精選平方差公式教案及板書設(shè)計(jì)(通用17篇)

格式:DOC 上傳日期:2023-10-30 04:59:13
精選平方差公式教案及板書設(shè)計(jì)(通用17篇)
時(shí)間:2023-10-30 04:59:13     小編:字海

教案是教師與學(xué)生之間的橋梁,幫助他們實(shí)現(xiàn)教學(xué)目標(biāo)。教案編寫時(shí),應(yīng)加強(qiáng)對(duì)學(xué)生的評(píng)估和反饋,及時(shí)調(diào)整教學(xué)策略和方法。合理有序地編寫教案,可以使教學(xué)過程更加順利。

平方差公式教案及板書設(shè)計(jì)篇一

本節(jié)課是圍繞“引導(dǎo)學(xué)生有效預(yù)習(xí)”的課題設(shè)計(jì)的,通過預(yù)設(shè)的問題引發(fā)學(xué)生思考,在學(xué)生的預(yù)習(xí)基礎(chǔ)上回答相關(guān)的'問題,產(chǎn)生對(duì)整式的乘法、提公因式法和公式法的對(duì)比。

讓學(xué)生充分自主的對(duì)知識(shí)產(chǎn)生探究,同時(shí)利用數(shù)形結(jié)合的思想驗(yàn)證平方差公式;再通過質(zhì)疑的方式加深對(duì)平方差公式結(jié)構(gòu)特征的認(rèn)識(shí),有助于讓學(xué)生在應(yīng)用平方差公式行分解因式時(shí)注意到它的前提條件;通過例題練習(xí)的鞏固,讓學(xué)生把握教材,吃透教材,讓學(xué)生更加熟練、準(zhǔn)確,起到強(qiáng)化、鞏固的作用,讓學(xué)生領(lǐng)會(huì)換元的思想,達(dá)到初步發(fā)展學(xué)生綜合應(yīng)用的能力。

二、教材分析

本節(jié)課是運(yùn)用提公因式法后公式法的第一課時(shí)——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應(yīng)用,它是解高次方程的基礎(chǔ),在教材中具有重要的地位。在教材的處理上以學(xué)生的自主探索為主,在原有用平方差公式進(jìn)行整式乘法計(jì)算的知識(shí)的基礎(chǔ)上充分認(rèn)識(shí)分解因式。明確因式分解是乘法公式的一種恒等變形,讓學(xué)生學(xué)會(huì)合情推理的能力,同時(shí)也培養(yǎng)了學(xué)生愛思考,善交流的良好學(xué)習(xí)慣。

三、學(xué)情分析

四、教學(xué)目標(biāo)

(一)知識(shí)與技能

1.掌握運(yùn)用平方差公式分解因式的方法。

2.掌握提公因式法、平方差公式分解因式的綜合應(yīng)用。

(二)過程與方法

1.經(jīng)歷探究分解因式方法的過程,體會(huì)整式乘法與分解因式之間的聯(lián)系。

2.通過乘法公式:(a+b)(a-b)=a2-b2逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理地思考及語(yǔ)言表達(dá)能力。

3.通過活動(dòng)4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達(dá)化,培養(yǎng)學(xué)生的化歸思想。

4.通過活動(dòng)1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。

5.通過活動(dòng)4,讓學(xué)生自己發(fā)現(xiàn)問題,提出問題,然后解決問題,體會(huì)在解決問題的過程中與他人合作的重要性。

(三)情感與態(tài)度

1.通過探究平方差公式,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志,建立自己信心。

平方差公式教案及板書設(shè)計(jì)篇二

本節(jié)課是圍繞“引導(dǎo)學(xué)生有效預(yù)習(xí)”的課題設(shè)計(jì)的,通過預(yù)設(shè)的問題引發(fā)學(xué)生思考,在學(xué)生的預(yù)習(xí)基礎(chǔ)上回答相關(guān)的問題,產(chǎn)生對(duì)整式的乘法、提公因式法和公式法的對(duì)比。

讓學(xué)生充分自主的對(duì)知識(shí)產(chǎn)生探究,同時(shí)利用數(shù)形結(jié)合的思想驗(yàn)證平方差公式;再通過質(zhì)疑的方式加深對(duì)平方差公式結(jié)構(gòu)特征的認(rèn)識(shí),有助于讓學(xué)生在應(yīng)用平方差公式行分解因式時(shí)注意到它的前提條件;通過例題練習(xí)的鞏固,讓學(xué)生把握教材,吃透教材,讓學(xué)生更加熟練、準(zhǔn)確,起到強(qiáng)化、鞏固的作用,讓學(xué)生領(lǐng)會(huì)換元的思想,達(dá)到初步發(fā)展學(xué)生綜合應(yīng)用的能力。

本節(jié)課是運(yùn)用提公因式法后公式法的第一課時(shí)——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應(yīng)用,它是解高次方程的基礎(chǔ),在教材中具有重要的地位。在教材的處理上以學(xué)生的自主探索為主,在原有用平方差公式進(jìn)行整式乘法計(jì)算的知識(shí)的基礎(chǔ)上充分認(rèn)識(shí)分解因式。明確因式分解是乘法公式的一種恒等變形,讓學(xué)生學(xué)會(huì)合情推理的能力,同時(shí)也培養(yǎng)了學(xué)生愛思考,善交流的良好學(xué)習(xí)慣。

(一)知識(shí)與技能

1.掌握運(yùn)用平方差公式分解因式的方法。

2.掌握提公因式法、平方差公式分解因式的綜合應(yīng)用。

(二)過程與方法

1.經(jīng)歷探究分解因式方法的過程,體會(huì)整式乘法與分解因式之間的聯(lián)系。

2.通過乘法公式:(a+b)(a-b)=a2-b2逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理地思考及語(yǔ)言表達(dá)能力。

3.通過活動(dòng)4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達(dá)化,培養(yǎng)學(xué)生的化歸思想。

4.通過活動(dòng)1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2 =(a+b)(a-b)。

5.通過活動(dòng)4,讓學(xué)生自己發(fā)現(xiàn)問題,提出問題,然后解決問題,體會(huì)在解決問題的過程中與他人合作的重要性。

(三)情感與態(tài)度

1.通過探究平方差公式,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志,建立自己信心。

平方差公式教案及板書設(shè)計(jì)篇三

(1)(x+1)(x-1)=_____,

(2)(+2)(-2)=_____,

(3)(2x+1)(2x-1)=____,

(4)(+3z)(-3z)=_____.

