優(yōu)秀解簡單的方程教案(匯總16篇)

格式:DOC 上傳日期:2023-10-30 12:27:08
優(yōu)秀解簡單的方程教案(匯總16篇)
時間:2023-10-30 12:27:08     小編:MJ筆神

教案編寫的過程需要不斷反思和調(diào)整,以適應學生的學習需求和教學實際情況。在編寫教案時,要注意教學方法的選擇和搭配,以促進學生的積極參與和主動學習。這是一份優(yōu)秀的教案示范,希望對大家的教學有所啟示。

解簡單的方程教案篇一

1、通過天平游戲,探索等式兩邊都加上(或減去)同一個數(shù),等式仍然成立的性質(zhì)。

2、利用探索發(fā)現(xiàn)的等式的性質(zhì),解決簡單的方程。

3、經(jīng)歷了從生活情境的方程模型的建構過程。

4、通過探究等式的性質(zhì),進一步感受數(shù)學與生活之間的密切聯(lián)系,激發(fā)學生學習數(shù)學的興趣。

重點:通過天平游戲,幫助數(shù)學理解等式性質(zhì),等式兩邊都加上(或減去)同一個數(shù),等式仍然成立的性質(zhì)。并據(jù)此解簡單的方程。

難點:推導等式性質(zhì)(一)。

一架天平、課件及班班通

一、創(chuàng)設情境,以情激趣

學生討論紛紛。

師:說得很好。今天我們就是在類似蹺蹺板的天平上做游戲,看看我們從中有什么發(fā)現(xiàn)?

二、運用教具,探究新知

(一)等式兩邊都加上一個數(shù)

1、課件出示天平

怎樣看出天平平衡?如果天平平衡,則說明什么?

學生回答。

2、出示擺有砝碼的天平

操作、演示、討論、板書:

5=5 5+2=5+2

x=10 x+5=15

觀察等式,發(fā)現(xiàn)什么規(guī)律?

3、探索規(guī)律

初次感知:等式兩邊都加上同一個數(shù),等式仍然成立。

再次感知:舉例驗證。

(二)等式兩邊都減去同一個數(shù)

觀察課件,你又發(fā)現(xiàn)了什么?

學生匯報師板書:

x+2=10

x+2-2=10-2

x =8

(三)運用規(guī)律,解方程

三、鞏固練習

1、完成課本68頁“練一練”第2題

先說出數(shù)量關系,再列式解答。

2、小組合作完成69頁“練一練”第3題。

完成后匯報,集體訂正。

四、課堂小結(jié)

這節(jié)課你學到了什么?學生交流總結(jié)。

板書設計: 解方程(一)

x+2=10

解: x+2-2=10-2 ( 方程兩邊都減去2)

x =8

解簡單的方程教案篇二

四年級(下冊)用字母表示數(shù)教學含有字母的式子,學生初步學會了寫式子的方法。五年級(下冊)方程教學了方程的意義、用等式的性質(zhì)解一步計算的方程,學生能夠列方程解答簡單的實際問題。本單元繼續(xù)教學方程,要解類似于axb=c、axbx=c的方程,并用于解決稍復雜的實際問題。教學內(nèi)容的編排有以下特點。

第一,把解方程和列方程解決實際問題的教學融為一體,同步進行,這是和以前教材的不同編排。在例1里,解2x-22=64這個方程是新知識,用它解答實際問題也是新知識。在例2里,解方程x+3x=290是新授內(nèi)容,解決的實際問題也是新授內(nèi)容。這兩道例題,既教學解方程的思路與方法,又教學列方程的相等關系和技巧。這樣編排,能較好地體現(xiàn)數(shù)學內(nèi)容和現(xiàn)實生活的聯(lián)系。一方面分析實際問題里的數(shù)量關系,抽象成方程,形成知識與技能的教學內(nèi)容;另一方面,利用方程解決實際問題,使知識技能的教學具有現(xiàn)實意義,成為數(shù)學思考、解決問題、情感態(tài)度有效發(fā)展的載體。

第二,突出思想方法,通過舉一反三培養(yǎng)能力。全單元編排的兩道例題、兩個練習,涵蓋了很寬的知識面。先看解方程。例 1教學ax-b=c這樣的方程,練習一里還要解ax+b=c、a+bx=c這些形式的方程。從例題到習題,雖然方程的結(jié)構變了,但應用等式的性質(zhì)解方程是不變的。也就是說,解方程的策略是一致的,知識與方法的具體應用是靈活的。再看列方程。例1把一個數(shù)比另一個數(shù)的2倍少22作為相等關系,練一練和練習一里陸續(xù)出現(xiàn)一個數(shù)比另一個數(shù)的幾倍多幾、三角形的面積計算公式以及其他的相等關系。實際問題變了,尋找相等關系是解題的關鍵步驟始終不變。在例2和練習二里也有類似的安排。無論教學解方程還是列方程,例題講的是思想方法,以不變的思想方法應對多變的實際情況,有利于形成解決問題的策略,培養(yǎng)創(chuàng)新精神和實踐能力。

全單元內(nèi)容分成三部分,例1和練習一教學一般的分兩步解的方程;例2和練習二教學特殊的需兩步解的方程;整理與練習回憶、整理、應用全單元的教學內(nèi)容,反思、評價教學過程和效果。

兩道例題里的方程都要分兩步解,通過第一步運算,把稍復雜的方程轉(zhuǎn)化成五年級(下冊)里教學的簡單方程,使新知識植根于已有經(jīng)驗和能力的基礎上?;瘡碗s為簡單、變未知為已知是人們解決新穎問題的常用策略。這兩道例題突出轉(zhuǎn)化的過程,不僅使學生掌握解稍復雜的方程的方法,還讓他們充分體驗轉(zhuǎn)化思想,發(fā)展解決問題的策略。

1. 從各個方程的特點出發(fā),使用不同的轉(zhuǎn)化方法。

解形如axb=c的方程,一般根據(jù)等式兩邊同時加上或減去同一個數(shù),結(jié)果仍然是等式的性質(zhì)化簡。例1在列出方程2x-22=64以后,教材里寫出了解這個方程的第一步: 2x-22+22=64+22。教學要讓學生理解為什么等號的兩邊都加上22,體會這樣做是應用了等式的性質(zhì),感受這樣做的目的是把稍復雜的方程化簡。過去教材里強調(diào)把ax看成一個數(shù),是為了應用加、減法中各部分的關系解方程,新教材應用等式的性質(zhì)解方程,突出轉(zhuǎn)化的思想和方法。

解形如axbx=c的方程,一般應用運算律或相應的知識化簡。axbx可以改寫成

(ab)x,這已經(jīng)在四年級(下冊)用字母表示數(shù)時掌握了,現(xiàn)在只要計算ab,就能實現(xiàn)化簡原方程的目的。教學時仍然要讓學生理解為什么可以這樣改寫,以及這樣改寫的目的。

2. 轉(zhuǎn)化后的簡單方程,教法不同。

例1讓學生算出2x=?,并求出x的值。這是因為學生具有解2x=86這個方程的能力。教學這樣安排,是把轉(zhuǎn)化思想和方法放在突出位置上,促進新舊知識的銜接,有效地使用教學資源。把求得的x的值代入原方程進行檢驗,在五年級(下冊)已經(jīng)教學。例1提出檢驗的要求,不僅是培養(yǎng)良好的習慣,還要通過結(jié)果是正確的,確認解稍復雜方程的策略和方法是正確的。

