通過總結(jié),我們可以發(fā)現(xiàn)并挖掘工作中存在的問題,為以后的發(fā)展提供借鑒和啟示。如何克服困難和挫折是每個人都需要面對和應(yīng)對的挑戰(zhàn)。這是一份關(guān)于創(chuàng)意思維的資料匯總,希望對大家有所啟發(fā)。
找因數(shù)的教學(xué)設(shè)計篇一
《標準》指出“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者?!边@一理念要求我們教師的角色必須轉(zhuǎn)變。我想教師的作用必須體現(xiàn)在以下幾個方面。一是要引導(dǎo)學(xué)生思考和尋找眼前的問題與自己已有的知識體驗之間的關(guān)聯(lián);二是要提供把學(xué)生置于問題情景之中的機會;三是要營造一個激勵探索和理解的氣氛,為學(xué)生提供有啟發(fā)性的討論模式;四是要鼓勵學(xué)生表達,并且在加深理解的基礎(chǔ)上,對不同的答案開展討論;五是要引導(dǎo)學(xué)生分享彼此的思想和結(jié)果,并重新審視自己的想法。
對照《課標》的理念,我對《公因數(shù)與最大公因數(shù)》的教學(xué)作了一點嘗試。
一、引導(dǎo)學(xué)生思考和尋找眼前的問題與自己已有的知識體驗之間的關(guān)聯(lián)。
《公因數(shù)與最大公因數(shù)》是在《公倍數(shù)和最小公倍數(shù)》之后學(xué)習(xí)的一個內(nèi)容。如果我們對本課內(nèi)容作一分析的話,會發(fā)現(xiàn)這兩部分內(nèi)容無論是在教材的呈現(xiàn)程序還是在思考方法上都有其相似之處?;谶@一認識,在課的開始我作了如下的設(shè)計:
“今天我們學(xué)習(xí)公因數(shù)與最大公因數(shù)。對于今天學(xué)習(xí)的內(nèi)容你有什么猜測?”
學(xué)生已經(jīng)學(xué)過公倍數(shù)與最小公倍數(shù),這兩部分內(nèi)容有其相似之處,課始放手讓學(xué)生自由猜測,學(xué)生通過對已有認知的檢索,必定會催生出自己的一些想法,從課的實施情況來看,也取得了令人滿意的效果。什么是公因數(shù)和最大公因數(shù)?如何找公因數(shù)與最大公因數(shù)?為什么是最大公因數(shù)面不是最小公因數(shù)?這一些問題在學(xué)生的思考與思維的碰撞中得到了較好的生成。無疑這樣的設(shè)計貼近學(xué)生的最近發(fā)展區(qū),為課堂的有效性奠定了基礎(chǔ)。
二、提供把學(xué)生置于問題情景之中的機會,營造一個激勵探索和理解的氣氛
三、讓學(xué)生進行獨立思考和自主探索
通過學(xué)生的猜測,我把學(xué)生的提出的問題進行了整理:
(1)什么是公因數(shù)與最大公因數(shù)?
(2)怎樣找公因數(shù)與最大公因數(shù)?
(3)為什么是最大公因數(shù)而不是最小公因數(shù)?
(4)這一部分知識到底有什么作用?
我先讓學(xué)生獨立思考?然后組織交流,最后讓學(xué)生自學(xué)課本
這樣的設(shè)計對學(xué)生來說具有一定的挑戰(zhàn)性,在問題解決的過程中充分發(fā)揮了學(xué)生的主體性。在這一過程中學(xué)生形成了自己的理解,在與他人合作與交流中逐漸完善了自己的想法。我想這大概就是《標準》中倡導(dǎo)給學(xué)生提供探索與交流的時間和空間的應(yīng)有之意吧。
找因數(shù)的教學(xué)設(shè)計篇二
教學(xué)內(nèi)容:
第45—46頁。
教學(xué)目標:
1、經(jīng)歷找兩個數(shù)的公因數(shù)的過程,理解公因數(shù)和最大公因數(shù)的意義。2、探索找兩個數(shù)的公因數(shù)的方法,學(xué)會正確找出兩個數(shù)的公因數(shù)和最大的公因數(shù)。
3、使學(xué)生能探索出解決問題的有效方法。
教學(xué)重、難點:
探索找兩個數(shù)的公因數(shù)的方法。
教具準備:
實物投影儀等。
教學(xué)過程:
一、填一填。
1、呈現(xiàn)找公因數(shù)的一般方法:
(1)讓學(xué)生分別找出12和18的因數(shù),并交流找因數(shù)的方法。
引出公因數(shù)和最大公因數(shù)的概念。
(3)組織學(xué)生展開討論,再引導(dǎo)學(xué)生理解“兩個數(shù)公有的因數(shù)是它們的公因數(shù),其中最大的一個是它們的最大公因數(shù)”。
(4)小結(jié):找公因數(shù)的一般方法是先用想乘法算式的方式分別找出兩個數(shù)的因數(shù),再找出公有的因數(shù)和最大公因數(shù)。
2、引導(dǎo)學(xué)生討論其它的方法。
二、練一練。
1、第1、2題,通過這兩題的練習(xí),使學(xué)生進一步明確找兩個數(shù)的公因數(shù)的一般方法,并對找有特征的數(shù)字的最大公因數(shù)的特殊方法有所體驗。
2、第3題,學(xué)生獨立完成。
4、讓學(xué)生用自己的語言來表述自己的發(fā)現(xiàn)。
5、第5題,寫出下列各分數(shù)分子和分母的最大公因數(shù)?,F(xiàn)自己寫一寫,然后說一說自己是怎樣找公因數(shù)的。
三、數(shù)學(xué)探索。
1、寫出1、2、3、4、5、……、20等各數(shù)和4的最大公因數(shù)。
(1)先讓學(xué)生填表,找出這些數(shù)與4的最大公因數(shù)。
(2)再根據(jù)表格完成折線統(tǒng)計圖。
(3)組織學(xué)生觀察表格,討論“你發(fā)現(xiàn)了什么規(guī)律?”
2、找一找1、2、3、4、5、……、20等各數(shù)和10的最大公因數(shù),是否也有規(guī)律,與同學(xué)說一說你的發(fā)現(xiàn)。
四、總結(jié):
誰能說一說找公因數(shù)的一般方法是什么?
板書設(shè)計:
找最大公因數(shù)
12=×()=()×()=()×()
18=()×()=()×()=()×()
12的因數(shù):18的因數(shù):
找因數(shù)的教學(xué)設(shè)計篇三
本單元是在學(xué)生學(xué)過整數(shù)的認識、整數(shù)的四則計算、小數(shù)、分數(shù)的認識等知識的基礎(chǔ)上展開教學(xué)的。本單元的內(nèi)容主要包括因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)和合數(shù)等知識。通過這部分內(nèi)容的學(xué)習(xí),既可以讓學(xué)生在前面所學(xué)的整數(shù)知識基礎(chǔ)上進一步探索整數(shù)的性質(zhì),又有助于發(fā)展他們的抽象思維。這些知識的學(xué)習(xí)是以后學(xué)生學(xué)習(xí)公倍數(shù)與公因數(shù)、約分、通分、分數(shù)四則運算等知識的重要基礎(chǔ)。
學(xué)生已經(jīng)學(xué)過整數(shù)的認識、整數(shù)的四則計算、小數(shù)、分數(shù)的認識等知識,但本單元的知識屬于“數(shù)論”的初步知識,概念比較多,有些概念比較抽象,概念的前后聯(lián)系又很緊密,部分學(xué)生學(xué)習(xí)時可能會有一定的困難。教材明確規(guī)定在研究因數(shù)與倍數(shù)時,限制在不包括0的自然數(shù)范圍內(nèi)研究,避免由此帶來一些小學(xué)生尚不必研究的問題。教學(xué)時要注意以下兩點:
學(xué)情分析
1.利用乘法引導(dǎo)學(xué)生認識因數(shù)和倍數(shù)。教材在揭示倍數(shù)和因數(shù)的概念時,沒有像原來的教材那樣,先揭示整除的概念,再利用整除認識倍數(shù)和因數(shù),而是讓學(xué)生通過分類,用除法算式認識倍數(shù)和因數(shù)。在找一個數(shù)的倍數(shù)時,也是讓學(xué)生運用乘除法的知識,探索找一個數(shù)的倍數(shù)的方法。
2.注重引導(dǎo)學(xué)生在數(shù)學(xué)活動中探索數(shù)的特征。教材非常強調(diào)學(xué)生的數(shù)學(xué)學(xué)習(xí)活動,倡導(dǎo)多樣化的學(xué)習(xí)方式,組織學(xué)生在活動中探索、發(fā)現(xiàn)數(shù)的特征。如在探索2、5和3的倍數(shù)的特征時,都是先讓學(xué)生在100以內(nèi)數(shù)的表格中圈出2、5的倍數(shù),再通過分析歸納或猜想驗證等方法發(fā)現(xiàn)它們的倍數(shù)的特征。