(1)(x+1)(1+x),

(2)(2x+)(-2x),

(3)(a-b)(-a+b),

(4)(-a-b)(-a+b)

幫助學(xué)生理解公式的特征,掌握公式的特征是正確運(yùn)用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項(xiàng)式或多項(xiàng)式,由于學(xué)生的認(rèn)知能力有一個(gè)過程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。

平方差公式教案及板書設(shè)計(jì)篇四

(l)(2)(3)(4)

學(xué)生活動(dòng):學(xué)生分組討論,選代表解答.

練習(xí)三

甲的計(jì)算過程是:原式

乙的計(jì)算過程是:原式

丙的計(jì)算過程是:原式

丁的計(jì)算過程是:原式

(2)想一想,與相等嗎?為什么?

與相等嗎?為什么?

學(xué)生活動(dòng):觀察、思考后,回答問題.

練習(xí)四

運(yùn)用乘法公式計(jì)算:

(l)(2)

(3)(4)

(四)總結(jié)、擴(kuò)展

這節(jié)課我們學(xué)習(xí)了乘法公式中的完全平方公式.

引導(dǎo)學(xué)生舉例說明公式的結(jié)構(gòu)特征,公式中字母含義和運(yùn)用公式時(shí)應(yīng)該注意的問題.

八、布置作業(yè)

p1331,2.(3)(4).

參考答案

略.

平方差公式教案及板書設(shè)計(jì)篇五

1.經(jīng)歷探索平方差公式的過程,會(huì)推導(dǎo)平方差公式;

2.能利用平方差公式進(jìn)行簡(jiǎn)單的運(yùn)算。

在探索平方差公式的過程中,發(fā)展學(xué)生的符號(hào)感和推理能力。在計(jì)算的過程中發(fā)現(xiàn)規(guī)律,并能用符號(hào)表達(dá),體會(huì)數(shù)學(xué)語(yǔ)言的嚴(yán)謹(jǐn)與簡(jiǎn)潔。

激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,鼓勵(lì)學(xué)生自己探索,培養(yǎng)學(xué)生的合作意識(shí)與創(chuàng)新能力。

重點(diǎn)

平方差公式的推導(dǎo)和運(yùn)用

難點(diǎn)

平方差公式的結(jié)構(gòu)特點(diǎn)和靈活運(yùn)用。

一、復(fù)習(xí)導(dǎo)入

1.回顧多項(xiàng)式乘多項(xiàng)式的法則。

2.創(chuàng)設(shè)情境:你能快速地口算下列式子的值嗎?

(1);(2).

師生共同想辦法,想到能否把數(shù)轉(zhuǎn)化成較整的數(shù)?

變形成:,

再試試把它當(dāng)成多項(xiàng)式乘法來算算,有什么發(fā)現(xiàn)?

繼續(xù)用你發(fā)現(xiàn)的方法算算,,,成功了嗎?

我們把這個(gè)有趣的結(jié)論整理并推廣,就可以得到今天要學(xué)習(xí)的一個(gè)乘法公式,平方差公式。

二、新課講解

探究新知

1.觀察相乘的兩個(gè)多項(xiàng)式有什么特點(diǎn)?運(yùn)算的結(jié)果有什么特點(diǎn)?

討論交流后總結(jié)出:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差。

2.把式子里具體的數(shù)換成字母表示的數(shù),結(jié)論還成立嗎?

3.從上面的計(jì)算中你有什么發(fā)現(xiàn)呢?

引導(dǎo)學(xué)生發(fā)現(xiàn)對(duì)于不同形式的兩個(gè)數(shù),都有它們的和與它們的差的積都等于它們的平方差!用公式表示就是:,這里字母是任意形式的兩個(gè)數(shù)。這個(gè)公式叫做平方差公式。

4.你能通過演算推導(dǎo)出平方差公式嗎?

最終得到平方差公式:

平方差公式的理解應(yīng)用

下列多項(xiàng)式乘法中,能用平方差公式計(jì)算的是_______________(填寫序號(hào))

(1);(2);(3);

(4);(5);(6).

學(xué)生分組討論交流,歸納什么情況下可以使用平方差公式。通過討論,對(duì)平方差公式的理解達(dá)到一個(gè)新的高度:所謂兩數(shù)和、兩數(shù)差,從多項(xiàng)式的角度來看,就是有一項(xiàng)相同(),有一項(xiàng)相反(和),只要相乘的兩個(gè)多項(xiàng)式具備這樣的特點(diǎn),都可以用平方差公式計(jì)算。不難判斷,上面的式子中(2)、(5)、(6)都可以用平方差公式計(jì)算。

三、典例剖析

例1運(yùn)用平方差公式計(jì)算:

師生共同解答,教師板書。初學(xué)運(yùn)用時(shí)要寫清楚步驟。

例2運(yùn)用平方差公式計(jì)算:

學(xué)生解答,關(guān)注學(xué)生是否理解平方差公式,能否正確識(shí)別乘法公式里的。

例3.計(jì)算:

學(xué)生解答,教師巡視,關(guān)注學(xué)生能否合理變形,靈活運(yùn)用公式計(jì)算。

四、課堂練習(xí)

1.下面各式的計(jì)算對(duì)不對(duì)?如果不對(duì),應(yīng)怎樣改正?

(1);

2.運(yùn)用平方差公式計(jì)算:

(1);(2);

(3);(4).