例2把原方程化簡成4x=290,沒有讓學生接著解。教材寫出x=72.5并繼續(xù)算出3x=217.5,是因為72.5米和217.5米是實際問題的兩個答案。學生以往解答的問題,一般只有一個問題,這道例題有兩個問題,需要完整呈現(xiàn)解題過程,在步驟、書寫格式上作出示范,便于學生掌握。另外,檢驗的思路也有拓展。由于題目的.特點,不能局限于對解方程的檢驗,還要聯(lián)系實際問題里的數(shù)量關系,檢驗算得的陸地面積和水面面積是不是一共290公頃,水面面積是不是陸地面積的3倍。教學時要注意到這一點,既保障解方程是正確的,更保障列出的方程符合實際問題里的數(shù)量關系。

3. 加強解方程的練習。

前面曾經(jīng)說到,例1和例2都有列方程和解方程兩個教學內(nèi)容,列出的方程必須正確地解,才可能得到正確的答案。因此,兩個練習的第1題都安排了解方程。練習一在例1解方程的基礎上向兩個方向擴展,一是引出了a+bx=c、ax-b=c等結(jié)構與例題不完全相同的方程,二是把小數(shù)及運算納入了方程。只要體會了例題里解方程的轉(zhuǎn)化思想和轉(zhuǎn)化方法,會進行小數(shù)四則計算,就能夠適應這兩個方面的擴展。要注意的是,小學階段不要求解形如a-bx=c的方程。因為解這個方程,如果等式的兩邊都減a,就會出現(xiàn)-bx=c-a,不但等號左邊是負數(shù),而且右邊c比a小;如果等式的兩邊都加bx,就出現(xiàn)a=c+bx,這些都是現(xiàn)在難以解決的問題。練習二在例2解方程的基礎上帶出形如ax-bx=c的方程,解方程涉及的除法計算都控制在三位數(shù)除以兩位數(shù)以及相應的小數(shù)除法范圍內(nèi),學生一般不會有困難。

還有一點要提及,整理與練習中安排小組討論像3.4x+1.8=8.6、5x-x=24這樣的方程各應怎樣解,表明教材十分重視引導學生組建認知結(jié)構。如果既從兩個方程的特點回顧解法的不同,又從策略角度進行整理,對學生是有好處的。練習中出現(xiàn)的方程15x2=60,是為應用三角形面積公式解決實際問題服務的。

列方程解決實際問題要找到相等關系,方程是依據(jù)相等關系列的。其實,某個實際問題為什么選擇列方程的方法解答,或者為什么選擇列算式的方法解答,經(jīng)常是由相等關系決定的。所以,兩道例題的教學,都是先找出相等關系。

相等關系是一種數(shù)學模型,它把數(shù)量關系表達成等式。列算式解決實際問題要分析數(shù)量關系,這時的分析著眼于挖掘已知條件之間的聯(lián)系,溝通已知與未知的聯(lián)系,通常把條件作為一個方面,問題作為另一個方面,因而用已知數(shù)量組成的算式求得問題的答案。實際問題里的相等關系也是數(shù)量間的關系,它的最大特點是將已知與未知有機聯(lián)系起來,通過已知數(shù)量和未知數(shù)量共同組成的等式,反映實際問題里最主要的數(shù)量關系。學生在五年級(下冊)初步感受了相等關系,能找出簡單問題的相等關系。本冊教學尋找較復雜問題的相等關系,就應充分利用學生已有的知識經(jīng)驗。

1. 靈活開展思維活動,找出相等關系。

較復雜的問題之所以復雜,在于它的數(shù)量關系錯綜復雜。例1里大雁塔的高度比小雁塔的2倍少22米,其中既有倍數(shù)關系,也有相差關系,是兩種關系的復合。例2里已知頤和園水面面積與陸地面積一共290公頃,還已知水面面積大約是陸地面積的3倍,這是兩個并列的條件。因此,尋找復雜問題的相等關系,要梳理數(shù)量關系,分清主次和先后。

尋找相等關系沒有固定的模式照搬、照套,教材從實際問題的結(jié)構特點和學生的思維發(fā)展水平出發(fā),靈活設計尋找相等關系的教學方法。學生在二年級(下冊)已經(jīng)能解決類似紅花有10朵,求紅花朵數(shù)的2倍少4朵是幾朵的問題,對幾倍少幾這樣的數(shù)量關系已有初步的理解。因此,例1要求學生找出大雁塔與小雁塔高度之間的相等關系,讓他們利用已有的倍數(shù)概念和相差概念,通過推理,把比小雁塔的2倍少22米改寫成數(shù)學式子小雁塔高度2-22,從而得到相等關系。例1為什么提出還可以怎樣列方程,這是由于同一個幾倍少幾的關系,可以寫出不同的相等關系式,如小雁塔的高度2-大雁塔的高度=22、小雁塔的高度2=大雁塔的高度+22等。在小組里交流想法是尊重學生的思考,允許學生按自己的想法解題。要注意的是,這里不是要求學生一題多解。要組織學生對各種解法進行比較,體會它們在概念上是一致的,僅是表現(xiàn)形式不同;還要引導學生體會例題里呈現(xiàn)的等量關系,得出答案時的思考比較順,從而自覺應用這樣的等量關系。對于學生中未出現(xiàn)的相等關系,不必提及,以免搞亂思路。

怎樣合理利用例2里的兩個并列的已知條件?教材選擇了線段圖。先在表示水面面積的線段上填3x,再在線段圖的右邊括號里填290,在圖上感受水面面積和陸地面積之間的倍數(shù)關系和相并關系。然后通過填空寫出等量關系,體會水面面積和陸地面積一共290公頃是這個實際問題里的等量關系。

2. 加強寫式練習,進一步把握數(shù)量關系,為列方程打基礎。

含有字母的式子是方程的重要組成部分,根據(jù)數(shù)量關系列方程時,都要寫出含有字母的式子。是否具有用字母表示數(shù)的意識,能否順利寫出含有字母的式子,對列方程解答實際問題是至關重要的。因此,教材加強寫式的練習。

練習一第2題寫出表示梨樹棵數(shù)的式子3x+15,表示鳊魚尾數(shù)的式子4x-80,都是解答幾倍多幾、幾倍少幾實際問題所需要的基本技能。安排寫式練習,使學生進一步理解數(shù)量關系,養(yǎng)成順著梨樹比桃樹的3倍多15棵、鳊魚比鯽魚的4倍少80尾這些數(shù)量關系的表述進行思考,并轉(zhuǎn)化成數(shù)學式子的習慣,從而選擇最適當?shù)南嗟汝P系解決實際問題。所以,這道練習題既是寫式訓練,也是思路引導。

練習二第2題是和倍、差倍問題的專項訓練。根據(jù)黃花x朵和紅花朵數(shù)是黃花的3倍,先寫出紅花有3x朵,用含有字母的式子表示紅花的朵數(shù),再用x+3x(或4x)表示兩種花一共的朵數(shù),用3x-x(或2x)表示紅花比黃花多的朵數(shù),發(fā)展聯(lián)想能力。聯(lián)想到的式子,正是方程里等號左邊的部分,這道題也在寫式訓練的同時,進行思路引導。

3. 列方程解答新穎的問題,拓展等量關系。

本單元安排兩節(jié)練習課,分別教學練習一第6~13題、練習二第6~11題。著重解答一些與例題不同的實際問題,找到這些問題的等量關系是教學重點,也是難點,對發(fā)展數(shù)學思考非常有益。