教學(xué)目標
知識技能:
1.使學(xué)生掌握因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)等概念,知道相關(guān)概念之間的聯(lián)系和區(qū)別。
2.讓學(xué)生通過自主探索,掌握2、5、3的倍數(shù)的特征。
數(shù)學(xué)思考:逐步培養(yǎng)學(xué)生的數(shù)學(xué)抽象能力,以及滲透分類的思想。
問題解決:經(jīng)歷與他人合作交流解決問題的過程,嘗試解釋自己的思考過程。
情感態(tài)度:通過利用因數(shù)和倍數(shù)的相關(guān)知識來解決相應(yīng)的實際問題,使學(xué)生進一步體會數(shù)學(xué)的應(yīng)用價值。
課時劃分:8課時
1.因數(shù)和倍數(shù)……………………2課時
2.2、5、3的倍數(shù)的特征………2課時
3.質(zhì)數(shù)和合數(shù)……………………3課時
4.整理和復(fù)習(xí)……………………3課時
找因數(shù)的教學(xué)設(shè)計篇四
教材分兩段:
例1教學(xué)公倍數(shù)和最小公倍數(shù)的認識,例2教學(xué)求兩個自然數(shù)的公倍數(shù)和最小公倍數(shù);
例3教學(xué)公因數(shù)和最大公因數(shù)的認識,例4教學(xué)求兩個自然數(shù)的公因數(shù)和最大公因數(shù)。
安排了實踐與綜合應(yīng)用“數(shù)字與信息”。
1.借助操作活動,經(jīng)歷概念的形成過程。
以往教學(xué)公倍數(shù)的概念,通常是直接找出兩個自然數(shù)的倍數(shù),然后讓學(xué)生發(fā)現(xiàn)有的倍數(shù)是兩個數(shù)公有的,從而揭示公倍數(shù)和最小公倍數(shù)的概念。公因數(shù)和最大公因數(shù)的教學(xué)同樣如此。本單元教材注意以直觀的操作活動,讓學(xué)生經(jīng)歷公倍數(shù)和公因數(shù)概念的形成過程。
這樣安排有兩點好處:
一是學(xué)生通過操作活動,能體會公倍數(shù)和公因數(shù)的實際背景,加深對抽象概念的理解;
二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過操作和交流經(jīng)歷學(xué)習(xí)過程。
以公倍數(shù)為例,教學(xué)時應(yīng)讓學(xué)生經(jīng)歷下面幾個環(huán)節(jié):
第一,準備好必要的圖形。要為學(xué)生準備長3厘米、寬2厘米的長方形,邊長6厘米和8厘米的正方形,也要準備邊長為12、18、24厘米等不同的正方形。
第二,經(jīng)歷操作活動。讓學(xué)生按要求自主操作,發(fā)現(xiàn)用長3厘米、寬2厘米的長方形可以正好鋪滿邊長6厘米的正方形,而不能正好鋪滿邊長8厘米的正方形。在發(fā)現(xiàn)結(jié)果的同時,還應(yīng)引導(dǎo)學(xué)生聯(lián)系除法算式進行思考。這是對直觀操作活動的初步抽象。
第三,把初步發(fā)現(xiàn)的結(jié)論進行類推,先自己嘗試看還能鋪滿邊長是多少的正方形,再在小組里交流。不難發(fā)現(xiàn)能正好鋪滿邊長12厘米、18厘米、24厘米等的正方形;在此基礎(chǔ)上,還應(yīng)引導(dǎo)學(xué)生思考12、18、24等這些邊長和長方形的長、寬有什么關(guān)系。
第四,揭示公倍數(shù)和最小公倍數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。
第五,判斷8是不是2和3的公倍數(shù),讓學(xué)生通過反例進一步認識公倍數(shù)。理解概念的外延。在此基礎(chǔ)上,教材注意借助直觀的集合圖顯示公倍數(shù)的意義。公因數(shù)的教學(xué)同樣如此。
為了幫助學(xué)生加深對最小公倍數(shù)和最大公因數(shù)的理解,教材在練習(xí)中安排了一些實際問題。如第25頁第7題,先引導(dǎo)學(xué)生用列表的策略通過列舉找到答案,再引導(dǎo)學(xué)生聯(lián)系最小公倍數(shù)的知識解決問題。第8題也可用最小公倍數(shù)解決問題,但也允許學(xué)生用列表的策略列舉出答案。第29頁第10題讓學(xué)生先在圖中畫一畫找到答案,也可讓學(xué)生聯(lián)系最大公因數(shù)的知識解決問題。第11題為學(xué)生提供了彩帶圖,學(xué)生可以在圖中畫一畫,也可以直接用最大公因數(shù)的知識思考。
2.提倡思考方法多樣化,找公倍數(shù)和公因數(shù)。
課程標準只要求在1~100的自然數(shù)中,能找出10以內(nèi)兩個自然數(shù)的公倍數(shù)和最小公倍數(shù),二是只要求在1~100的自然數(shù)中,能找出兩個自然數(shù)的公因數(shù)和最大公因數(shù),而不是用分解質(zhì)因數(shù)的方法求出公倍數(shù)或公因數(shù)。
不教學(xué)用分解質(zhì)因數(shù)的方法求最小公倍數(shù)和最大公因數(shù)還有兩個原因:
二是學(xué)生對用短除的形式求最大公因數(shù)和最小公倍數(shù)的算理理解有困難,減輕學(xué)生的學(xué)習(xí)負擔(dān)。在教學(xué)找公倍數(shù)或公因數(shù)時,應(yīng)提倡思考方法多樣化。以求8和12的公因數(shù)為例,學(xué)生可能會分別寫出8和12的所有因數(shù),再找一找;也可能先找出8的因數(shù),再從8的因數(shù)中找出12的因數(shù),或著先找出12的因數(shù),再從中找出8的因數(shù)。
在找出公倍數(shù)或公因數(shù)之后,還應(yīng)引導(dǎo)學(xué)生用集合圖表示出來。要讓學(xué)生經(jīng)歷填集合圖的過程,明確集合圖中每一部分的數(shù)表示的意義,體會初步的集合思想。
對于兩個數(shù)有特殊關(guān)系時的最小公倍數(shù)和最大公因數(shù),教材在練習(xí)中安排,引導(dǎo)學(xué)生探索簡單的規(guī)律。由于教材不講互質(zhì)數(shù),所以兩個互質(zhì)數(shù)的最小公倍數(shù)是它們的乘積,最大公因數(shù)是1這樣的結(jié)論不要出現(xiàn),只要求學(xué)生在具體的對象中感受。
為了拓寬學(xué)生對求最小公倍數(shù)和最大公因數(shù)方法的認識,教材在“你知道嗎”欄目里介紹了“輾轉(zhuǎn)相除法”求最大公因數(shù)和用短除法求最大公因數(shù)和最小公倍數(shù),并介紹了兩個數(shù)的最大公因數(shù)和最小公倍數(shù)的符號表示。教學(xué)時,可以讓學(xué)生結(jié)合閱讀進行思考。必要時,教師可以進行簡單的講解。
3.通過調(diào)查、交流和嘗試,感受數(shù)在表達信息中的作用。
教學(xué)“數(shù)字與信息”這一實踐與綜合應(yīng)用時,應(yīng)注意引導(dǎo)學(xué)生通過調(diào)查和交流參與活動,感受數(shù)字在表達信息中的作用。
課前調(diào)查的內(nèi)容有:
(1)110、112、114、120等特殊電話號碼是什么號碼;
(2)自己所在學(xué)校和家庭居住地的郵政編碼;
(3)自己家庭成員的出生日期和身份證號碼;
(4)生活中用常見的數(shù)字編碼表達信息的例子;
(5)自己學(xué)籍卡上的學(xué)籍號。課后調(diào)查的內(nèi)容有:
(1)去郵局調(diào)查有關(guān)郵政編碼的其他信息;
(2)生活中還有哪些常見的數(shù)字編碼。教學(xué)時,應(yīng)引導(dǎo)學(xué)生充分開展交流活動:比如,為什么有些編號的開頭是0?怎樣從身份證中看出一個人出生的日期?身份證上的數(shù)字編碼有哪些用處?等等。
在此基礎(chǔ)上,教材在“做一做”中讓學(xué)生結(jié)合實際問題,嘗試用數(shù)字編碼表達信息。比如,為某賓館的兩幢客房大樓的房間編號,為一年級新生編號,還安排了與方位和距離聯(lián)系的問題,用編碼表示家大約在學(xué)校的什么位置。
教學(xué)時,可以根據(jù)需要和時間情況,靈活安排教學(xué)時間。