3.計(jì)算:

(1);(2);

教師要注意發(fā)現(xiàn)學(xué)生的錯(cuò)誤,組織學(xué)生對(duì)錯(cuò)誤進(jìn)行分析,對(duì)于第1題可以引導(dǎo)學(xué)生分析導(dǎo)致錯(cuò)誤的原因。

五、小結(jié)

師生共同回顧平方差公式的結(jié)構(gòu)特點(diǎn),體會(huì)公式的作用,交流計(jì)算的經(jīng)驗(yàn)。教師對(duì)課堂上學(xué)生掌握不夠牢固的知識(shí)進(jìn)行辨析、強(qiáng)調(diào)與補(bǔ)充,學(xué)生也可以談一談個(gè)人的學(xué)習(xí)感受。

六、布置作業(yè)

p50第1、6題

平方差公式教案及板書設(shè)計(jì)篇六

1、使學(xué)生理解和掌握平方差公式,并會(huì)用公式進(jìn)行計(jì)算;

2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運(yùn)算能力,培養(yǎng)應(yīng)用數(shù)學(xué)的意識(shí);

3、在緊張而輕松地教學(xué)氛圍內(nèi),進(jìn)一步激發(fā)學(xué)生的學(xué)習(xí)興趣熱情。

重點(diǎn)是掌握公式的結(jié)構(gòu)特征及正確運(yùn)用公式。難點(diǎn)是公式推導(dǎo)的理解及字母的廣泛含義。

以教師的精講、引導(dǎo)為主,輔以引導(dǎo)發(fā)現(xiàn)、合作交流。

(一)創(chuàng)設(shè)問題情境,引入新課

1、你會(huì)做嗎?

(1)(x+1)(x—1)=_____=()()

(3)(3x+2)(3x—2)= _____=()()

2、能否用簡(jiǎn)便方法運(yùn)算:×(這里需要用到平方差公式,設(shè)疑激發(fā)學(xué)生興趣。)

(二)探索規(guī)律,歸納平方差公式

交流上面第1題的答案,引導(dǎo)學(xué)生進(jìn)一步思考:

(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時(shí),積是二項(xiàng)式。這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了。而它們的積等于這兩個(gè)數(shù)的平方差。)

我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項(xiàng)式相乘時(shí),就可以直接運(yùn)用公式進(jìn)行計(jì)算。(在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式,并讓學(xué)生熟記。)

(三)嘗試探究

(四)鞏固練習(xí)

1、運(yùn)用平方差公式計(jì)算:

(l)(x+a)(x—a)

(2)(m+n)(m—n)(3)(a+3b)(a—3b)

(4)(1—5y)(l+5y)(5)998×1002

(6)395×405

2、直接寫出答案:

(l)(—a+b)(a+b)

(2)(a—b)(b+a)

(3)(—a—b)(—a+b)

(4)(a—b)(—a—b)(5)999×1001

(6)×(讓學(xué)生獨(dú)立完成,互評(píng)互改。)

(五)小結(jié)

1.什么是平方差公式?

2.運(yùn)用公式要注意什么?

(1)要符合公式特征才能運(yùn)用平方差公式;

(2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意分清a、b。

(學(xué)生回答,教師總結(jié))

(六)作業(yè)

p106習(xí)題1—5題

教學(xué)反思

通過精心備課,本節(jié)課在教學(xué)中是比較成功的。成功之處在于整個(gè)教學(xué)流程環(huán)環(huán)相扣,層層遞進(jìn),抓住了學(xué)生思維這條主線,遵循由淺入深,由特殊到一般的認(rèn)知規(guī)律,引起學(xué)生的興趣。使他們能夠積極參與其中,同時(shí),使他們的思維得到了鍛煉和發(fā)展。不足之處:時(shí)間安排不是很合理,前松后緊。課堂上沒有給更多的學(xué)生提供展示自己思考結(jié)果的機(jī)會(huì),過于注重“收”,而“放”不夠。

平方差公式教案及板書設(shè)計(jì)篇七

平方差公式是多項(xiàng)式乘法運(yùn)算中一個(gè)重要的公式,是特殊的多項(xiàng)式與多項(xiàng)式相乘的一種簡(jiǎn)便計(jì)算。通過復(fù)習(xí)多項(xiàng)式乘以多項(xiàng)式的計(jì)算導(dǎo)入新課,為探究新知識(shí)奠定基礎(chǔ)。在重難點(diǎn)處設(shè)計(jì)問題:“觀察以上3個(gè)算式的特點(diǎn)和運(yùn)算結(jié)果的特點(diǎn),對(duì)比等號(hào)兩邊代數(shù)式的結(jié)構(gòu),你發(fā)現(xiàn)了什么?”讓學(xué)生發(fā)現(xiàn)規(guī)律并嘗試運(yùn)用自己的語(yǔ)言來描述。

問題提出后,學(xué)生能積極進(jìn)行分組討論、交流,各組小組長(zhǎng)闡述自己小組討論的結(jié)果。大多數(shù)的學(xué)生能找出規(guī)律,說出大概意思,但是無(wú)法用精準(zhǔn)的語(yǔ)言完整的描述出來,語(yǔ)言表達(dá)無(wú)條理、含糊。針對(duì)這種情況,在以后的課堂教學(xué)過程中要注意加強(qiáng)對(duì)學(xué)生的邏輯思維能力和語(yǔ)言表達(dá)能力的.培養(yǎng)。最后經(jīng)過師生的共同努力,得出了平方差公式以及公式的特征。

在例題展示環(huán)節(jié)中,我通過2道例題的運(yùn)算,訓(xùn)練學(xué)生正確應(yīng)用公式進(jìn)行計(jì)算,體會(huì)公式在簡(jiǎn)化運(yùn)算中的作用。實(shí)踐練習(xí)的設(shè)計(jì),使學(xué)生從不同角度認(rèn)識(shí)平方差公式,進(jìn)一步加強(qiáng)學(xué)生對(duì)公式的理解。在運(yùn)用公式時(shí),學(xué)生基本掌握運(yùn)用平方差公式的步驟:首先要判斷算式是否符合平方差公式特征,然后再尋找算式中的a,b項(xiàng),最后運(yùn)用平方差公式運(yùn)算。

拓展延伸環(huán)節(jié)中,學(xué)生通過尋找算式中的a,b項(xiàng),慢慢發(fā)現(xiàn)a,b項(xiàng)不僅可以代表數(shù),也可以代表單項(xiàng)式、多項(xiàng)式等代數(shù)式,這樣設(shè)計(jì)可以進(jìn)一步深化學(xué)生對(duì)字母含義的理解。在學(xué)生獨(dú)立完成練習(xí)和堂測(cè)中,經(jīng)過巡視,我發(fā)現(xiàn)近三分之一的學(xué)生對(duì)較復(fù)雜的多項(xiàng)式不能準(zhǔn)確找出a,b項(xiàng),特別是b項(xiàng)代表多項(xiàng)式時(shí),負(fù)數(shù)去括號(hào)時(shí)出錯(cuò)較多。