練習一第7題起拓展等量關系的作用。第(1)小題畫出了三角形,學生看到圖上的高和底,就能想到三角形的面積計算公式,于是把底高2=三角形的面積作為解題時的等量關系。第(2)小題利用熟悉的括線表示19.8元的意思,形象顯示了3枝鉛筆的錢+1個文具盒的錢=一共的錢是問題里的等量關系。教材的意圖是通過這些題打開思路,讓學生體會不同的問題里有不同的等量關系,兩個部分數(shù)之和往往是可利用的等量關系。這就為繼續(xù)解答第8、9、12題作了有益的鋪墊。至于第13題,把兩種溫度的換算公式作為等量關系。公式在題中已經(jīng)揭示,只要在它上面體會已知華氏溫度求攝氏溫度,列方程解答比較好。反之,已知攝氏溫度求華氏溫度,依據(jù)公式能直接列出算式。

例2和練一練分別是典型的和倍、差倍問題,已知的總數(shù)或相差數(shù)是等量關系的生長點。練習二第7~11題的題材和例題不同,且各有特點。但是,等量關系的載體仍然是已知的總數(shù)與相差數(shù)。第7題用線段圖配合展示題意,便于學生發(fā)現(xiàn)小麗走的米數(shù)+小明走的米數(shù)=兩地相距的米數(shù)這一等量關系,并把這個經(jīng)驗遷移到解答后面的習題中去。

解簡單的方程教案篇三

教學目標:

1、讓學生初步經(jīng)歷列方程解決一步計算的實際問題的學習過程,掌握列方程解決實際問題的一般步驟貨物方法,會列方程解決一些簡單的實際問題。

2、讓學生在學習活動中初步感受方程思想,豐富解題策略,發(fā)展數(shù)學思考,培養(yǎng)分析問題、解決問題的能力。

3、讓學生進一步感受數(shù)學在解決現(xiàn)實問題中的作用,體驗用新的`策略解決生活中數(shù)學問題的快樂,增強學習數(shù)學的信心。

教學過程:

一、導入:

我們已經(jīng)認識了方程,學會解只含有加、減法和乘、除法一步計算的過程。在實際生活中,用列方程、解方程的方法也能把一些分析數(shù)量關系比較困難的問題,很容易解決。這節(jié)課我們就學習列方程解決簡單的實際問題。(板書課題)

二、新課:

1、教學例題

(1)出示例題。

師:列方程解決實際問題和我們過去解決實際問題一樣,首先要審題。(板書:審題)

題中告訴我們哪些已知信息?要我們解決什么問題?

(2)過去我們解決實際問題時,審題后要分析數(shù)量關系,列方程解決實際問題也要分析數(shù)量關系,所不同的是,現(xiàn)在我們要找一個數(shù)量關系式。(板書:找等量關系式)

(3)過去我們解決問題時是想怎樣從已知的推算出未知的,現(xiàn)在我們可以把未知的數(shù)設為x。(板書:設未知數(shù))可以這樣寫:先寫“解”字,表示下面是解題的過程,而設小軍的跳高成績?yōu)閤米這句話必須寫下來,否則,人家就不知道你下面列出的方程是什么意思。

(4)誰能根據(jù)我們找到的等量關系式列出方程?(板書:列方程)

(5)下面我們用解方程的方法就可以找到問題的答案了。(板書:解方程)

請學生上黑板板書。

強調(diào):因為在設的前面已經(jīng)寫上了“解”字,所以在接方程時不再需要寫“解”字了。

(6)、因為這里是解決實際問題,在求出答案后,還應該像過去解決實際問題一樣寫上答句。(板書:寫答句)

(7)、在問題解決后要檢驗答案是否正確、合理。突出兩點:第一是看方程列的是否合理,第二是看解方程是否正確。(板書:檢驗)

2、練一練:第一題

3、找出題中的等量關系式。

(3)、一個正方形的周長是27.2厘米,這個正方形的邊長是多少厘米?

4、試一試:

藍鯨是世界上最大的動物。一頭藍鯨重165噸,大約是一頭非洲象的33倍。這頭非洲象大約重多少噸?(列方程解答)

5、練一練:第二題

三、全課總結(jié):

1、列方程解決實際問題的步驟是什么?解題的關鍵是什么?

2、通過這節(jié)課的學習你還有那些收獲?還有什么問題?

解簡單的方程教案篇四

教科書p17第9~15題。思考題。

1.通過練習,使學生進一步掌握列方程解決實際問題的思考方法,提高列方程解決問題的能力。

2.在練習中,使學生進一步感受方程的思想方法和應用價值,獲得成功的體驗,進一步樹立學好數(shù)學的自信心,產(chǎn)生對數(shù)學的興趣。

掌握列方程解決實際問題的基本思考方法。

根據(jù)情境,學生自己提出問題、解決問題。

一、基本練習

1.先設要求的數(shù)為x,再列出方程。(口答且不解答)

(1)一個數(shù)的12倍是84,求這個數(shù)。

(2)2.9比什么數(shù)少1.5?

(3)什么數(shù)與2.4和是6?

2.根據(jù)題意說出等量關系式并列方程

(1)果園里有124棵梨樹和桃樹,梨樹是桃樹棵數(shù)的3倍。桃樹梨樹各有多少棵?

(2)書架上層有36本書,比下層少8本。書架下層有多少本書?

提問:每一題的數(shù)量關系式分別根據(jù)哪一個條件列的?

師生交流。

二、指導練習

1.p17第9題

(1)引導學生說一說數(shù)量關系式。

天鵝只數(shù)+丹頂鶴只數(shù)=960

(2)根據(jù)關系式列方程

x+2.2x=960

(3)解方程

2.p17第10題

(1)引導學生說一說數(shù)量關系式。

六年級植樹棵數(shù)-五年級植樹棵樹=24

(2)根據(jù)關系式列方程

1.5x-x=24

(3)解方程

3.p17第13題

(1)引導學生說一說數(shù)量關系式。

歷史故事總價+森林歷險記總價=83

(2)根據(jù)關系式列方程

7x+124=83

(3)解方程

三、綜合練習

1.p17第11~12題

(1)學生先說一說數(shù)量關系式。

(2)根據(jù)關系式列方程

(4)解方程

(5)集體評講

四、思考題

(1)引導學生說一說等量關系式

速度差追擊時間=路程差

甲路程-乙路程=路程差

(2)列方程

(280-240)x=400

280x-240x=400

(3)解方程

五、課堂小結(jié)

今天這節(jié)課是練習課,有誰來簡單總結(jié)一下呢?還有什么問題嗎?

板書設計:

列方程解決實際問題練習課

天鵝只數(shù)+丹頂鶴只數(shù)=960六年級植樹棵數(shù)-五年級植樹棵樹=24

x+2.2x=9601.5x-x=24

歷史故事總價+森林歷險記總價=83速度差追擊時間=路程差甲路程-乙路程=路程差

7x+124=83(280-240)x=400280x-240x=400

解簡單的方程教案篇五

教科書第12~13頁,“回顧與整理”、“練習與應用”第1~4題。

1、通過回顧與整理,使學生進一步加深等式與方程的意義,等式的性質(zhì)的理解。幫助學生理清知識的脈絡,建立合理的認知結(jié)構。

2、通過練習與運用,使學生進一步掌握方程的方法和一般步驟,會列方程解決簡單實際問題。

一、回顧與整理

1、談話引入。本單元我們學習了哪些內(nèi)容?你能說說什么是等式的性質(zhì)嗎?什么是方程?什么是解方程呢?在小組中互相說說。

2、組織討論。

(1)出示討論題。

(2)小組交流,巡視指導。

(3)匯報交流。

你是怎么獲得這個知識的?我們在學習這個知識時運用了什么方法?