找因數(shù)的教學(xué)設(shè)計篇五
教學(xué) 例3時先用邊長6厘米和4厘米的正方形紙片,分別鋪長18厘米、寬12厘米的長方形,教師選擇正方形紙片鋪長方形的活動教學(xué)公因數(shù),是因為這一活動能吸引學(xué)生發(fā)現(xiàn)和提出問題,能引導(dǎo)學(xué)生思考。學(xué)生用同兩張正方形紙片分別鋪一個不同的長方形,面對出現(xiàn)的兩種結(jié)果,會發(fā)現(xiàn)“為什么有時正好鋪滿、有時不能”,“什么時候正好鋪滿、什么時候不能”這些有研究價值的問題。他們沿著長方形的邊鋪正方形紙片,就會想到正好鋪滿與不能正好鋪滿的原因可能和邊長有關(guān),于是產(chǎn)生進一步研究長方形邊長和正方形邊長關(guān)系的愿望。分析長方形的長、寬和正方形邊長之間的關(guān)系,按學(xué)生的認知規(guī)律,設(shè)計成兩個層次: 第一個層次聯(lián)系鋪的過程與結(jié)果,從長方形的長、寬除以正方形的邊長沒有余數(shù)和有余數(shù)的層面上,體會正好鋪滿與不能正好鋪滿的原因。第二個層次根據(jù)邊長6厘米的正方形正好鋪滿長18厘米、寬12厘米的長方形、而邊長4厘米的正方形不能正好鋪滿長18厘米、寬12厘米的長方形的經(jīng)驗,聯(lián)想邊長幾厘米的正方形還能正好鋪滿長18厘米、寬12厘米的長方形。先找到這些正方形,把它們邊長從小到大排列,知道這樣的正方形的個數(shù)是有限的。再用“既是12的因數(shù),又是18的因數(shù)”概括地描述這些正方形邊長的特征。顯然,前一層次形象思維的成分較大,思考難度較小,對后一層次的抽象認識有重要的支持作用。
評析:突出概念的內(nèi)涵、外延,讓學(xué)生準確理解概念。
由于知識的遷移,學(xué)生很容易想到用集合圖直觀形象地顯示公因數(shù)的含義。第27頁把8的因數(shù)和12的因數(shù)分別寫到兩個集合圈里,這兩個集合圈有一部分重疊,在重疊部分里寫的數(shù)既是8的因數(shù),也是12的因數(shù),是8和12的公因數(shù)。先觀察這個集合圖,再填寫第28頁的集合圖,學(xué)生能進一步體會公因數(shù)的含義。概念的外延是指這個概念包括的一切對象。
運用數(shù)學(xué)概念,讓學(xué)生探索找兩個數(shù)的最大公因數(shù)的方法。
例4教學(xué)求兩個數(shù)的最大公因數(shù),出現(xiàn)了兩種解決問題的方法。學(xué)生有的先分別寫出8和12的因數(shù),再找出它們的公因數(shù)和最大公因數(shù)。有的在8的因數(shù)里找12的因數(shù),這樣操作比較方便,但容易遺漏。我有意引導(dǎo)學(xué)生選擇第一種。練習(xí)五的第3題就是這種方法的應(yīng)用。
充分利用教育資源,自制課件,協(xié)助教學(xué)。
限于操作的局部性,我認真制作了實用的課件,讓直觀、清晰的頁面直接輔助我教學(xué),學(xué)生表現(xiàn)積極,課堂氣氛比較活躍,提問、釋疑、解惑,練習(xí)的熱情很高。
本課設(shè)計目的是使學(xué)生學(xué)習(xí)公因數(shù)、最大公因數(shù)的意義,并學(xué)會找兩個數(shù)的最大公因數(shù)的方法,從整節(jié)課學(xué)生表現(xiàn)情況和課后作業(yè)反饋來看,學(xué)生對本部分知識知識掌握較好,學(xué)習(xí)積極并具有熱情,就實效性講很令人滿意。
找因數(shù)的教學(xué)設(shè)計篇六
教學(xué)內(nèi)容:
教學(xué)目標:
1、使學(xué)生在具體的操作活動中,認識公因數(shù)和最大公因數(shù),會在集合圖中分別表示兩個數(shù)的因數(shù)和它們的公因數(shù)。
2、使學(xué)生學(xué)會用列舉的方法找到100以內(nèi)兩個數(shù)的公因數(shù)和最大公因數(shù),并能在解決問題的過程中進行有條理的思考。
3、使學(xué)生在自主探索與合作交流的過程中,進一步發(fā)展與同伴進行合作交流的意識和能力,獲得成功的體驗。
教學(xué)重點:
找因數(shù)的教學(xué)設(shè)計篇七
教學(xué)內(nèi)容:青島版教材小學(xué)數(shù)學(xué)五年級上冊88—91頁。
教學(xué)目標:
1、使學(xué)生初步認識因數(shù)和倍數(shù)的含義,探索求一個數(shù)的因數(shù)或倍數(shù)的方法,發(fā)現(xiàn)一個數(shù)的因數(shù)、倍數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征。
2、使學(xué)生在認識因數(shù)和倍數(shù)以及探索一個數(shù)的因數(shù)或倍數(shù)的過程中,進一步體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平,對數(shù)學(xué)產(chǎn)生好奇心,培養(yǎng)學(xué)習(xí)興趣。
教學(xué)重點:理解因數(shù)和倍數(shù)的意義,探索求一個數(shù)因數(shù)或倍數(shù)的方法。
教學(xué)難點:探索求一個數(shù)因數(shù)或倍數(shù)的方法。
教具準備:多媒體課件、學(xué)生練習(xí)題
教學(xué)過程:
一、談話導(dǎo)入。
師:同學(xué)們看這是什么?
生:小正方形。
師:想不想知道王老師給大家?guī)砹硕嗌賯€這樣的小正方形?
生:想。
師:多少個?
生:12個。
師:想一想你能不能把這12個完全一樣的小正方形拼成一個長方形呢?
生:能。
找因數(shù)的教學(xué)設(shè)計篇八
一、教學(xué)目標:
1、 結(jié)合具體的生活情景理解公因數(shù)和最大公因數(shù)的含義,并能正確地求出兩個數(shù)的公因數(shù)和最大公因數(shù)。
2、 經(jīng)歷用多樣化的方法找公因數(shù)的過程,提高解決問題的靈活性。
3、 能根據(jù)兩個數(shù)的不同關(guān)系靈活的求兩個數(shù)的最大公因數(shù)。
二、教學(xué)重點:掌握求公因數(shù)的方法
教學(xué)難點:結(jié)合實際理解公因數(shù)的含義。
四、教學(xué)過程:
(一)、復(fù)習(xí)引入
1、說說30的因數(shù),是怎么求的
(二)、深入理解公因數(shù)的含義
可以選邊長是多少的正方形呢? 怎么鋪? 課件演示
2、還有哪些正方形呢? 我們來動手找一找吧
方老師給每個組準備了兩個長18厘米,寬12厘米的長方形代表儲藏室,同學(xué)們也準備了大小不同的正方形代表瓷磚,你可以用它鋪一鋪,也可以想其他的辦法。
學(xué)生動手實踐,然后交流
3、反饋 你們找出的結(jié)果是什么
邊長時1分米,2分米,3分米。6分米的正方形可以剛好鋪滿.課件演示
邊長是4分米的正方形可以密鋪嗎?為什么?
4、 所以你認為正方形的邊長與長方形的長、寬有什么關(guān)系?
正方形的邊長既是長的因數(shù),又是寬的因數(shù),是長和寬的公因數(shù)
5、我們經(jīng)過尋找發(fā)現(xiàn)18和12的公因數(shù)有哪些?
6、如果要使鋪的塊數(shù)最少,應(yīng)選哪一種?它是12和18的最大公因數(shù)
7、如果用幾何圈表示,你會嗎?
12的因數(shù) 18的因數(shù)
12和18的公因數(shù)
(三)、找兩個數(shù)的公因數(shù)和最大公因數(shù)
1、現(xiàn)在換成27和18,你能找出它們的公因數(shù)和最大公因數(shù)嗎?請試一試。先獨立找,在到小組里進行交流。
2、反饋。先分別羅列出兩個數(shù)的因數(shù),在找共同的的因數(shù)
先列出一個數(shù)的因數(shù),在從這個數(shù)的因數(shù)中找另一個數(shù)的因數(shù)。
3、你覺得哪種方法比較簡便?
4、觀察一下,它們的公因數(shù)和最大公因數(shù)之間有什么關(guān)系?
(四)、練習(xí)
1、填一填
(1)、8和16的公因數(shù) ,最大公因數(shù)是
(2)、15和50的最大公因數(shù)是
(3)、5和7的最大公因數(shù)
做完后小結(jié)和揭題
2、介紹用分解質(zhì)因數(shù)和短除法的方法求最大公因數(shù)
3、找出下列各數(shù)的公因數(shù)和最大公因數(shù)
4和8 16和32 1和7 8和9
你有什么發(fā)現(xiàn)?