最后通過設(shè)計(jì)遞進(jìn)式的問題串,引導(dǎo)學(xué)生自己一步步總結(jié)出本節(jié)課所學(xué)的知識(shí)內(nèi)容,從而培養(yǎng)他們的歸納總結(jié)和語(yǔ)言表達(dá)能力。

本節(jié)課采用學(xué)習(xí)小組討論、交流的學(xué)習(xí)方式,讓學(xué)優(yōu)生帶動(dòng)學(xué)困生,整體教學(xué)效果良好,學(xué)生基本掌握平方差公式的運(yùn)用,對(duì)于較復(fù)雜的a、b項(xiàng)的運(yùn)算,在自習(xí)課上將加強(qiáng)練習(xí)。

平方差公式教案及板書設(shè)計(jì)篇八

1、了解完全平方公式的特征,會(huì)用完全平方公式進(jìn)行因式分解.

2、通過整式乘法逆向得出因式分解方法的過程,發(fā)展學(xué)生逆向思維能力和推理能力.

3、通過猜想、觀察、討論、歸納等活動(dòng),培養(yǎng)學(xué)生觀察能力,實(shí)踐能力和創(chuàng)新能力.

學(xué)習(xí)建議教學(xué)重點(diǎn):

平方差公式教案及板書設(shè)計(jì)篇九

教學(xué)目標(biāo):

一、 知識(shí)與技能

1、 參與探索平方差公式的過程,發(fā)展學(xué)生的推理能力 2、 會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的乘法運(yùn)算。

二、 過程與方法

1、 經(jīng)歷探索過程,學(xué)會(huì)歸納推導(dǎo)出某種特種特定類型乘法并用簡(jiǎn)單的

數(shù)學(xué)式子表達(dá)出,即給出公式。

2、 在探索過程的教學(xué)中,培養(yǎng)學(xué)生觀察、歸納的能力,發(fā)展學(xué)生的符

號(hào)感和語(yǔ)言描述能力。

三、 情感與態(tài)度

以探索、歸納公式和簡(jiǎn)單運(yùn)用公式這一數(shù)學(xué)情景,加深學(xué)生的體驗(yàn),增加學(xué)習(xí)數(shù)學(xué)和使用的信心。培養(yǎng)學(xué)生由觀察-發(fā)現(xiàn)-歸納-驗(yàn)證-使用這一數(shù)學(xué)方法的逐步形成.

教學(xué)重點(diǎn): 公式的簡(jiǎn)單運(yùn)用

教學(xué)難點(diǎn): 公式的推導(dǎo)

教學(xué)方法: 學(xué)生探索歸納與教師講授結(jié)合

課前準(zhǔn)備:投影儀、幻燈片

平方差公式教案及板書設(shè)計(jì)篇十

一、說教材

本節(jié)課選自人教版八年級(jí)上冊(cè)第15章第二節(jié)內(nèi)容,它是在學(xué)生已經(jīng)掌握了多項(xiàng)式乘法之后,自然過渡到具有特殊形式的多項(xiàng)式的乘法,是從一般到特殊的認(rèn)知規(guī)律的典型范例。對(duì)它的學(xué)習(xí)和研究,不僅給出了特殊的多項(xiàng)式乘法的簡(jiǎn)便算法,而且為以后的因式分解、分式的化簡(jiǎn)等內(nèi)容奠定了基礎(chǔ),同時(shí)也為學(xué)習(xí)完全平方公式的學(xué)習(xí)提供了方法。因此,中公教育專家認(rèn)為,平方差公式作為初中階段的第一個(gè)公式,在教學(xué)中具有很重要地位。

二、說學(xué)情

學(xué)生已熟練掌握了冪的運(yùn)算和整式乘法,但在進(jìn)行多項(xiàng)式乘法運(yùn)算時(shí)常常會(huì)出現(xiàn)符號(hào)錯(cuò)誤及漏項(xiàng)等問題;另外,數(shù)學(xué)公式中字母具有高度概括性、廣泛應(yīng)用性,鑒于八年級(jí)學(xué)生的認(rèn)知水平,理解上有困難。因此,我們把教學(xué)難點(diǎn)定為:理解平方差公式的。結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。

三、說教學(xué)目標(biāo)

基于對(duì)教材的理解和分析,我在教學(xué)中以學(xué)生為主體,以學(xué)生的學(xué)為根本,我把本課的目標(biāo)定位為:

知識(shí)與技能目標(biāo):了解平方差公式產(chǎn)生的背景,理解平方差公式的意義,掌握平方差公式的結(jié)構(gòu)特征,并能靈活運(yùn)用平方差公式解決問題。

過程與方法目標(biāo):經(jīng)歷平方差公式產(chǎn)生的探究過程,培養(yǎng)觀察、猜想、歸納、概括、推理的能力和符號(hào)感,感受利用轉(zhuǎn)化、數(shù)形結(jié)合等數(shù)學(xué)思想方法解決實(shí)際問題的策略。

情感態(tài)度與價(jià)值觀目標(biāo):通過探究平方差公式,形成學(xué)習(xí)數(shù)學(xué)公式的一般套路,體會(huì)成功的喜悅,培養(yǎng)團(tuán)結(jié)協(xié)助的意識(shí),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣。

教學(xué)重點(diǎn):理解平方差公式的意義,掌握平方差公式的結(jié)構(gòu)特征。

教學(xué)難點(diǎn):運(yùn)用平方差公式解決問題。

四、說教法、學(xué)法

課堂是學(xué)生學(xué)習(xí)的主陣地,真正做到把課堂還給學(xué)生,因而我采取的的教學(xué)模式定為:三先兩主動(dòng),即讓學(xué)生先說話、先動(dòng)手、先總結(jié),讓學(xué)生主動(dòng)提問、主動(dòng)探索。學(xué)習(xí)方法:學(xué)生積極參與、大膽猜想、合作交流和自主探索。