3、小結(jié)。同學們對這一單元的知識點掌握得很好,我們不僅要理解概念和意義,還要會熟練地運用。

二、練習與應用

1、完成第1題。

(1)獨立完成計算。

(2)匯報與展示,說說錯誤的原因及改正的方法。

2、完成第2題。

(1)學生獨立完成。

(2)你用怎樣的方法連線的?(解方程求出未知數(shù)的值;把x的值代入方程。)

3、完成第3題。

(1)列出方程,不解答。

(2)你是怎樣列的?怎么想的?大家同意嗎?

(3)完成計算。

4、完成第4題。單價、數(shù)量、總價之間有怎樣的數(shù)量關系?指出:抓住基本關系列方程,y也可以表示未知數(shù)。

三、課堂總結(jié)

通過回顧與整理,大家共同復習了有關方程的知識,你還有什么疑問嗎?

解簡單的方程教案篇六

1.知識技能

初步掌握利用化學方程式計算的步驟和方法。

2.過程方法

通過化學方程式中物質(zhì)間的質(zhì)量比,初步理解反應物、生成物之間的質(zhì)和量的關系。

3.情感態(tài)度價值觀

認識定量研究對于化學科學發(fā)展的重大作用。

教學重難點

【教學重點】根據(jù)化學方程式計算的步驟。

【教學難點】物質(zhì)之間量的關系。

教學過程

一、導入新課:

創(chuàng)設學習情境,引出探究問題

二、課內(nèi)探究:

探究利用化學方程式進行簡單計算的基本步驟

【提出問題】為了滿足0.4噸液氫充分燃燒,你會在助燃倉中至少填充多少噸液氧呢?

要求:(1)先在學案上寫出計算過程;

(2)組內(nèi)交流計算依據(jù)。

按照教師要求,先獨立完成計算過程,然后組內(nèi)交流。

并得出如下結(jié)論:在化學反應中,反應物和生成物之間的質(zhì)量比是成比例關系的。因此,利用正比例關系,根據(jù)化學方程式和已知的一種物質(zhì)的質(zhì)量(反應物或生成物),可求出反應中其他物質(zhì)的質(zhì)量。

幫助學生建立化學方程式中各物質(zhì)之間的質(zhì)量關系,這是根據(jù)化學方程式進行計算的主要依據(jù)。

2.【提出問題】各小組在剛才討論的基礎上,思考你的計算過程有哪幾個步驟?

學生1:先寫出反應的化學方程式,然后列出比例式;

學生2:需要先設未知量為xg;

學生3:最后還需要作答

……

給學生提供充分自主學習的機會,讓學生先自主討論得出不完善、不準確的步驟、格式,然后通過閱讀教材進行對比,發(fā)現(xiàn)問題,糾正問題,從而自主構建解題的步驟和格式。

教師的講解是對學生思維過程的一個概括提升,而不是將一個程序化的步驟灌輸給學生。

【講解】教師利用學生的討論,通過投影講解強化計算的基本步驟和格式要求。

(1)設未知量;

(2)寫出有關反應的正確化學方程式;

(3)寫出相關物質(zhì)的相對分子質(zhì)量和已知量、未知量;

(4)列出比例式,求解;

(5)簡明地寫出答案。

閱讀教材,對比分析教材與自己總結(jié)的解題過程,補充、糾正:

(2)未知量應該設為“需要液氧的質(zhì)量為x”,不應該有“g”。

解簡單的方程教案篇七

教學內(nèi)容:

教科書p13例9、p14練一練、p16練習三第1~3題。

教學目標:

1.使學生在解決實際問題的過程中,理解并掌握形如ax+bx=c的方程的解法,會列上述方程解決兩步計算的實際問題。

2.掌握根據(jù)題意找出數(shù)量間相等關系的方法,養(yǎng)成根據(jù)等量關系列方程的習慣。

教學重點:

掌握列方程解應用題的基本方法,在理解題意分析數(shù)量關系的基礎上正確找出應用題中數(shù)量間的相等關系。

教學難點:

能正確找出應用題中數(shù)量間的相等關系。

教學過程:

一、談話導入

今天研究一個與頤和園有關的數(shù)學問題。

二、學習新知

1.p13例9

(1)指名讀題,分析數(shù)量關系。

用線段圖表示出題目中數(shù)量之間的關系嗎?

學生嘗試畫圖,集體交流。

根據(jù)線段圖得到:水面面積+陸地面積=頤和園的占地面積

啟發(fā):這大題目中有兩個未知數(shù),我們設誰為x呢?

(2)列方程并解方程

指名學生列出方程,鼓勵學生獨立求解。

如果用x表示陸地面積,那么可以怎樣表示水面面積呢?

追問:這道題可以怎樣檢驗?

檢驗:a、72.5+72.53=290(公頃)b、217.572.5=3

(3)觀察我們今天學習的'方程,與前面的有什么不同?

小結(jié):像這樣含有兩個未知數(shù)的問題我們也可以列方程來解答。

(4)學生獨立完成p14練一練第1題

三、鞏固練習

1.p14練一練第2題

教師引導學生找出數(shù)量關系式

陸地面積2.4-陸地面積=2.1

2.解方程

2x+3x=60

3.6x-2.8x=12

100x-x=198

3.根據(jù)線段圖列出方程

4.解決實際問題:(列方程解)

(2)一塊梯形田的面積是90平方米,上底是7米,下底是11米,它的高是幾米?

在做這道題時你認為應注意什么呢?

四、全課小結(jié)

這節(jié)課學習了列方程解決問題?

在解答這一類應用題時應注意什么?

五、課堂作業(yè)

p16練習三第2-3題

解簡單的方程教案篇八

第12冊p92—93“練習與實踐”7—9題。

1.使學生進一步理解商品打折出售的含義,進一步掌握分析數(shù)量關系的方法,熟練掌握列方程解答稍復雜的百分數(shù)實際問題的方法,理解不同形式的打折問題之間的聯(lián)系,并能熟練解答。注重知識間的聯(lián)系與融會貫通。

2.在分析問題、解決問題的活動中,發(fā)展學生的數(shù)學思考能力,提高用方程表示數(shù)量關系的能力,進一步積累解決問題的經(jīng)驗,增強數(shù)學應用意識。

3.讓學生在學習和游戲中獲得成功體驗,提高學生的學習興趣和愛好。

課件

第二課時

1.出示習題。一種圖書打八折后售價是20元,這種圖書原價是多少元?

