習(xí)(學(xué)習(xí)態(tài)度與人生觀)

高等數(shù)學(xué)是一門需要耐心和恒心的學(xué)科。在學(xué)習(xí)過程中,我遇到了許多困難和挫折,但我相信只要堅持下去,就一定能夠克服這些困難并取得好成績。我時常重復(fù)著“努力就會有回報”的信念,堅持每天都學(xué)習(xí)一段時間高等數(shù)學(xué),無論是通過自學(xué)、參加輔導(dǎo)班或向老師請教,我都不放棄任何機(jī)會來提高自己的數(shù)學(xué)水平。

第五段:從高等數(shù)學(xué)中的應(yīng)用反思(學(xué)科價值與人生思考)

通過學(xué)習(xí)高等數(shù)學(xué),我不僅掌握了數(shù)學(xué)知識,更培養(yǎng)了自己的邏輯思維和問題解決能力。高等數(shù)學(xué)課程中的許多概念和方法在實際生活中都有廣泛的應(yīng)用。數(shù)學(xué)是一門實用的學(xué)科,它不僅幫助我們理解世界的運作方式,還能培養(yǎng)我們的邏輯思維和抽象思維能力。通過高等數(shù)學(xué)的學(xué)習(xí),我深深體會到數(shù)學(xué)不僅僅是個工具,更是一門能夠引導(dǎo)我們思考和解決問題的科學(xué)。

總結(jié):

通過高等數(shù)學(xué)的學(xué)習(xí),我不僅掌握了基本概念和方法,也培養(yǎng)了自己的學(xué)習(xí)方法和態(tài)度。我發(fā)現(xiàn)規(guī)劃和時間管理對于高等數(shù)學(xué)學(xué)習(xí)非常重要,找到適合自己的學(xué)習(xí)方式能夠提高學(xué)習(xí)效果。在困難和挫折面前要堅持學(xué)習(xí),相信努力會有回報。最重要的是,高等數(shù)學(xué)的學(xué)習(xí)不僅可以提高我們的數(shù)學(xué)水平,還能幫助我們培養(yǎng)邏輯思維和解決問題的能力。通過高等數(shù)學(xué)的學(xué)習(xí),我對數(shù)學(xué)這門學(xué)科有了更深入的理解,也對自己的學(xué)習(xí)和未來充滿了信心。

【本文地址:http://mlvmservice.com/zuowen/5598904.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