五、說教學(xué)過程

(一)創(chuàng)設(shè)情景,引入新課

數(shù)學(xué)課標(biāo)強(qiáng)調(diào):“數(shù)學(xué)來源于實(shí)際生活”,為了體現(xiàn)這一思想,我設(shè)計(jì)了一個(gè)實(shí)際問題。這里只提供情境,刺激學(xué)生主動(dòng)提出問題,因?yàn)椤疤岢鰡栴}”比“解決問題”更重要。這個(gè)以生活實(shí)例創(chuàng)設(shè)的情境,不僅激發(fā)學(xué)生的求知興趣,又為平方差公式的引人服務(wù),更為說明平方差公式的幾何意義做好鋪墊。

(二)合作交流,探求新知

首先,我用情境中一道題目,并再安排了兩個(gè)練習(xí),通過對(duì)特殊的多項(xiàng)式與多項(xiàng)式相乘的計(jì)算,既復(fù)習(xí)了舊知,又為下面學(xué)習(xí)習(xí)近平方差公式作了鋪墊,讓學(xué)生感受從一般到特殊的認(rèn)識(shí)規(guī)律,引出乘法公式----平方差公式。

順勢(shì)鼓勵(lì)學(xué)生用自己的語(yǔ)言歸納表述,總結(jié)出公式,從而提高學(xué)生的語(yǔ)言組織與表達(dá)能力。

然后,教師通過分析公式的本質(zhì)特征使學(xué)生掌握公式,在認(rèn)清公式的結(jié)構(gòu)特征的基礎(chǔ)上,

進(jìn)一步剖析a、b的廣泛含義,抓住了概念的核心,使學(xué)生在公式的運(yùn)用中能得心應(yīng)手,起到事半功倍的效果。

最后,用學(xué)生最喜歡的拼圖游戲,引導(dǎo)學(xué)生從“形”的角度認(rèn)識(shí)平方差公式的幾何意義,再次驗(yàn)證了猜想。滲透了數(shù)形結(jié)合的思想,讓學(xué)生體會(huì)到代數(shù)與幾何的內(nèi)在聯(lián)系,引導(dǎo)學(xué)生學(xué)會(huì)從多角度、多方面來思考問題。

(三)鞏固深化,內(nèi)化新知

總結(jié)出平方差公式后,我先設(shè)計(jì)兩個(gè)簡(jiǎn)單練習(xí)題。通過練習(xí),使學(xué)生加深對(duì)平方差公式結(jié)構(gòu)特點(diǎn)的認(rèn)識(shí)和理解,進(jìn)一步掌握平方差公式的本質(zhì)特征和運(yùn)用平方差公式必須具備的條件。

然后設(shè)計(jì)了三個(gè)例題。例1和例2是教材上的內(nèi)容,例3是我設(shè)計(jì)的一道實(shí)際問題。

例1有兩道小題,其中設(shè)計(jì)第(1)題,然后學(xué)生完成。第(2)題學(xué)生板演,師生共同糾錯(cuò)。例2有兩道小題,先讓學(xué)生嘗試練習(xí),出錯(cuò)后教師及時(shí)糾正,使學(xué)生認(rèn)識(shí)深刻。第一題體現(xiàn)了轉(zhuǎn)化的思想和數(shù)式通性;另一題是平方差公式與一般多項(xiàng)式乘法的綜合,強(qiáng)調(diào)不能用公式的仍按多項(xiàng)式乘法法則進(jìn)行。

例3運(yùn)用平方差公式解決實(shí)際問題,體現(xiàn)了數(shù)學(xué)來源于生活,服務(wù)于生活,學(xué)生感受到學(xué)習(xí)數(shù)學(xué)的價(jià)值,設(shè)計(jì)此題與平方差公式的幾何意義相吻合,加深學(xué)生對(duì)平方差公式的理解。

(四)反饋練習(xí),鞏固新知

練習(xí)題的設(shè)計(jì)有梯度,從基礎(chǔ)應(yīng)用公式入手,到拓展提高。加強(qiáng)基本知識(shí)和基本技能訓(xùn)練,使不同水平的學(xué)生學(xué)習(xí)都有收獲,體現(xiàn)出“人人學(xué)有用的數(shù)學(xué)”。

在練習(xí)的基礎(chǔ)上,教師歸納總結(jié),提升學(xué)習(xí)理念。

(五)當(dāng)堂練習(xí)

這部分給出兩類練習(xí)題

設(shè)計(jì)意圖(第一類題是完全平方公式的直接應(yīng)用,通過實(shí)例,使學(xué)生進(jìn)一步體會(huì)到完全平方公式中字母a,b的含義是很廣泛的,它可以是數(shù),也可以是整式)(第二道題直接給出一些同學(xué)的錯(cuò)誤認(rèn)識(shí),強(qiáng)調(diào)錯(cuò)誤原因并引導(dǎo)學(xué)生走出誤區(qū))

(六)課堂小結(jié)

設(shè)計(jì)意圖:(讓學(xué)生回想本節(jié)課的主要內(nèi)容完全平方公式,教師再次強(qiáng)調(diào)并指出易錯(cuò)點(diǎn)和需注意的地方公式中項(xiàng)數(shù)、符號(hào)、字母及其指數(shù)。)

(七)布置作業(yè)

作業(yè)分必做題和選做題兩部分

設(shè)計(jì)意圖:(必做題鞏固本節(jié)課知識(shí),讓學(xué)生熟練應(yīng)用公式。選做題為下節(jié)課的學(xué)習(xí)做鋪墊,同時(shí)分層布置作業(yè)也滿足了不同層次學(xué)生的要求)