2.學生練習、交流、檢驗。

3.練習p93第7、8兩題。指導學生理解“降價10%”的含義。第8題提醒學生注意:兩種襯衫的原價是相同的,但由于打的折扣不同所以現(xiàn)在售價是不同的;所花的108元是兩種襯衣現(xiàn)價的和。

4.練習p93第9題。

學生通過自主探索和合作探索發(fā)現(xiàn)規(guī)律,并運用規(guī)律求出所框的4個數(shù)。

解簡單的方程教案篇九

教學內(nèi)容:

教科書第8-9頁的例7和“試一試” 、“練一練”,練習二的5-7題。

教學目標:

1. 使學生在具體的情境中,根據(jù)題中數(shù)量間的相等關系,能正確列方程解決簡單的實際問題,掌握列方程解決實際問題的思考方法。

2. 使學生在經(jīng)歷將實際問題抽象成方程的過程中,積累將現(xiàn)實問題數(shù)學化的經(jīng)驗,進一步感受方程的思想方法和應用價值。

3. 通過學習,進一步培養(yǎng)學生獨立思考,主動與他人合作,自覺校驗的良好習慣。

教學重點、難點:

1、 引導學生加強審題,弄清題意,正確理解題中的數(shù)量關系。允許學生用不同的數(shù)量關系解答。

2、 列方程解決實際問題的基本步驟和書寫格式。

教具準備:

題圖、小黑板。

教學過程:

一、 教學新課

1. 引入談話。

師:同學們已經(jīng)學會了利用等式的性質(zhì)解一些方程,我們還可以運用解方程的方法解決一些實際問題。

板書課題:列方程解決簡單的實際問題。

2. 教學例7。

(1) 出示例7情境圖。

師問:從圖中你獲得哪些信息?

指名回答,教師引導歸納。

生:小軍的成績-0.06米=小剛的成績

生:小剛的成績+0.06米=小軍的成績

生:小軍的成績-小剛的成績=0.06米

師提出:數(shù)量關系都是正確的。

師問:運用這些數(shù)量關系解題時,哪個量是未知的?(小軍的成績),在“小軍的成績”上打“?”。

師指出:“小軍的成績”是未知的,我們可以用未知數(shù)“x”來表示,在列方程解決問題時,我們要先把未知的量設為x,同時要先寫“解”。

師示范:解:設小軍的跳高成績是x米。

師追問:根據(jù)上面的數(shù)量關系,可以列什么樣的方程呢?

師指出:像第3種這樣,x的值表示結(jié)果的,我們可以盡量避免。

根據(jù)前2個方程,大家在小組中說說:x,1.39,0.06及方程的左邊,右邊各表示什么?看看列出的方程是否符合數(shù)量關系。

學生在小組中交流。

師追問:會解這個方程嗎?在小組中選一個,解答后,說說自己的方法。

學生字組中完成,教師巡視指導,完成后展示學生作業(yè)。

x=1.45 x=1.45

指名匯報方法。

師指出:因為在“解:設……”時已經(jīng)設了“x米”,因此求出的x的值不寫單位名稱。

師追問:怎樣可以知道解答的是否正確呢?你準備怎樣檢驗?

學生說自己的檢驗方法,教師點評。

(2) 小結(jié)方法

(列方程解決實際問題的基本步驟和書寫格式。)

3. 教學“試一試”

(1) 指名讀題,理解題意。

(2) 師問:哪一個條件告訴了我們題中的數(shù)量關系?

數(shù)量關系是什么?(非洲象的體重*33=藍鯨的體重)

根據(jù)這個數(shù)量關系怎樣列方程呢?

(3) 學生在小組中完成解答并匯報方法,師巡視指導。

解:設這頭非洲象大約重x噸。

33x=165

x=165/33

x=5

答:(略)

4. 指導完成“練一練”。

(1) 完成第(1)小題。

師問:題中有怎樣的等量關系?(去年的體重+2.5千克=今年的體重,今年的體重-去年的體重=2.5千克)

方程怎樣列?(x+2.5=36 36-x=2.5)

學生獨立完成解答并檢驗。

(2) 完成第(2)小題。

師問:知道哪些條件,求什么問題?

單價、數(shù)量、總價之間有什么基本等量關系呢?(單價*數(shù)量=總價)

師指出:列方程解決實際問題最好根據(jù)最基本的等量關系來列?

師追問:方程怎樣列呢?

解:設買了x本筆記本。

6.5x=78

學生獨立完成解答并檢驗。

二、鞏固練習

1. 指導完成練習二第5題。

(1) 導理解每幅圖的意思

(2) 說一說題中的等量關系。

(3) 學生獨立列式解答。

(4) 匯報與方法交流。

2. 完成練習二第6、7題。

(1) 學生獨立完成。

(2) 指名匯報,集體評價。

師追問:根據(jù)什么數(shù)量關系來列方程的。你是怎樣想的?

三、課堂總結(jié)

板書:

等式的性質(zhì)和解方程(二)

解:設小軍的跳高成績是x米。

x-1.39=0.06 x-0.06=1.39

x=1.39+0.06 x=1.39+0.06

x=1.45 x=1.45

答:小軍的跳高成績是1.45米。

教學后記:

列方程解決實際問題,關鍵在于讓學生理解題意,啟發(fā)學生從合理的角度理清數(shù)量關系,列出相應的方程。要避免出現(xiàn)“x=……”或者“……= x”的形式。

解簡單的方程教案篇十

1、知識與技能

(1)理解直線方程的點斜式、斜截式的形式特點和適用范圍;

(2)能正確利用直線的點斜式、斜截式公式求直線方程。

(3)體會直線的斜截式方程與一次函數(shù)的關系.

2、過程與方法

在已知直角坐標系內(nèi)確定一條直線的幾何要素——直線上的一點和直線的傾斜角的基礎上,通過師生探討,得出直線的點斜式方程;學生通過對比理解“截距”與“距離”的區(qū)別。

3、情態(tài)與價值觀

通過讓學生體會直線的斜截式方程與一次函數(shù)的關系,進一步培養(yǎng)學生數(shù)形結(jié)合的思想,滲透數(shù)學中普遍存在相互聯(lián)系、相互轉(zhuǎn)化等觀點,使學生能用聯(lián)系的觀點看問題。

直線的點斜式方程和斜截式方程。

問題

設計意圖

師生活動

1、在直線坐標系內(nèi)確定一條直線,應知道哪些條件?

使學生在已有知識和經(jīng)驗的基礎上,探索新知。

學生回顧,并回答。然后教師指出,直線的方程,就是直線上任意一點的坐標滿足的關系式。

2、直線經(jīng)過點,且斜率為。設點是直線上的任意一點,請建立與之間的關系。

培養(yǎng)學生自主探索的能力,并體會直線的方程,就是直線上任意一點的坐標滿足的關系式,從而掌握根據(jù)條件求直線方程的方法。

學生根據(jù)斜率公式,可以得到,當時,即(1)教師對基礎薄弱的學生給予關注、引導,使每個學生都能推導出這個方程。

3、(1)過點,斜率是的直線上的點,其坐標都滿足方程(1)嗎?

使學生了解方程為直線方程必須滿兩個條件。

學生驗證,教師引導。

問題

設計意圖

師生活動

(2)坐標滿足方程(1)的點都在經(jīng)過,斜率為的直線上嗎?

使學生了解方程為直線方程必須滿兩個條件。

學生驗證,教師引導。然后教師指出方程(1)由直線上一定點及其斜率確定,所以叫做直線的點斜式方程,簡稱點斜式(pointslopeform).

4、直線的點斜式方程能否表示坐標平面上的所有直線呢?

使學生理解直線的點斜式方程的適用范圍。

學生分組互相討論,然后說明理由。

5、(1)軸所在直線的方程是什么?軸所在直線的方程是什么?

(2)經(jīng)過點且平行于軸(即垂直于軸)的直線方程是什么?

(3)經(jīng)過點且平行于軸(即垂直于軸)的直線方程是什么?