平方差公式教案及板書設(shè)計(jì)篇十一

本課的學(xué)習(xí)目的主要是熟練掌握整式的運(yùn)算,并且這些知識(shí)是以后學(xué)習(xí)分式、根式運(yùn)算以及函數(shù)等知識(shí)的基礎(chǔ),同時(shí)也是學(xué)習(xí)物理、化學(xué)等學(xué)科及其他科學(xué)技術(shù)不可或缺的數(shù)學(xué)工具。而本節(jié)是整式乘法中乘法公式的首要內(nèi)容,學(xué)生只有熟練掌握了包括平方差公式在內(nèi)的乘法公式及它的推導(dǎo)過程,才能實(shí)現(xiàn)本節(jié)乃至本章作為數(shù)學(xué)工具的重要作用。因此,在教學(xué)安排上,我選擇從學(xué)生熟悉的求多邊形面積入手,遵循從感性認(rèn)識(shí)上升為理性思維的認(rèn)知規(guī)律,得出抽象的。概念,并在多項(xiàng)式乘法的基礎(chǔ)上,再次推導(dǎo)公式,使原本枯燥的數(shù)學(xué)概念具有一定的實(shí)際意義和說理性;之后安排了一系列的例題和練習(xí)題,把新知運(yùn)用到實(shí)戰(zhàn)中去,解決簡(jiǎn)單的實(shí)際問題,這樣既調(diào)動(dòng)了學(xué)生學(xué)習(xí)的主動(dòng)性,又鍛煉了思維,整個(gè)過程由淺入深,在對(duì)所得結(jié)論不斷觀察、討論、分析中,加深對(duì)概念的理解,增強(qiáng)學(xué)生應(yīng)用知識(shí)解決問題的能力,從而達(dá)到較好的授課效果。

數(shù)學(xué)是一門抽象的學(xué)科,但數(shù)學(xué)是來源于實(shí)際生活的。因此,數(shù)學(xué)教育的目的是將數(shù)學(xué)運(yùn)用到實(shí)際生活中去,讓學(xué)生深切感受到數(shù)學(xué)是有價(jià)值的科學(xué),來源于生活,是其他科學(xué)的基礎(chǔ)。本節(jié)公式中字母的含義對(duì)學(xué)生來講很抽象,是本節(jié)的難點(diǎn),也是學(xué)生運(yùn)用公式解決實(shí)際問題的最大障礙,通過鞏固練習(xí),讓學(xué)生逐步體會(huì),為今后學(xué)習(xí)其他乘法公式做好準(zhǔn)備。乘法公式的逆用就是因式分解的重要方法,因此,在本節(jié)補(bǔ)充練習(xí)中,已經(jīng)開始滲透這部分知識(shí),為后面學(xué)習(xí)因式分解做好鋪墊。

但是,我在教本章內(nèi)容時(shí)卻始終感到困惑。本以為這一章很簡(jiǎn)單,由于教材安排存在一定問題,如將同底數(shù)冪乘法、冪的乘方、積的乘方、單項(xiàng)式乘以單項(xiàng)式、單項(xiàng)式乘以多項(xiàng)式、多項(xiàng)式乘以多項(xiàng)式這么多的內(nèi)容安排在一起,造成學(xué)生沒掌握好、消化好,知識(shí)間相互混淆,設(shè)置了障礙。所以很多學(xué)生出現(xiàn)下列錯(cuò)誤(3x?2)(3x?2)?3x象我們想象中掌握的那么好。

本章教材編者在此安排不太合理,沒有考慮到學(xué)生的認(rèn)知規(guī)律,不利于學(xué)生很好掌握,所以,我感覺以后上這章的時(shí)候不能按照教材課時(shí)安排走。否則還會(huì)出現(xiàn)今天的問題。

平方差公式教案及板書設(shè)計(jì)篇十二

1、使學(xué)生了解運(yùn)用公式法分解因式的意義;

2、使學(xué)生掌握用平方差公式分解因式

重點(diǎn):掌握運(yùn)用平方差公式分解因式。

難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式;

學(xué)習(xí)方法:歸納、概括、總結(jié)

創(chuàng)設(shè)問題情境,引入新課

在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成幾個(gè)因式乘積的形式。

如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來學(xué)習(xí)另外的一種因式分解的方法——公式法。

1、請(qǐng)看乘法公式

(a+b)(a-b)=a2-b2(1)

左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過來就是

a2-b2=(a+b)(a-b)(2)

利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式。

a2-b2=(a+b)(a-b)

2、公式講解

如x2-16

=(x)2-42

=(x+4)(x-4)。

9m2-4n2

=(3m)2-(2n)2

=(3m+2n)(3m-2n)

例1、把下列各式分解因式:

例2、把下列各式分解因式:

(1)9(m+n)2-(m-n)2;(2)2x3-8x.

補(bǔ)充例題:判斷下列分解因式是否正確。

(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)(a2-1)。

1、教科書習(xí)題

2、分解因式:x4-16x3-4x4x2-(y-z)2

3、若x2-y2=30,x-y=-5求x+y

平方差公式教案及板書設(shè)計(jì)篇十三

教學(xué)目標(biāo):

一、知識(shí)與技能

1、參與探索平方差公式的過程,發(fā)展學(xué)生的推理能力2、會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的`乘法運(yùn)算。

二、過程與方法

1、經(jīng)歷探索過程,學(xué)會(huì)歸納推導(dǎo)出某種特種特定類型乘法并用簡(jiǎn)單的

數(shù)學(xué)式子表達(dá)出,即給出公式。

2、在探索過程的教學(xué)中,培養(yǎng)學(xué)生觀察、歸納的能力,發(fā)展學(xué)生的符

號(hào)感和語(yǔ)言描述能力。

三、情感與態(tài)度

以探索、歸納公式和簡(jiǎn)單運(yùn)用公式這一數(shù)學(xué)情景,加深學(xué)生的體驗(yàn),增加學(xué)習(xí)數(shù)學(xué)和使用的信心。培養(yǎng)學(xué)生由觀察-發(fā)現(xiàn)-歸納-驗(yàn)證-使用這一數(shù)學(xué)方法的逐步形成.

教學(xué)重點(diǎn):公式的簡(jiǎn)單運(yùn)用

教學(xué)難點(diǎn):公式的推導(dǎo)

教學(xué)方法:學(xué)生探索歸納與教師講授結(jié)合

課前準(zhǔn)備:投影儀、幻燈片

平方差公式教案及板書設(shè)計(jì)篇十四

學(xué)習(xí)目標(biāo):

1、能推導(dǎo)平方差公式,并會(huì)用幾何圖形解釋公式;

2、能用平方差公式進(jìn)行熟練地計(jì)算;

3、經(jīng)歷探索平方差公式的推導(dǎo)過程,發(fā)展符號(hào)感,體會(huì)“特殊——一般——特殊”的認(rèn)識(shí)規(guī)律.