進一步使學生理解直線的點斜式方程的適用范圍,掌握特殊直線方程的表示形式。

教師學生引導通過畫圖分析,求得問題的解決。

6、例1的教學。(教材93頁)

學會運用點斜式方程解決問題,清楚用點斜式公式求直線方程必須具備的.兩個條件:(1)一個定點;(2)有斜率。同時掌握已知直線方程畫直線的方法。

教師引導學生分析要用點斜式求直線方程應已知那些條件?題目那些條件已經(jīng)直接給予,那些條件還有待已去求。在坐標平面內(nèi),要畫一條直線可以怎樣去畫。

7、已知直線的斜率為,且與軸的交點為,求直線的方程。

引入斜截式方程,讓學生懂得斜截式方程源于點斜式方程,是點斜式方程的一種特殊情形。

學生獨立求出直線的方程:

(2)

再此基礎上,教師給出截距的概念,引導學生分析方程(2)由哪兩個條件確定,讓學生理解斜截式方程概念的內(nèi)涵。

8、觀察方程,它的形式具有什么特點?

深入理解和掌握斜截式方程的特點?

學生討論,教師及時給予評價。

問題

設計意圖

師生活動

9、直線在軸上的截距是什么?

使學生理解“截距”與“距離”兩個概念的區(qū)別。

學生思考回答,教師評價。

體會直線的斜截式方程與一次函數(shù)的關系.

學生思考、討論,教師評價、歸納概括。

11、例2的教學。(教材94頁)

掌握從直線方程的角度判斷兩條直線相互平行,或相互垂直;進一步理解斜截式方程中的幾何意義。

教師引導學生分析:用斜率判斷兩條直線平行、垂直結(jié)論。思考(1)時,有何關系?(2)時,有何關系?在此由學生得出結(jié)論:

且;

12、課堂練習第95頁練習第1,2,3,4題。

鞏固本節(jié)課所學過的知識。

學生獨立完成,教師檢查反饋。

13、小結(jié)

使學生對本節(jié)課所學的知識有一個整體性的認識,了解知識的來龍去脈。

14、布置作業(yè):第106頁第1題的(1)、(2)、(3)和第3、5題

鞏固深化

學生課后獨立完成。

例3.如果直線沿x軸負方向平移3個單位,再沿y軸正方向平移1個單位后,又回到原來的位置,求直線l的斜率.

作業(yè)布置:第100頁第1題的(1)、(2)、(3)和第3、5題

課后記:

解簡單的方程教案篇十一

1.通過求做勻速圓周運動的質(zhì)點的參數(shù)方程,掌握求一般曲線的參數(shù)方程的基本步驟.

2.熟悉圓的參數(shù)方程,進一步體會參數(shù)的意義。

1.在直角坐標系中圓的.標準方程和一般方程是什么?

探究新知(預習教材p12~p16,找出疑惑之處)

如圖:設圓的半徑是,

應用示例

例1.圓的半徑為2,是圓上的動點,是軸上的定點,是的中點,當點繞作勻速圓周運動時,求點的軌跡的參數(shù)方程.

(教材p24例2)

解簡單的方程教案篇十二

1、結(jié)合具體情境初步理解方程的意義,會用方程表示簡單的等量關系。

2、在具體的活動中,體驗和理解等式的性質(zhì),會用等式的性質(zhì)解簡單的方程。

3、能有方程解決一些簡單的現(xiàn)實問題。在解決問題的過程中,感受方程與現(xiàn)實生活的緊密聯(lián)系,形成應用意識。

解簡單方程和用方程解決問題既是本單元的重點也是難點。

過渡語:今天我們來學習新的內(nèi)容,簡易方程。

(一)講述:怎樣實現(xiàn)這個目標呢?靠大家自學,怎樣自學呢?請齊讀自學指導。

(二)出示自學指導:認真看課本p5557的內(nèi)容,

重點看圖與文字,認真思考紅點部分的問題。

5分鐘后,比誰做的題正確率高。

師:自學競賽開始,比誰看書認真,自學效果好!

(一)過渡:下面自學開始,比誰自學后,能做對檢測題。

(二)看一看。

生認真看書,師巡視并督促每個學生認真自學。(要保證學生看夠5分鐘,學生可以看看、想想,如果學生看完,可以復看。)

(三)做一做。

1、過渡:同學們看完了嗎?看完的`同學請舉手?好,下面就來考考大家。要比誰做得又對又快,比誰字體端正,數(shù)位對齊,數(shù)字要寫的大些,數(shù)字間要有一定的間距(要劃出學生板演的位置)

2、板演練習,請兩名(最差的同學)來上講臺板演,其余同學做在練習本上。教師巡視,要找出學生中的錯誤,并板書。

1、學生更正。

教師指導:發(fā)現(xiàn)錯了的請舉手!點名讓學生上臺更正。提示用紅色粉筆改,哪個數(shù)字錯了,先劃一下,再在旁邊改,不要擦去原來的。

2、討論。(議一議)

(1)第一題哪幾個錯了,錯在哪里,說出原因。

(2)第二題看圖列方程,看做得對不對,不對,說出錯因。

3、評議板書和正確率。

4、同桌交換互改,還要改例題中的題,有誤訂正,統(tǒng)計正確率及時表揚。

談話:我們今天學習了什么內(nèi)容?你對什么印象最深?從中你明白了什么?

解簡單的方程教案篇十三

1、知識目標:

(1)理解“理想氣體”的概念,理想氣體狀態(tài)方程(1)。

(2)掌握運用玻意耳定律和查理定律推導理想氣體狀態(tài)方程的過程,熟記理想氣體狀態(tài)方程的數(shù)學表達式,并能正確運用理想氣體狀態(tài)方程解答有關簡單問題。

(3)熟記蓋·呂薩克定律及數(shù)學表達式,并能正確用它來解答氣體等壓變化的有關問題。

2、能力目標

通過推導理想氣體狀態(tài)方程及由理想氣體狀態(tài)方程推導蓋·呂薩克定律的過程,培養(yǎng)學生嚴密的邏輯思維能力。

3、情感目標

通過用實驗驗證蓋·呂薩克定律的教學過程,使學生學會用實驗來驗證成正比關系的物理定律的一種方法,并對學生進行“實踐是檢驗真理唯一的標準”的教育。

1、理想氣體的狀態(tài)方程是本節(jié)課的重點,因為它不僅是本節(jié)課的核心內(nèi)容,還是中學階段解答氣體問題所遵循的最重要的規(guī)律之一。

2、對“理想氣體”這一概念的理解是本節(jié)課的一個難點,因為這一概念對中學生來講十分抽象,而且在本節(jié)只能從宏觀現(xiàn)象對“理想氣體”給出初步概念定義,只有到后兩節(jié)從微觀的氣體分子動理論方面才能對“理想氣體”給予進一步的論述。另外在推導氣體狀態(tài)方程的過程中用狀態(tài)參量來表示氣體狀態(tài)的變化也很抽象,學生理解上也有一定難度。

1、投影幻燈機、書寫用投影片。

2、氣體定律實驗器、燒杯、溫度計等。

玻意耳定律是一定質(zhì)量的氣體在溫度不變時,壓強與體積變化所遵循的規(guī)律,而查理定律是一定質(zhì)量的氣體在體積不變時,壓強與溫度變化時所遵循的規(guī)律,即這兩個定律都是一定質(zhì)量的氣體的體積、壓強、溫度三個狀態(tài)參量中都有一個參量不變,而另外兩個參量變化所遵循的規(guī)律,若三個狀態(tài)參量都發(fā)生變化時,應遵循什么樣的規(guī)律呢?這就是我們今天這節(jié)課要學習的主要問題。