學(xué)習(xí)重難點(diǎn):

重點(diǎn):能用平方差公式進(jìn)行熟練地計(jì)算;

難點(diǎn):探索平方差公式,并用幾何圖形解釋公式.

學(xué)習(xí)過程:

一、自主探索

1、計(jì)算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)

(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)

2、觀察以上算式及其運(yùn)算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?再舉兩例驗(yàn)證你的發(fā)現(xiàn).

3、你能用自己的語(yǔ)言敘述你的發(fā)現(xiàn)嗎?

4、平方差公式的特征:

(1)、公式左邊的兩個(gè)因式都是二項(xiàng)式。必須是相同的兩數(shù)的和與差。或者說兩個(gè)二項(xiàng)式必須有一項(xiàng)完全相同,另一項(xiàng)只有符號(hào)不同。

(2)、公式中的a與b可以是數(shù),也可以換成一個(gè)代數(shù)式。

二、試一試

平方差公式教案及板書設(shè)計(jì)篇十五

一、教學(xué)目標(biāo):

1、使學(xué)生理解和掌握平方差公式,并會(huì)用公式進(jìn)行計(jì)算;

2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運(yùn)算能力,培養(yǎng)應(yīng)用數(shù)學(xué)的意識(shí);

在緊張而輕松地教學(xué)氛圍內(nèi),進(jìn)一步激發(fā)學(xué)生的學(xué)習(xí)興趣熱情。

3、二、重點(diǎn)、難點(diǎn):

重點(diǎn)是掌握公式的結(jié)構(gòu)特征及正確運(yùn)用公式。難點(diǎn)是公式推導(dǎo)的理解及字母的廣泛含義。

三、教學(xué)方法

以教師的精講、引導(dǎo)為主,輔以引導(dǎo)發(fā)現(xiàn)、合作交流。

四、教學(xué)過程

(一)創(chuàng)設(shè)問題情境,引入新課

1、你會(huì)做嗎?

(1)(x+1)(x-1)=_____=()()

(3)(3x+2)(3x-2)=_____=()()

2、能否用簡(jiǎn)便方法運(yùn)算:59.8×60.2(這里需要用到平方差公式,設(shè)疑激發(fā)學(xué)生興趣。)

(二)探索規(guī)律,歸納平方差公式

交流上面第1題的答案,引導(dǎo)學(xué)生進(jìn)一步思考:

(合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時(shí),積是二項(xiàng)式。這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了。而它們的積等于這兩個(gè)數(shù)的平方差。)

我們把(a+b)(a-b)=a-b叫做乘法的平方差公式。再遇到類似形式的多項(xiàng)式相乘時(shí),就可以直接運(yùn)用公式進(jìn)行計(jì)算。(在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式,并讓學(xué)生熟記。)

(三)嘗試探究

例1計(jì)算:

(1)(2x+y)(2x-y)

(2)(-5a+3b)(-5a-3b)

解:(2x+y)(2x-y)

解:(-5a+3b)(-5a-3b)

=(2x)-y=(-5a)-(3b)=4x-y=25a-3b

(教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說出本題中a,b分別表示什么。)

例2用平方差計(jì)算:

(1)99×101

(2)59.8×60.222

222

解:99×101

解:59.8×60.2=(100+1)(100-1)

=(60+0.2)(60-0.2)

=(100)-(1)

=(60)-(0.2)2

2=9999

=3599.96(教師引導(dǎo),學(xué)生發(fā)現(xiàn),運(yùn)用平方差公式進(jìn)行計(jì)算。)

(四)鞏固練習(xí)

1、運(yùn)用平方差公式計(jì)算:

(l)(x+a)(x-a)

(2)(m+n)(m-n)(3)(a+3b)(a-3b)

(4)(1-5y)(l+5y)(5)998×1002

(6)395×4052、直接寫出答案:

(l)(-a+b)(a+b)

(2)(a-b)(b+a)

(3)(-a-b)(-a+b)

(4)(a-b)(-a-b)(5)999×1001

(6)39.8×40.2(讓學(xué)生獨(dú)立完成,互評(píng)互改.)

(五)小結(jié)

1.什么是平方差公式?

2.運(yùn)用公式要注意什么?

(1)要符合公式特征才能運(yùn)用平方差公式;

(2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意分清a、b。

(學(xué)生回答,教師總結(jié))

(六)作業(yè)

p106習(xí)題1-5題

七、板書設(shè)計(jì):

《平方差公式》

平方差公式:(a+b)(a-b)=a-b例1計(jì)算:

(1)(2x+y)(2x-y)

(2)(-5a+3b)(-5a-3b)

解:(2x+y)(2x-y)

解:(-5a+3b)(-5a-3b)

=(2x)-y=(-5a)-(3b)=4x-y=25a-3b例2用平方差計(jì)算:

(1)99×101

(2)59.8×60.2

解:99×101

解:59.8×60.2=(100+1)(100-1)

=(60+0.2)(60-0.2)

=(100)-(1)

=(60)-(0.2)2

22222

=9999

=3599.96

教學(xué)反思

通過精心備課,本節(jié)課在教學(xué)中是比較成功的。成功之處在于整個(gè)教學(xué)流程環(huán)環(huán)相扣,層層遞進(jìn),抓住了學(xué)生思維這條主線,遵循由淺入深,由特殊到一般的認(rèn)知規(guī)律,引起學(xué)生的興趣。使他們能夠積極參與其中,同時(shí),使他們的思維得到了鍛煉和發(fā)展。不足之處:時(shí)間安排不是很合理,前松后緊。課堂上沒有給更多的學(xué)生提供展示自己思考結(jié)果的機(jī)會(huì),過于注重“收”,而“放”不夠。

平方差公式教案及板書設(shè)計(jì)篇十六

1會(huì)推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算.

2.經(jīng)歷探索平方差公式的過程,認(rèn)識(shí)“特殊”與“一般”的關(guān)系,了解“特殊到一般”的認(rèn)識(shí)規(guī)律和數(shù)學(xué)發(fā)現(xiàn)方法,平方差公式第一課時(shí)教學(xué)反思。

重點(diǎn):公式的理解與正確運(yùn)用(考點(diǎn):此公式很關(guān)鍵,一定要搞清楚特征,在以后的學(xué)習(xí)中還繼續(xù)應(yīng)用)

難點(diǎn):公式的理解與正確運(yùn)用

教法:自主探究和合作交流

(1)(x+2)(x-2)(2)(1+2y)(1-2y)(3)(x+3y)(x-3y)

=x2-22=12-(2y)2=x2-(3y)2

學(xué)生分組討論,交流,小組長(zhǎng)回答問題。

師生共同總結(jié)歸納:

平方差公式:(a+b)(a-b)=a2-b2

即兩數(shù)和與兩數(shù)差的積,等于它們的平方差。

平方差公式特征:

(1)一組完全相同的項(xiàng);

(2)一組互為相反數(shù)的項(xiàng)

2.例題

(1)(5+6x)(5-6x)(2)(-m+n)(-m-n)

3.公式應(yīng)用

(1)(a+2)(a-2)(2)(-x+2y)(-x-3y)

兩個(gè)學(xué)生板演,其余學(xué)生在練習(xí)本上自己獨(dú)立完成

老師巡視,輔導(dǎo)學(xué)困生。

1.計(jì)算(1)(a+1)(a-1)(a2+1)(2)(a+b)(a-b)(a2+b2)

師生共同分析:此題特征,兩次利用平方差公式,教學(xué)反思《平方差公式第一課時(shí)教學(xué)反思》。

學(xué)生在練習(xí)本上獨(dú)立完成,同桌互相檢查。

2.(ab)(-ab)=?能用平方差公式嗎?它的a和b分別是什么?

學(xué)生分組討論交流,獨(dú)立完成運(yùn)算。

1、(ab+8)(ab-8)2、(5m-n)(-5m-n)

3、(3x+4y-z)(3x-4y+z)4、(a+b)(a-b)(a2+b2)

1、什么是平方差公式?

2、運(yùn)用公式要注意的.問題:

(1)平方差公式運(yùn)用的條件是什么?

(2)公式中的a、b可以代表什么?

平方差公式(1)

一、檢測(cè)導(dǎo)入

二、例題展示

三、拓展延伸

四、達(dá)標(biāo)堂測(cè)

五、歸納小結(jié)

平方差公式:(a+b)(a-b)=a2-b2

即兩數(shù)和與兩數(shù)差的積,等于它們的平方差。

六、布置作業(yè)

p21:習(xí)題1.91、2

平方差公式教案及板書設(shè)計(jì)篇十七

1、使學(xué)生理解和掌握平方差公式,并會(huì)用公式進(jìn)行計(jì)算;

2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運(yùn)算能力。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):平方差公式的應(yīng)用。

難點(diǎn):用公式的結(jié)構(gòu)特征判斷題目能否使用公式。

教學(xué)過程設(shè)計(jì)

我們已經(jīng)學(xué)過了多項(xiàng)式的乘法,兩個(gè)二項(xiàng)式相乘,在合并同類項(xiàng)前應(yīng)該有幾項(xiàng)?合并同類項(xiàng)以后,積可能會(huì)是三項(xiàng)嗎?積可能是二項(xiàng)嗎?請(qǐng)舉出例子。

讓學(xué)生動(dòng)腦、動(dòng)筆進(jìn)行探討,并發(fā)表自己的見解。教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進(jìn)一步思考:

(當(dāng)乘式是兩個(gè)數(shù)之和以及這兩個(gè)數(shù)之差相乘時(shí),積是二項(xiàng)式。這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了。而它們的積等于乘式中這兩個(gè)數(shù)的平方差)

繼而指出,在多項(xiàng)式的乘法中,對(duì)于某些特殊形式的多項(xiàng)式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項(xiàng)式相乘時(shí)就可以直接運(yùn)用公式進(jìn)行計(jì)算。以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式。

在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式。

例1計(jì)算(1+2x)(1-2x)。

解:(1+2x)(1-2x)

=12-(2x)2

=1-4x2.

教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說出本題中a,b分別表示什么。

例2計(jì)算(b2+2a3)(2a3-b2)。

解:(b2+2a3)(2a3-b2)

=(2a3+b2)(2a3-b2)

=(2a3)2-(b2)2

=4a6-b4.

教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項(xiàng)交換位置,就可用平方差公式進(jìn)行計(jì)算。

課堂練習(xí)

運(yùn)用平方差公式計(jì)算:

(l)(x+a)(x-a);(2)(m+n)(m-n);

(3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。

例3計(jì)算(-4a-1)(-4a+1)。

讓學(xué)生在練習(xí)本上計(jì)算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個(gè)學(xué)生進(jìn)行板演。

解法1:(-4a-1)(-4a+1)

=[-(4a+l)][-(4a-l)]

=(4a+1)(4a-l)

=(4a)2-l2

=16a2-1.

解法2:(-4a-l)(-4a+l)

=(-4a)2-l

=16a2-1.

根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負(fù)號(hào)的辦法,使兩乘式首項(xiàng)都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫出結(jié)果。解法2把-4a看成一個(gè)數(shù),把1看成另一個(gè)數(shù),直接寫出(-4a)2-l2后得出結(jié)果。采用解法2的同學(xué)比較注意平方差公式的特征,能看到問題的本質(zhì),運(yùn)算簡(jiǎn)捷。因此,我們?cè)谟?jì)算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡(jiǎn)捷地得到答案。

課堂練習(xí)

1、口答下列各題:

(l)(-a+b)(a+b);(2)(a-b)(b+a);

(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。

2、計(jì)算下列各題:

(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);

教師巡視學(xué)生練習(xí)情況,請(qǐng)不同解法的學(xué)生,或發(fā)生錯(cuò)誤的學(xué)生板演,教師和學(xué)生一起分析解法。

1、什么是平方差公式?

2、運(yùn)用公式要注意什么?

(1)要符合公式特征才能運(yùn)用平方差公式;

(2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意變形。

1、運(yùn)用平方差公式計(jì)算:

(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);

(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);

【本文地址:http://mlvmservice.com/zuowen/5119990.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