1、關于“理想氣體”概念的教學

設問:

(1)玻意耳定律和查理定律是如何得出的?即它們是物理理論推導出來的還是由

實驗總結(jié)歸納得出來的?答案是:由實驗總結(jié)歸納得出的。

(2)這兩個定律是在什么條件下通過實驗得到的?老師引導學生知道是在溫度不太低(與常溫比較)和壓強不太大(與大氣壓強相比)的條件得出的。

當然也不遵循反映氣體狀態(tài)變化的玻意耳定律和查理定律了。而且實驗事實也證明:在較低溫度或較大壓強下,氣體即使未被液化,它們的實驗數(shù)據(jù)也與玻意耳定律或查理定律計算出的數(shù)據(jù)有較大的誤差。

出示投影片(1):

說明講解:投影片(l)所示是在溫度為0℃,壓強為pa的條件下取1l幾種常見實際氣體保持溫度不變時,在不同壓強下用實驗測出的pv乘積值,物理教案《理想氣體狀態(tài)方程(1)》。從表中可看出在壓強為pa至pa之間時,實驗結(jié)果與玻意耳定律計算值,近似相等,當壓強為pa時,玻意耳定律就完全不適用了。

這說明實際氣體只有在一定溫度和一定壓強范圍內(nèi)才能近似地遵循玻意耳定律和查理定律。而且不同的實際氣體適用的溫度范圍和壓強范圍也是各不相同的.。為了研究方便,我們假設這樣一種氣體,它在任何溫度和任何壓強下都能嚴格地遵循玻意耳定律和查理定律。我們把這樣的氣體叫做“理想氣體”。(板書“理想氣體”概念意義。)

2.推導理想氣體狀態(tài)方程

前面已經(jīng)學過,對于一定質(zhì)量的理想氣體的狀態(tài)可用三個狀態(tài)參量p、v、t來描述,且知道這三個狀態(tài)參量中只有一個變而另外兩個參量保持不變的情況是不會發(fā)生的。換句話說:若其中任意兩個參量確定之后,第三個參量一定有唯一確定的值。它們共同表征一定質(zhì)量理想氣體的唯一確定的一個狀態(tài)。根據(jù)這一思想,我們假定一定質(zhì)量的理想氣體在開始狀態(tài)時各狀態(tài)參量為(),經(jīng)過某變化過程,到末狀態(tài)時各狀態(tài)參量變?yōu)椋ǎ?,這中間的變化過程可以是各種各樣的,現(xiàn)假設有兩種過程:

第一種:從()先等溫并使其體積變?yōu)?,壓強隨之變?yōu)椋酥虚g狀態(tài)為()再等容并使其溫度變?yōu)?,則其壓強一定變?yōu)?,則末狀態(tài)()。

第二種:從()先等容并使其溫度變?yōu)?,則壓強隨之變?yōu)椋酥虚g狀態(tài)為(),再等溫并使其體積變?yōu)椋瑒t壓強也一定變?yōu)?,也到末狀態(tài)(),如投影片所示。

出示投影片(2):

將全班同學分為兩大組,根據(jù)玻意耳定律和查理定律,分別按兩種過程,自己推導理想氣體狀態(tài)過程。(即要求找出與間的等量關系。)

基本方法是:解聯(lián)立方程或消去中間狀態(tài)參量或均可得到:

這就是理想氣體狀態(tài)方程。它說明:一定質(zhì)量的理想氣體的壓強、體積的乘積與熱力學溫度的比值是一個常數(shù)。

3.推導并驗證蓋·呂薩克定律

設問:(1)若上述理想氣體狀態(tài)方程中,,方程形式變化成怎樣的形式?

答案:或

(2)本身說明氣體狀態(tài)變化有什么特點?

答案:說明等效地看作氣體做等壓變化。(即壓強保持不變的變化)

由此可得出結(jié)論:當壓強不變時,一定質(zhì)量的理想氣體的體積與熱力學溫度成正比。

這個結(jié)論最初是法國科學家蓋·呂薩克在研究氣體膨脹的實驗中得到的,也叫蓋·呂薩克定律。它也屬于實驗定律。當今可以設計多種實驗方法來驗證這一結(jié)論。今天我們利用在驗證玻意耳定律中用過的氣體定律實驗器來驗證這一定律。

演示實驗:實驗裝置如圖所示,此實驗保持壓強不變,只是利用改變燒杯中的水溫來確定三個溫度狀態(tài),這可從溫度計上讀出,再分別換算成熱力學溫度,再利用氣體實驗器上的刻度值作為達熱平衡時,被封閉氣體的體積值,分別為,填入下表:

出示投影幻燈片(3):

然后讓學生用計算器迅速算出、、,只要讀數(shù)精確,則這幾個值會近似相等,從而證明了蓋·呂薩克定律。

4.課堂練習

出示投影幻燈片(4),顯示例題(1):

教師引導學生按以下步驟解答此題:

(1)該題研究對象是什么?

答案:混入水銀氣壓計中的空氣。

(2)畫出該題兩個狀態(tài)的示意圖:

(3)分別寫出兩個狀態(tài)的狀態(tài)參量:

(s是管的橫截面積)。

(4)將數(shù)據(jù)代入理想氣體狀態(tài)方程:

解得

1.在任何溫度和任何壓強下都能嚴格遵循氣體實驗定律的氣體叫理想氣體。

2.理想氣體狀態(tài)方程為:

3.蓋·呂薩克定律是指:一定質(zhì)量的氣體在壓強不變的條件下,它的體積與熱力學溫度成正比。

1.“理想氣體”如同力學中的“質(zhì)點”、“彈簧振子”一樣,是一種理想的物理模型,是一種重要的物理研究方法。對“理想氣體”研究得出的規(guī)律在很大溫度范圍和壓強范圍內(nèi)都能適用于實際氣體,因此它是有很大實際意義的。

2.本節(jié)課設計的驗證蓋·呂薩克定律的實驗用的是溫州師院教學儀器廠制造的j2261型氣體定律實驗器;實驗中確定的三個溫度狀態(tài)應相對較穩(wěn)定(即變化不能太快)以便于被研究氣體與燒杯中的水能達穩(wěn)定的熱平衡狀態(tài),使讀數(shù)較為準確。建議選當時的室溫為,冰水混合物的溫度,即0℃或0℃附近的溫度為,保持沸騰狀態(tài)的溫度,即100℃或接近100℃為。這需要教師在課前作充分的準備,才能保證在課堂得出較理想的結(jié)論。

解簡單的方程教案篇十四

教學目標:

1.知識與技能:結(jié)合具體的問題,使同學們學會用解方程和用方程解決具體的問題。

2.過程與方法:結(jié)合課本內(nèi)容和實際問題來使同學們形成用方程解決問題的觀念。

3.情感態(tài)度價值觀:在學習方程解決問題的過程中培養(yǎng)同學們對于學習數(shù)學的興趣,培養(yǎng)同學們克服困難的品質(zhì),培養(yǎng)同學們探索新知的勇氣和信心。

教學過程:

一、回顧與交流。

1.復習方程概念。

什么是方程?你能舉出方程的例子嗎?(老師板書出方程的例子)這里用字母表示等式里的什么?指出:字母還可以表示等式里的未知數(shù)。含有未知數(shù)的等式就叫方程。(板書定義)

判斷下面是不是方程:

3x+5

6+8=14

6x=15

7x+315

(通過這個教學使學生充分理解方程的定義)

讓學生先獨立解課本p61.t1.兩道解方程的題目再讓學生說說是怎樣解的。

通過這里的兩道練習復習小學所學習的解方程的方法(即根據(jù)等式的性質(zhì)來解。)

2.解簡易方程。

復習61頁第二題

首先讓學生找出這三個題的等量關系,讓學生分小組討論討論,在小組內(nèi)說一說怎樣找的等量關系。然后請學生在班內(nèi)匯報一下。再請三位同學演板,并請演板的同學解釋自己的做法。

(在這個過程中,讓學生首先學會找出題目的等量關系,再根據(jù)等量關系去列方程,使學生養(yǎng)成用方程解決問題的時候,要懂得方程是根據(jù)等量關系列出的。)

集體訂正:解(1)方程是怎樣想的,檢查解方程時每一步依據(jù)什么做的。(2)方程與(1)有什么不同,解方程時有什么不同?師生共同小結(jié)解方程的一般步驟(略)。怎樣檢驗方程的解對不對?增加找數(shù)量關系練習。

1.六一班有50人,其中男生有28人,女生有多少人?

2.六一班有22名女生,男生比女生的2倍少16人,男生有多少人?

首先讓學生獨立找出題目中的等量關系,然后讓同桌2人互相說一說,然后再解答。

二、鞏固與應用。

引導學生做課本鞏固練習題

1.解方程。組織學生獨立完成,然后讓學生上去講一講解題的方法。

2.看圖列出方程,并求出方程的解。首先讓學生在小組內(nèi)說一說解決的方法,再請學生匯報交流。

3.看圖理解題意,引導學生分析數(shù)量關系,再列方程解答。請學生演板,演板后組織學生討論。

4.理解文字題,根據(jù)數(shù)量關系列出方程并求解。請學生找出題中的等量關系,再讓學生完成。

三、總結(jié)提高。

通過這節(jié)課的學習,你解決了那些問題,還有那些困惑?

(通過學生的匯報,查漏補缺,找出這節(jié)課可能沒有涉及到的問題加以解決。)

四、習題設計。

1.課本62頁第5題。這里的兩個小題,第1小題是用字母表示,學生要想用字母表示出來,必須先找出題目的等量關系。第2小題是用方程解決問題,除了要找出等量關系外還要列出方程并解答。

2.課本62頁第6題。這是一道拓展性的習題,是數(shù)與形的結(jié)合,通過這道題的練習,除了鍛煉學生用方程解決問題的能力,同時也復習了有關幾何的知識。

解簡單的方程教案篇十五

2.培養(yǎng)學生觀察潛力,提高他們分析問題和解決問題的潛力;

3.使學生初步養(yǎng)成正確思考問題的良好習慣.

一元一次方程解簡單的應用題的方法和步驟.

一、從學生原有的認知結(jié)構提出問題

為了回答上述這幾個問題,我們來看下面這個例題.

例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).

(首先,用算術方法解,由學生回答,教師板書)

解法1:(4+2)÷(3-1)=3.

答:某數(shù)為3.

(其次,用代數(shù)方法來解,教師引導,學生口述完成)

解法2:設某數(shù)為x,則有3x-2=x+4.

解之,得x=3.

答:某數(shù)為3.

二、師生共同分析、研究一元一次方程解簡單應用題的方法和步驟

師生共同分析:

1.本題中給出的已知量和未知量各是什么?

2.已知量與未知量之間存在著怎樣的相等關系?(原先重量-運出重量=剩余重量)

上述分析過程可列表如下:

解:設原先有x千克面粉,那么運出了15%x千克,由題意,得

x-15%x=42500,

所以x=50000.

答:原先有50000千克面粉.

(還有,原先重量=運出重量+剩余重量;原先重量-剩余重量=運出重量)

(2)例2的解方程過程較為簡捷,同學應注意模仿.

依據(jù)例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的.方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學生總結(jié)的狀況,教師總結(jié)如下:

(2)根據(jù)題意找出能夠表示應用題全部含義的一個相等關系.(這是關鍵一步);

(4)求出所列方程的解;

(仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥.解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現(xiàn)的各種錯誤.并嚴格規(guī)范書寫格式)

解:設第一小組有x個學生,依題意,得

3x+9=5x-(5-4),

解這個方程:2x=10,

所以x=5.

其蘋果數(shù)為3×5+9=24.

答:第一小組有5名同學,共摘蘋果24個.

學生板演后,引導學生探討此題是否可有其他解法,并列出方程.

(設第一小組共摘了x個蘋果,則依題意,得)

三、課堂練習

2.我國城鄉(xiāng)居民1988年末的儲蓄存款到達3802億元,比1978年末的儲蓄存款的18倍還多4億元.求1978年末的儲蓄存款。

3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù).

四、師生共同小結(jié)

首先,讓學生回答如下問題:

1.本節(jié)課學習了哪些資料?

2.列一元一次方程解應用題的方法和步驟是什么?

3.在運用上述方法和步驟時應注意什么?

依據(jù)學生的回答狀況,教師總結(jié)如下:

(2)以上步驟同學應在理解的基礎上記憶.

五、作業(yè)

1.買3千克蘋果,付出10元,找回3角4分.問每千克蘋果多少錢?

5.把1400獎金分給22名得獎者,一等獎每人200元,二等獎每人50元.求得到一等獎與二等獎的人數(shù)。

解簡單的方程教案篇十六

教學內(nèi)容:

教科書第12~13頁,“回顧與整理”、“練習與應用”第1~4題。

教學目標:

1、通過回顧與整理,使學生進一步加深等式與方程的意義,等式的性質(zhì)的理解。幫助學生理清知識的脈絡,建立合理的認知結(jié)構。

2、通過練習與運用,使學生進一步掌握方程的方法和一般步驟,會列方程解決簡單實際問題。

教學過程:

一、回顧與整理

1、談話引入。

本單元我們學習了哪些內(nèi)容?

你能說說什么是等式的性質(zhì)嗎?什么是方程?什么是解方程呢?

在小組中互相說說。

2、組織討論。

(1)出示討論題。

(2)小組交流,巡視指導。

(3)匯報交流。

你是怎么獲得這個知識的?我們在學習這個知識時運用了什么方法?

(等式與方程都是等式;等式不一定是方程,方程一定是等式。)

(含有未知數(shù)的等式是方程。)

(等式性質(zhì):)

(求方程中未知數(shù)的值的`過程叫做解方程。)

3、小結(jié)。

同學們對這一單元的知識點掌握得很好,我們不僅要理解概念和意義,還要會熟練地運用。

二、練習與應用

1、完成第1題。

(1)獨立完成計算。

(2)匯報與展示,說說錯誤的原因及改正的方法。

2、完成第2題。

(1)學生獨立完成。

(2)你用怎樣的方法連線的?(解方程求出未知數(shù)的值;把x的值代入方程。)

3、完成第3題。

(1)列出方程,不解答。

(2)你是怎樣列的?怎么想的?大家同意嗎?

(3)完成計算。

4、完成第4題。

單價、數(shù)量、總價之間有怎樣的數(shù)量關系?

指出:抓住基本關系列方程,y也可以表示未知數(shù)。

三、課堂總結(jié)

通過回顧與整理,大家共同復習了有關方程的知識,你還有什么疑問嗎?

【本文地址:http://mlvmservice.com/zuowen/5271244.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