4、做練習(xí)十五第4題和第8題
一、教學(xué)設(shè)計意圖
公因數(shù)和最大公因數(shù)是本冊教材的重要教學(xué)內(nèi)容,學(xué)生的認知起點是對因數(shù)和倍數(shù)的認識,并學(xué)會找一個數(shù)的因數(shù)和倍數(shù),為后續(xù)的通分和異分母分數(shù)加減法做基礎(chǔ)。相對來說用羅列的方法來找公因數(shù)和最大公因數(shù)從學(xué)習(xí)技能上說比較簡單,對學(xué)生來說難度不大,所以整節(jié)課的難點在于理解公因數(shù)和最大公因數(shù)的意義,特別是結(jié)合實際理解意義,很多學(xué)生單純的找兩個數(shù)的公因數(shù)和最大公因數(shù)沒有問題,可是結(jié)合實際去求,或者根據(jù)分解質(zhì)因數(shù)來求學(xué)生難度就有一定的難度,很多程度上是屬于機械的技能訓(xùn)練,熟能生巧,從學(xué)生的思維上看發(fā)展是不利的。短除法和用分解質(zhì)因數(shù)求公因數(shù)和最大公因數(shù)的方法作為介紹來出現(xiàn)。新課程在這節(jié)課的處理上與舊教材有很大的不同,其一是意義和求法在一節(jié)課完成,其二是降低了難度,教材只要求用羅列的方法來求公因數(shù)和最大公因數(shù),分解質(zhì)因數(shù)法作為一種方法進行介紹,如何在降低技能要求的前提下提高學(xué)生的思維水平是我在備課是思考的。所以整節(jié)課的教學(xué)設(shè)計我主要體現(xiàn)兩點思路。一是從生活實際出發(fā)理解公因數(shù)和最大公因數(shù)的意義,并在此基礎(chǔ)上通過實踐活動或自己的認識基礎(chǔ)探討求出公因數(shù)和最大公因數(shù)的方法;二是重點定位在通過不同羅列方法尋找公因數(shù)和最大公因數(shù),在此基礎(chǔ)上介紹短除法和分解質(zhì)因數(shù)法,培養(yǎng)學(xué)生思維的靈活性。
2、教學(xué)節(jié)奏快,教學(xué)容量大,比較扎實
3、學(xué)生學(xué)習(xí)習(xí)慣好
4、教學(xué)中的閃光點可以放得更大,給學(xué)生提供思維的空間,教師不要過快作評價,抓住課堂生成,讓大家辯一辯,理解更深刻一點。
主要問題環(huán)節(jié):3、找出下列各數(shù)的公因數(shù)和最大公因數(shù)
4和8 16和32 1和7 8和9
你有什么發(fā)現(xiàn)?
當學(xué)生說兩數(shù)一奇一偶,那么這兩數(shù)的公因數(shù)就是1時,老師沒有給學(xué)生思考、辯論的空間,馬上舉了一個反例6和9進行反駁,對大部分學(xué)生來說理解是不透徹的,而且這也是學(xué)生的一個共性問題。
5、 還可以更大氣一點,給學(xué)生思考的空間更大一點。主要例題環(huán)節(jié),兩個問題可以一起放下去:“可以剪成邊長是多少分米的正方形?你是怎么想的?”動手操作的環(huán)節(jié)可以取消,讓學(xué)生通過想象、思維分析來解決,課前的學(xué)號游戲也可以取消。 步子可以放得大一點。
三、課后反思:
宋老師的評課讓我有柳暗花明更一村的感覺。要想班中的尖子生能跳出來,給孩子提供充分的思維空間非常重要,不要用教學(xué)上的小步子來限制學(xué)生的思維,對學(xué)生的錯誤要勇敢對待。給孩子充分的反思和辯論的空間,讓孩子越變越明,讓孩子評價在前,老師評價在后。
可以修改的環(huán)節(jié):1、課前通過學(xué)號感知環(huán)節(jié)刪去,和后面的例題有一定的 重復(fù)。
2、例題環(huán)節(jié)兩個問題可以一起問,給孩子更大的思考空間。學(xué)習(xí)的過程是一個悟的過程,可以選擇邊長是幾的正方形的呢?你是怎樣想的?學(xué)生在得到結(jié)論的過程中,其思考的過程的就是對意義的感悟的過程,孩子能通過自己的思考方式得出結(jié)論,也就找到了求公因數(shù)和最大公因數(shù)的方法,那么下一個環(huán)節(jié)讓學(xué)生直接求兩個數(shù)的公因數(shù)和最大公因數(shù)也就沒有難度了,而且學(xué)生中也能出項用不同的方法來求,方法不會那么單一。當然完全屏棄動手操作我還有我的想法,可以分不同的層次采取不同的方法,“可以選擇邊長是多少分米的正方形呢?你可以利用手中的學(xué)習(xí)工具解決這個問題,再想想找出來的邊長和長方形的長和寬有什么關(guān)系。也可以不用學(xué)習(xí)工具,請說說你是怎么想的?”這樣不同層度的孩子提供不同的學(xué)習(xí)方式,成一個互相補充、驗證的過程。
找因數(shù)的教學(xué)設(shè)計篇九
教學(xué)過程:
一,創(chuàng)設(shè)情境,明確相互依存的關(guān)系。
師:同學(xué)們,我們?nèi)伺c人之間存在著各種關(guān)系,比如說(指某位同學(xué))他同他的爸爸是什么關(guān)系呢?(父子關(guān)系)老師和你們是——師生關(guān)系。
師:“老師是師生關(guān)系”可以這樣說嗎?為什么?
生:師生關(guān)系是指老師和學(xué)生之間的相互關(guān)系,不能單獨說。
師:是呀,人與人之間的關(guān)系是相互的,在數(shù)學(xué)王國里,也有一些存在著相互依存關(guān)系的數(shù),這節(jié)課我們就來學(xué)習(xí)。
二、動手操作,感受并認識因數(shù)和倍數(shù)
(一)、新課引入:
1、師:同學(xué)們的桌上都放著12個同樣大的正方形,請你用這12個正方形拼成一個長方形,注意每排擺幾個?擺了幾排?用乘法算式表示你的擺法.
2、進行交流:
師:誰愿意把自己擺長方形的方法和列出的算式講給大家聽?
師:還有其它擺法嗎?
還有不同的乘法算式嗎?猜一猜,他是怎樣擺的?
學(xué)生交流幾種不同的擺法。隨著學(xué)生交流屏幕上一一演示。
師:12個同樣大小的正方形能擺出不同的的長方形,可以用乘法算式來表示,千萬別小看這些算式,這節(jié)課我們就從這些算式中學(xué)習(xí)兩個重要的數(shù)學(xué)概念”因數(shù)和倍數(shù)”。(板書課題)
師:我們以一道乘法算式為例。(屏幕出示)
4×3=12,
師:在這個算式中,4、3、12有什么關(guān)系呢?
我們一起來讀一讀:
因為:4×3=12,
所以:4是12的因數(shù),3也是12的因數(shù)。
12是4的倍數(shù),12也是3的倍數(shù)。
師:讀讀看,能讀懂嗎?說一說讀后你想到了什么?
生:乘法算式中,兩個數(shù)存在因數(shù)和倍數(shù)的關(guān)系。
師:他的說法正確嗎?我們來繼續(xù)讀。
出示:因為:6×2=12 ,所以——
2和6是12的因數(shù),12是2和6的倍數(shù).
因為:1×12=12 ,所以——
生: 1和12是12的因數(shù),12是1和12的倍數(shù).
師:請把書打到12頁,齊讀最后自然段的注意。
生:注意,為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)指的是的整數(shù)(一般不包括0)。
師:現(xiàn)在你們能把存在因數(shù)和倍數(shù)關(guān)系的條件說得更準確些嗎?
生:在非0的整數(shù)乘法算式中,兩個數(shù)之間存在因數(shù)和倍數(shù)關(guān)系。
師:誰也來出個乘法算式說一說。(略)
課件出示:32÷4=8,你能從這個算式中找到因數(shù)和倍數(shù)嗎?
師:我們不僅可以根據(jù)乘法算式找因數(shù)和倍數(shù),也可以根據(jù)除法算式找因數(shù)和倍數(shù)。 二、創(chuàng)設(shè)情境,自主探究找因數(shù)和倍數(shù)的方法.
1、師:我們剛才初步認識了因數(shù)和倍數(shù),明白了因數(shù)和倍數(shù)都表示幾個數(shù)之間的關(guān)系?(兩個)。所以,不能單說哪個數(shù)是倍數(shù),哪個數(shù)是因數(shù)。下面我們進一步來研究因數(shù)和倍數(shù)。
屏幕顯示:
試一試:你能從中選兩個數(shù),說一說誰是誰的因數(shù)? 誰是誰的倍數(shù)?
2、3、5、9、18、20
生:2、3、9、18都是18的因數(shù)。
師:18的因數(shù)只有這4個嗎?
師:看來要找出18的一個因數(shù)并不難,難就難在你能不能把18的所有因數(shù)既不重復(fù)又不遺漏地全部找出來。請你選擇你喜歡的方式,可以同桌合作,小組合作,也可以獨立完成,找出18的所有因數(shù)。如果能把怎么找到的方法寫在紙上就更好了。
生:寫后小組內(nèi)交流。
學(xué)生填寫時師巡視搜集作業(yè)。
2、交流作業(yè)。(略)
投影儀出示學(xué)生的不同作業(yè)。交流找因數(shù)的方法。
師:出示18的因數(shù)有:1、18;2、9;3、6;
你知道這個同學(xué)是怎樣找出18的因數(shù)的嗎?看著這個答案你能猜出一點嗎?
生:他是有規(guī)律,一對一對找的,哪兩個整數(shù)相乘得18,就寫上。
師:他是用乘法找的,其他同學(xué)還有補充嗎?找到什么時候為止?
生:可以用除法找。用18除以1得18,18和1就是18的因數(shù)。再用18除以2……
師:用乘法和除法找都可以,你們認為用什么方法更容易呢?
生:乘法。
板書:18的因數(shù)有:1、2、3、6、9、18。
師:18的因數(shù)也可以這樣表示。(課件出示集合圈圖)
組織交流:
通過剛才的交流,找一個數(shù)的因數(shù)有辦法了嗎?有沒有方法不重復(fù)也不遺漏?
突出要點:有序(從小往大寫),一對對找(哪兩個整數(shù)相乘得這個數(shù)),再按從小到大的順序?qū)懗鰜怼?/p>
用我們找到的方法,試一個。
課件出示:
填空:
24=1×24=2×( )=( ) ×( )=( ) ×( )
24的因數(shù)有:_______________
再試一個:16的因數(shù)有
師:一個數(shù)的因數(shù),我們都是一對一對地找的,為什么16的因數(shù)只有5個呢?
生:因為4×4=16,只寫一個4就可以了。
師:觀察18、16的所有因數(shù),你有什么發(fā)現(xiàn)嗎?可以從因數(shù)的個數(shù),最小的因數(shù)和最大的因數(shù)三個方面觀察。
生:18的因數(shù)有6個,最小的是1,最大的是18.
16的因數(shù)有5個,最小的是1,最大的是16.
師:誰能把同學(xué)們的發(fā)現(xiàn),用數(shù)學(xué)語言概括起來。先說給小組同學(xué)聽。
邊交流邊板書:
個數(shù) 最小 最大
因數(shù) 有限 1 它本身
倍數(shù)
找因數(shù)的教學(xué)設(shè)計篇十
1 讓學(xué)生理解倍數(shù)和因數(shù)的意義,掌握找一個非零自然數(shù)的倍數(shù)與因數(shù)的方法,發(fā)現(xiàn)一個非零自然數(shù)的倍數(shù)和因數(shù)中最大的數(shù)、最小的數(shù)以及一個非零自然數(shù)的倍數(shù)與因數(shù)個數(shù)的特征。
2 讓學(xué)生初步意識到可以從一個新的角度,即倍數(shù)和因數(shù)的角度來研究非零自然數(shù)的特征及其相互關(guān)系,培養(yǎng)學(xué)生觀察、分析與抽象概括的能力,體會數(shù)學(xué)學(xué)習(xí)的奇妙,對數(shù)學(xué)產(chǎn)生好奇心。
教學(xué)重點:理解倍數(shù)和因數(shù)的意義。
教學(xué)難點:從倍數(shù)和因數(shù)的意義出發(fā),尋找一個非零自然數(shù)的倍數(shù)與因數(shù)。
一、直接導(dǎo)入
師:自然數(shù)是我們在數(shù)的王國中認識的第一種數(shù),今天我們將從一個特定的角度,即倍數(shù)和因數(shù)的角度來研究自然數(shù)的特征及其相互關(guān)系。(板書課題:倍數(shù)和因數(shù))
二、教學(xué)倍數(shù)和因數(shù)的意義
(屏幕出示12個完全相同的正方形)
生:我可以拼出一個3×4的長方形。
師:你們猜猜看,這會是一個什么樣的長方形?
生:每排擺3個正方形,擺4排;或每排擺4個正方形,擺3排。(課件演示學(xué)生所猜的長方形,并讓學(xué)生明白這兩種拼法其實是相同的)
生:我還可以拼出一個2×6的長方形。
生:我還可以拼出一個1×12的長方形。(師問法同上,略)
師:同學(xué)們可別小看這三道算式,今天我們學(xué)習(xí)的內(nèi)容,就將從研究這三道乘法算式拉開帷幕。
師:根據(jù)3×4=12,我們可以說(屏幕出示):12是3的倍數(shù),12也是4的倍數(shù);3是12的因數(shù),4也是12的因數(shù)。
師:同學(xué)們一起來讀一讀,感受一下。
師:你讀懂了些什么?(引導(dǎo)學(xué)生感知什么是倍數(shù)、什么是因數(shù),即倍數(shù)和因數(shù)的意義;明白在乘法算式中,積就是兩個乘數(shù)的倍數(shù),兩個乘數(shù)就是積的因數(shù))
師:請你從6×2=12和12×1=12這兩道算式中任選一題,用上面的話說一說。
師(出示18÷3=6):誰是誰的倍數(shù)?誰是誰的因數(shù)?為什么?
生:因為18/3=6可以改寫成3×6=18,所以18是3和6的倍數(shù),3和6是18的因數(shù)。(引導(dǎo)學(xué)生明白根據(jù)乘除法的互逆關(guān)系,在除法算式中也可以說誰是誰的倍數(shù)、誰是誰的因數(shù))
屏幕出示:4是因數(shù),24是倍數(shù)。
師:這句話對嗎?(讓學(xué)生理解倍數(shù)和因數(shù)是兩個數(shù)之間的相互依存關(guān)系,必須說誰是誰的倍數(shù)、誰是誰的因數(shù))
師:我們再看屏幕上這三道乘法算式(1×12=12、2×6=12、3×4=12),善于觀察的同學(xué)一定發(fā)現(xiàn)在這三道乘法算式中。我們其實已經(jīng)找到了12的所有因數(shù),你知道都有哪些嗎?(引導(dǎo)學(xué)生說一說)
屏幕出示一組數(shù):36、4、9、0、5、2。
師:請你從這組數(shù)中任選兩個數(shù),用倍數(shù)和因數(shù)的關(guān)系來說一說。(生可能會選36和4、36和9、4和2這幾組數(shù))
設(shè)疑:
(1)為什么不選0呢?(讓學(xué)生理解倍數(shù)和因數(shù)是針對非零的自然數(shù))(屏幕演示將“0”去掉)
(2)為什么不選5呢?(例如36和5,因為找不到一個自然數(shù)和5相乘能得到36,或者36除以5有余數(shù))(屏幕演示將“5”去掉)
(3)去掉了0和5,剩下的這些數(shù)和36有什么關(guān)系呢?(它們都是36的因數(shù),或36是它們的倍數(shù);當然,36也是36的因數(shù),36也是36的倍數(shù))
三、探討找一個數(shù)的因數(shù)的方法
生:容易漏掉或重復(fù)。
師:你們有沒有什么好辦法,能一個不落地將36的所有因數(shù)都找到呢?同學(xué)們可以獨立完成這個任務(wù),也可以同桌的兩位同學(xué)合作完成。如果你全部找到了,就請將36的所有因數(shù)寫在練習(xí)紙上。同時將你找因數(shù)的方法寫在橫線的下方。(教師巡視,學(xué)生討論交流)
展示學(xué)生的作品,學(xué)生可能出現(xiàn)的答案有:
(2)利用36÷1=36,36÷2=18……也可以得出1、36、2、18、3、12、4、9、6等數(shù)都是36的因數(shù)。
在寫法上,可能出現(xiàn)的答案為1、36、2、18、3、12、4、9、6(一對一對地寫),或按照從小到大的順序?qū)?,?、2、3、4、6、9、12、18、36。然后引導(dǎo)學(xué)生比較這兩種寫法的不同。將方法優(yōu)化:運用除法算式一對一對地找一個數(shù)的因數(shù)更為簡便,并且不重復(fù)、不遺漏,做到答案的完整性;在寫的時候,可以一頭一尾地寫,這樣可以做到答案的有序性。(板書:有序、完整)
2 探討一個數(shù)的因數(shù)的特征。
課件出示12的因數(shù)、15的因數(shù)和36的因數(shù)。(從小到大排列)
課件出示描述一個非零自然數(shù)的因數(shù)的特征的表格(如下),學(xué)生討論、交流后再反饋。
師(小結(jié)):一個非零自然數(shù)的最大因數(shù)是它本身,最小因數(shù)是1,因數(shù)的個數(shù)是有限的。
四、探討找一個數(shù)的倍數(shù)的方法
1 師:我們已經(jīng)掌握了如何有序地、完整地找出一個非零自然數(shù)的所有因數(shù)的方法。如果讓你找出一個數(shù)的所有倍數(shù),你會找嗎?(生:會)那么,我們就一起來找找3的倍數(shù)。(學(xué)生試著找出3的倍數(shù),教師巡視,對有困難的學(xué)生給予幫助)
2 師:你是怎樣有序地、完整地找出3的倍數(shù)的?
生:用3分別乘1、2、3……得出3的倍數(shù)。
生:用3依次地加3得到3的倍數(shù)。
師:你認為哪種方法能更迅速地找出3的倍數(shù)?(學(xué)生討論交流)
師:3的倍數(shù)能找得完嗎?(生:找不完)那么,可以怎樣表示3的倍數(shù)的個數(shù)呢?(生:用省略號表示)(相機板書:3、6、9、12、15……)
3 寫出30以內(nèi)5的倍數(shù)。(做在練習(xí)紙上)
4 課件出示3的倍數(shù)、4的倍數(shù)、5的倍數(shù),讓學(xué)生從最大倍數(shù)、最小倍數(shù)、倍數(shù)的個數(shù)三個方面去描述一個數(shù)的倍數(shù)的特征(見下表)。
師(小結(jié)):一個非零自然數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù),所以倍數(shù)的個數(shù)是無限的。
五、組織游戲,深化認識
游戲——請到我家來做客
(每位學(xué)生的手中,都有一張寫有該名學(xué)生的學(xué)號卡片)
課件演示并配有話外音:春天來了,濃濃的春天氣息讓森林里好客的小動物們,紛紛拿出自己最珍貴的食物款待大家。
(1)屏幕上出現(xiàn)了可愛的小狗向同學(xué)們走來(配音):24的因數(shù)是我的朋友。如果你卡片上的數(shù)是24的因數(shù),歡迎你,我的朋友!(卡片上的數(shù)若符合要求,就請這位學(xué)生站起來)
(2)屏幕上出現(xiàn)了笨笨的小豬向同學(xué)們揮手(配音):我邀請的朋友是5的倍數(shù),喜歡我,就快快來吧!
(3)瞧!可愛的小貓咪也來了。(屏幕上出現(xiàn)了俏皮、可愛的小貓咪)配音:如果你卡片上的數(shù)是1的倍數(shù),請來我家做客吧!
(每位學(xué)生卡片上的數(shù)都符合要求,所以全班學(xué)生都站了起來)
師:小貓咪這么好客,老師也想去她家做客。你們來為老師想一個符合要求的數(shù),好嗎?(生答略)
師:是不是所有的自然數(shù)都可以呢?
生:除了0。
屏幕出示:所有非零自然數(shù)都是1的倍數(shù)。
(4)配音:威嚴的老虎來了!它請的朋友很特別,它是所有非零自然數(shù)的因數(shù)。這個數(shù)是幾呢?(生討論交流)
屏幕出示:只有1才符合要求,因為1是所有非零自然數(shù)的因數(shù)。
六、挑戰(zhàn)自我,拓展升華
師:雖然我們只合作了這短短的三十分鐘,但老師已經(jīng)深深感到我們這個班的同學(xué)非常聰明,不僅善于觀察,而且愛動腦筋,所以老師特別準備了一個富有挑戰(zhàn)性的節(jié)目想考考大家,你們敢不敢接受挑戰(zhàn)?(生:敢!)
挑戰(zhàn)——你猜、我猜、大家猜i(屏幕演示動畫標題)
(1)20、5、4、3。
答案:去掉3(屏幕演示隱去“3”),剩下的數(shù)是20的因數(shù),或20是它們的倍數(shù)。
(2)4、12、18、3。
答案有兩種:一是去掉18(屏幕演示隱去“18”),剩下的數(shù)便是12的因數(shù),或12是它們的倍數(shù);二是去掉4(屏幕演示隱去“4”),剩下的數(shù)便是3的倍數(shù)。
七、全課總結(jié)
師:通過今天這節(jié)課的學(xué)習(xí),你有什么收獲?你們學(xué)得開心嗎?玩得開心嗎?其實。數(shù)學(xué)就是這么簡單而有趣,讓我們每天都樂在其中!
總評:
本節(jié)課的教學(xué)特色是嚴謹靈活、細膩奔放。在“因數(shù)和倍數(shù)”概念的學(xué)習(xí)過程中,重視師生情感的交流,注重每個學(xué)生的發(fā)展,較好地體現(xiàn)了“教師有效引導(dǎo)下學(xué)生自主探索”這一教學(xué)策略。
1 意義教學(xué)引導(dǎo)學(xué)生自主構(gòu)建。
在多次的實踐教學(xué)中,發(fā)現(xiàn)用12個完全相同的小正方形拼出一個長方形。對于四年級的學(xué)生來說非常容易。教材這樣安排的目的,在于幫助學(xué)生有意識地感受1和12、2和5、3和4這幾組數(shù)之間的有機聯(lián)系。
本課中,倍數(shù)和因數(shù)的意義教學(xué)分三個層次:
1 借助三個問題讓學(xué)生通過想像及大屏幕的直觀演示,引導(dǎo)學(xué)生得出三道乘法算式,同時介紹倍數(shù)和因數(shù)的含義。
2 通過除法算式找因倍關(guān)系。
3 滲透倍數(shù)和因數(shù)的相互依存性。
2 合理組織教材,將找一個數(shù)的因數(shù)及其特征教學(xué)提前。
尋找一個數(shù)的因數(shù)是本節(jié)課的教學(xué)難點,學(xué)生往往滿足于答案的尋找,而忽視尋找過程中的思考策略及思維方法。
教學(xué)中,教師出示一組數(shù),如36、4、9、0、5、2,讓學(xué)生從這組數(shù)中任選兩個數(shù),用倍數(shù)和因數(shù)的關(guān)系來說一說。
最后設(shè)疑:
(1)為什么不選o呢?(讓學(xué)生理解倍數(shù)和因數(shù)是針對非零的自然數(shù))
(2)為什么不選5呢?(如36和5,因為找不到一個自然數(shù)和5相乘能得到36,或者36除以5有余數(shù))
(3)去掉了0和5,剩下的這些數(shù)和36有什么關(guān)系呢?(它們都是36的因數(shù),或36是它們的倍數(shù))
這樣的改變,既達到預(yù)定目的,又為學(xué)習(xí)找因數(shù)做了鋪墊,引發(fā)了學(xué)生尋找36的因數(shù)的濃厚興趣。在引導(dǎo)學(xué)生自主探索一個數(shù)的因數(shù)的特征時,教師讓學(xué)生帶著問題去觀察討論:每一個非零自然數(shù)的因數(shù)的個數(shù)是有限的還是無限的?一個非零自然數(shù)的最大因數(shù)是幾?一個非零自然數(shù)的最小因數(shù)是幾?以上安排,降低了學(xué)生的學(xué)習(xí)難度。
3 尋找一個數(shù)的因數(shù)和倍數(shù)的方法讓學(xué)生自己生成。
在尋找一個數(shù)的因數(shù)和倍數(shù)的過程中。教師將學(xué)生推向發(fā)現(xiàn)與探索的前臺。
尋找一個數(shù)的倍數(shù)和因數(shù)。方法不是惟一的。教師在肯定各種方法合理性的同時,及時引導(dǎo)學(xué)生進行溝通,尋找它們的共同點和聯(lián)系,進而比較各種方法之間的優(yōu)劣,遴選最優(yōu)方法,提升思維效率。
4 增強游戲中數(shù)學(xué)思維的含量。
知識在游戲中深化,在挑戰(zhàn)中升華。
本節(jié)課以“有效引導(dǎo)下自主探索”為教學(xué)策略。以三道乘法算式為線索,以教材文本為依托,以有梯度的游戲活動展開對知識的深化鞏固,并適時、適量引入多媒體輔助教學(xué),將諸多細小的認知活動歸整在一個探究性的課堂自主研究活動中。通過自主觀察、交流發(fā)現(xiàn)、共同分享,引領(lǐng)學(xué)生經(jīng)歷“研究與發(fā)現(xiàn)”的真實過程。課尾游戲的運用,激發(fā)了學(xué)生的學(xué)習(xí)熱情,讓學(xué)生以愉快的心情和良好的體驗融入學(xué)習(xí)活動中,培養(yǎng)了學(xué)生用數(shù)學(xué)眼光看待游戲的意識,大大降低了學(xué)生對數(shù)學(xué)概念學(xué)習(xí)的枯燥體驗。
找因數(shù)的教學(xué)設(shè)計篇十一
理解兩個數(shù)的公因數(shù)和最大公因數(shù)的意義。
通過解決實際問題,初步了解兩個數(shù)的公因數(shù)和最大公因數(shù)在現(xiàn)實生活中的應(yīng)用。
理解公因數(shù)和最大公因數(shù)的意義。
一、預(yù)習(xí)礪能
1、提問:什么是因數(shù)?怎樣找一個數(shù)的所有因素?
2、寫出16和12的所有因數(shù)。
提問:從16和12的所有因素中你發(fā)現(xiàn)了什么?
二、導(dǎo)學(xué)礪能
1.出示例1。
(2)、以小組為單位,探究如何拼剪正方形。
(3)、多媒體演示剪小正方形的過程,進一步驗證學(xué)生動手操作的情況。
(4)、通過交流,得出結(jié)論:要使所剪成大小相等的正方形且沒有剩余,正方形的邊長必須既是30的因數(shù),又是12的因數(shù)。
2、教學(xué)公因數(shù)和最大公因數(shù)。老師用多媒體課件演示集合圖。
1,2,3,6是12和30公有的因數(shù),叫做它們的公因數(shù)。其中,6是最大的'一個公因數(shù),叫做它們的最大公因數(shù)。
3、引導(dǎo)學(xué)生用短除法找兩個數(shù)的最大公因數(shù)。
三、鞏固礪能
1、達標練習(xí)
完成教材第12頁“試一試”。學(xué)生完成后歸納出規(guī)律。
2、總結(jié)評價
通過本節(jié)課的學(xué)習(xí),我們主要認識了公因數(shù)、最大公因數(shù)的意義.公因數(shù)和最大公因數(shù)在現(xiàn)實生活中有著廣泛的應(yīng)用,我們初步了解了它的應(yīng)用價值。
找因數(shù)的教學(xué)設(shè)計篇十二
《最大公因數(shù)》教學(xué)設(shè)計教學(xué)目標:
1、結(jié)合具體情境理解公因數(shù)和最大公因數(shù)的意義,學(xué)會求兩個數(shù)的最大公因數(shù)的方法。
2、會用公因數(shù)、最大公因數(shù)的知識解決簡單的實際問題,體驗數(shù)學(xué)與日常生活的聯(lián)系。
3、通過學(xué)生合作探究等活動,培養(yǎng)學(xué)生的合作能力和抽象概括能力,以及激發(fā)學(xué)生對探究數(shù)學(xué)知識的興趣。
教學(xué)重、難點:
重點:理解公因數(shù)和最大公因數(shù)意義,會求最大公因數(shù)。
難點:理解公因數(shù)和最大公因數(shù)的意義。
教學(xué)準備:
ppt課件,長方形的方格紙,小正方形紙若干。
教學(xué)過程:
一、預(yù)設(shè)情境、提出問題
二、探究交流,抽象概念。
1、探究、了解公因數(shù)和最大公因數(shù)
(1)合作探究
提供學(xué)具,學(xué)生操作。
(2)反饋交流
得到:邊長是1分米,2分米,4分米的地磚符合要求。
(3)討論交流
還有沒有別的鋪法?邊長是3分米的地磚行嗎?為什么?邊長是8分米呢?
(4)了解公因數(shù)
a、引出猜想:
b、枚舉驗證
(5)了解最大公因數(shù)
利用鋪最少磚引出最大公因數(shù)名詞。
2、鞏固公因數(shù)和最大公因數(shù)的意義。
a、完成做一做。
b、鞏固公因數(shù)與最大公因數(shù)的意義。
3、抽象出公因數(shù)和最大公因數(shù)的概念。
引導(dǎo)學(xué)生概括公因數(shù)和最大公因數(shù)的概念(教師板書)
三、嘗試練習(xí)、探索方法。
1、嘗試:求最大公因數(shù):18和272、交流反饋。
四、鞏固練習(xí),完善新知。
1、找出下面每組數(shù)的最大公因數(shù)。
6和915和204和1216和32
(完成后,解決成倍數(shù)關(guān)系的兩個數(shù)的最大公因數(shù)的求法)
2、選擇題
(1)16和48的最大公因數(shù)是_。
a.4b.6c.8d.16
(2)甲數(shù)是乙數(shù)的倍數(shù),甲、乙兩數(shù)的最大公因數(shù)是_。
a.1b.甲數(shù)c.乙d.甲、乙兩數(shù)的積
3、寫出下列各分數(shù)分子和分母的最大公因數(shù)。
7/98/3618/729/154、*小巧匠。
12cm16cm44cm
要把它們截成同樣長的小棒,不能有剩余,每根小棒最長是多少厘米?
(完成之后,完善公因數(shù)的概念。)
五、課堂小結(jié):通過這節(jié)課的學(xué)習(xí),你有什么收獲?
msn(中國大學(xué)網(wǎng))
找因數(shù)的教學(xué)設(shè)計篇十三
最大公因數(shù)(二)
教材第82、83頁練習(xí)十五的第2一9題。
1.培養(yǎng)學(xué)生獨立思考及合作交流的能力,能用不同方法找兩個數(shù)的最大公因數(shù)。
2.培養(yǎng)學(xué)生抽象、概括的能力。
掌握找兩個數(shù)最大公因數(shù)的方法。
投影。
1.完成教材第82頁練習(xí)十五的第2題。
學(xué)生先獨立完成,然后集體交流找最大公因數(shù)的經(jīng)驗,并將這8組數(shù)分為三類。
2.完成教材第82頁練習(xí)十五的第3一5題。
學(xué)生獨立填在課本上,集體交流。
3.完成教材第83頁練習(xí)十五的第6題。
學(xué)生獨立填寫,集體交流,體會兩個數(shù)的最大公因數(shù)是1的幾種情況。
4.完成教材第83頁練習(xí)十五的第7一11題。
學(xué)生獨立審題,理解題意,然后試著解答,集體交流。
5.指導(dǎo)學(xué)生閱讀教材第83頁的“你知道嗎”。
請學(xué)生試著舉例。提問:互質(zhì)的兩個數(shù)必須都是質(zhì)數(shù)嗎?你能舉出兩個合數(shù)互質(zhì)的例子嗎?
通過本節(jié)課的學(xué)習(xí),主要掌握了找兩個數(shù)的最大公因數(shù)的方法。找兩個數(shù)的最大公因數(shù),可以先分別寫出這兩個數(shù)的因數(shù),再圈出相同的因數(shù),從中找到最大公因數(shù);也可以先找到一個數(shù)的因數(shù),再從大到小,看看哪個數(shù)是另一個數(shù)的因數(shù),從而找到最大公因數(shù)。
找因數(shù)的教學(xué)設(shè)計篇十四
江蘇省興化市楚水小學(xué) 袁世斌 225700 【教學(xué)內(nèi)容】
在學(xué)習(xí)本單元之前,學(xué)生已經(jīng)較為系統(tǒng)地掌握了十進制計數(shù)法,同時也基本完成了整數(shù)四則運算的學(xué)習(xí)。這節(jié)課將引領(lǐng)學(xué)生從一個新的角度(即倍數(shù)和因數(shù)的角度)來研究非零自然數(shù)的特征及其相互關(guān)系,為學(xué)生進一步學(xué)習(xí)數(shù)的分類、公倍數(shù)和公因數(shù)以及分數(shù)的約分、通分等奠定基礎(chǔ)。
1.讓學(xué)生理解倍數(shù)和因數(shù)的意義,掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征。
理解倍數(shù)和因數(shù)的意義 【教學(xué)難點】
掌握找一個數(shù)的倍數(shù)和因數(shù)的方法 【設(shè)計理念】
1、從學(xué)生熟悉的生活入手。首先和學(xué)生交流生活中人與人的關(guān)系,自然過渡到自然數(shù)中數(shù)與數(shù)之間的關(guān)系。并由猜老師的年齡,引入倍數(shù)的概念以及找一個數(shù)倍數(shù)的方法。
2、從學(xué)生的操作入手。由淺入深,由無序到有序,通過讓學(xué)生用不同個數(shù)的正方形拼成長方形,引入因數(shù)的概念,引導(dǎo)學(xué)生將數(shù)和形有機結(jié)合起來,從而有序地找出一個數(shù)的所有因數(shù)。
一、課前談話
1、話家常,拉“關(guān)系”
是的,在我們生活中人與人之間總會存在著這樣那樣的關(guān)系,而在數(shù)字的世界里,數(shù)和數(shù)之間也會存在各種各樣的關(guān)系。今天這節(jié)課,我們就和大家一起研究兩個非零自然數(shù)之間的關(guān)系。
二、學(xué)習(xí)倍數(shù)的意義
1、猜歲數(shù),引“倍數(shù)”
你們?yōu)槭裁串惪谕暤卣f我36歲呢?難道只有36是9的倍數(shù)嗎?
2、按順序,找倍數(shù)
9的倍數(shù)除了36還有什么數(shù)嗎? 能寫完嗎?為什么?
指出:1倍、2倍往下寫,通常只要寫出5個,然后用“??”表示。你能直接寫出2的倍數(shù)和5的倍數(shù)嗎? 學(xué)生獨立書寫。
指名回答,板書:2的倍數(shù)有2、4、6、8、10、12??
5的倍數(shù)有5、10、15、20、25、30?? 提問:觀察上面的三個例子,你有什么發(fā)現(xiàn)?在小組內(nèi)討論。
指名匯報,相機出示以下結(jié)論:一個數(shù)的最小的倍數(shù)是它本身,沒有最大的倍數(shù)。一個數(shù)的倍數(shù)的個數(shù)是無限的。
三、學(xué)習(xí)因數(shù)的意義
1、初擺圖形,感知“因數(shù)” 屏幕出示12個同樣大小的正方形
根據(jù)3х4=12,我們可以說(屏幕出示):12是3的倍數(shù),12也是4的倍數(shù);3是12的因數(shù),4也是12的因數(shù)。
同學(xué)們一起來讀一讀,感受一下。
請你從1х12=12;2х6=12這兩道算式中任選一題,用上面的話說一說。
2、再擺圖形,感受“順序”
學(xué)生獨立練習(xí)后,組織匯報。
根據(jù)學(xué)生的回答,投影出示相應(yīng)的拼法,并相機板書:16÷1=16
16÷2=8 16÷4=4
你能結(jié)合這道算式,說說誰是誰的倍數(shù),誰是誰的因數(shù)嗎?
你能連起來說說16的因數(shù)有哪些嗎?相機板書:16的因數(shù)有:1、16、2、8、4 3是不是16的因數(shù),為什么?5呢?明確因倍關(guān)系的依據(jù)。
3、數(shù)形結(jié)合,掌握方法
將你找出的36的因數(shù)寫在練習(xí)紙上。
展示學(xué)生的作品。36的因數(shù)有:1、36、2、18、3、12、4、9、6.將方法優(yōu)化:根據(jù)數(shù)形結(jié)合的思想,運用除法算式一對一對地找一個數(shù)的因數(shù)更為簡便,并且能夠做到不重復(fù)、不遺漏。
4、觀察思考,發(fā)現(xiàn)規(guī)律
引導(dǎo)學(xué)生觀察12的因數(shù)、16的因數(shù)和36的因數(shù)。
提問:觀察上面的三個例子,你又有什么發(fā)現(xiàn)?在小組內(nèi)討論。
明確:1是所有非零自然數(shù)的因數(shù)。
既然1是所有非零自然數(shù)的因數(shù),那么換句話說,也就是所有非零自然數(shù)都是1的?(讓學(xué)生接上說倍數(shù))
四、綜合練習(xí),加深理解
2、你猜、我猜、大家猜
1)、茶杯每只4元,我去超市買了一些茶杯,猜猜我可能用了多少元? 讓學(xué)生盡可能說出不同答案,師適時追問:可能嗎?如有錯誤,要求學(xué)生說出錯在哪里,明確用去的錢數(shù)是4的倍數(shù)。
2)、出示邊長3厘米的正方形。
a、長24cm、寬8cm
b、長36cm、寬4cm
根據(jù)12的因數(shù)的個數(shù)比16的因數(shù)的個數(shù)多,引導(dǎo)學(xué)生得出并不是數(shù)字越大,因數(shù)的個數(shù)就越多。然后然學(xué)學(xué)生找出60的所有因數(shù)。
五、總結(jié)延伸
找因數(shù)的教學(xué)設(shè)計篇十五
教學(xué)目標:
1.使學(xué)生理解和認識公因數(shù)和最大公因數(shù),能用列舉的方法求100以內(nèi)兩個數(shù)的公因數(shù)和最大公因數(shù),能通過直觀圖理解兩個數(shù)的因數(shù)及公因數(shù)之間的關(guān)系。
2.使學(xué)生借助直觀認識公因數(shù),理解公因數(shù)的特征;通過列舉探索求公因數(shù)和最大公因數(shù)的方法,體會方法的合理和多樣;感受數(shù)形結(jié)合的思想,能有條理地進行思考,發(fā)展分析、推理等能力。
3.使學(xué)生主動參加思考和探索活動,感受學(xué)習(xí)的收獲,獲得成功的體驗,樹立學(xué)好數(shù)學(xué)的信心。
教學(xué)重點:
求兩個數(shù)的公因數(shù)和最大公因數(shù)。
教學(xué)難點:
理解求公因數(shù)和最大公因數(shù)的方法。
教學(xué)準備:
小黑板
教學(xué)過程:
一、鋪墊準備
1.直觀演示,作好鋪墊。
出示邊長6厘米和邊長5厘米的兩個正方形。
提問:觀察這兩個正方形,哪一個能正好分成邊長都是2厘米的小正方形?
2.引入新課。
談話:根據(jù)上面我們看到的,如果一個長度是原來邊長的因數(shù),就能正好全部分割成小正方形。現(xiàn)在就利用這樣的認識,學(xué)習(xí)與因數(shù)有密切聯(lián)系的新內(nèi)容,認識新知識,學(xué)會新方法。
二、學(xué)習(xí)新知
1.認識公因數(shù)。
(1)出示例9,了解題意。
啟發(fā):觀察正方形紙片的邊長和長方形的長、寬,哪種紙片能把長方形正好鋪滿,哪種不能正好鋪滿?先在小組討論,說說你的理由。
交流:哪種紙片能把長方形正好鋪滿,哪種不能?你是怎樣想的?
結(jié)合交流進行演示,引導(dǎo)觀察用正方形紙片鋪的結(jié)果,理解邊長6是長方形兩邊12和18的因數(shù),能正好鋪滿;(板書:126=2186=3)邊長4是12的因數(shù),但不是18的因數(shù),就不能正好鋪滿。(板書:124=3184=4......2)
(2)啟發(fā):想一想,還有哪些邊長是整厘米數(shù)的正方形,也能把這個長方形正好鋪滿?為什么?先獨立思考,再和同桌說一說,并說說你的理由。
找因數(shù)的教學(xué)設(shè)計篇十六
1.教學(xué)中幫助學(xué)生從已經(jīng)據(jù)有的經(jīng)驗出發(fā),在用小正方形拼長方形的活動中,體會找一個數(shù)的因數(shù)的方法,提高有序思考的能力。
2.在1~100的自然數(shù)中,能找出某個自然數(shù)的所有因數(shù)。
體會找一個數(shù)的因數(shù)的方法
提高有序思考的能力
師:同學(xué)們喜歡做拼圖的游戲嗎?
也可以使用自己喜歡的方式拼擺或涂畫的方式獨立操作,邊擺邊做好記錄.
然后,把你拼擺的過程和你的伙伴說說。
1、學(xué)生:用12個小正方形自由拼(畫)長方形
(教師巡視,指導(dǎo)個別有問題的學(xué)生,搜集學(xué)生中出現(xiàn)的問題.)
參與小組活動,指導(dǎo)學(xué)生總結(jié)學(xué)法.
師:你是怎樣拼的,說說好嗎?
學(xué)生代表一邊匯報,一邊將所拼的圖在黑板上進行演示
注意讓學(xué)生指圖說明。
2、思考:請同學(xué)們在合作交流中總結(jié)出找一個數(shù)的因數(shù)的基本方法。
(或者用乘法思路想:哪兩個數(shù)相乘得12?然后一對一對找出來。)
全班交流
師:我發(fā)現(xiàn)同學(xué)們真的很聰明,誰愿意把你的想法說給大家聽?
(每個小組由一名代表在全班匯報思考的過程,再次體會“想乘法算式”找一個數(shù)的因數(shù)的方法。)
學(xué)生回答,老師同時板演:
(3種,算式一樣的可選擇其中的一種說出來。)
及時板書:1×12=12 2×6=12 3×4=12
或:12=1×12=2×6=3×4
師:由黑板上整理出的算式可見,12的因數(shù)有哪些呢?
(1、12、2、6、3、4)
引導(dǎo)思考:找一個數(shù)的因數(shù)怎樣做到即不重復(fù)又不遺漏呢?
(通過以上的拼、畫、小組交流,學(xué)生已經(jīng)有所發(fā)現(xiàn)。)
學(xué)生的答案:
(1)我發(fā)現(xiàn)積是12的乘法算式中,它們的因數(shù)都是12的因數(shù)。
(2)我發(fā)現(xiàn)可以利用乘法口訣一對對的找12的因數(shù)。
師:誰能按順序說出來?
(1、2、3、4、6、12)
3、小結(jié):找一個數(shù)的因數(shù),可以用乘法依次一對一對的找。這樣有順序的給一個倍數(shù)找因數(shù),好處就是不重復(fù)、不漏找。
1、獨立完成第8頁“試一試”,注意關(guān)注學(xué)生是否注意有序思考。
(9的因數(shù):1、3、9 15的因數(shù):1、3、5、15)
2、師:同學(xué)們已經(jīng)掌握了找因數(shù)的方法,現(xiàn)在看看誰找得快,請同學(xué)們做課本第9頁的練一練的第1、2題。
第1題學(xué)生獨立完成,同桌交流。
(教師巡視,發(fā)現(xiàn)問題及時解決。)
第2小題小競賽:看誰找的快
3、師:同學(xué)們已經(jīng)學(xué)會了拼長方形找因數(shù),現(xiàn)在能不能在小方格中畫出長方形找因數(shù)呢?請做第9頁的第3題。
(1×16=16 2×8=16 4×4=16)
(16=1×16=2×8=4×4)
(16的因數(shù):1、2、4、16)
4、下面的數(shù),各有幾個因數(shù)
1 19 4 32 11
總結(jié):同學(xué)們說得很好,我們利用找因數(shù)的方法可以解決很多實際問題。
師:這節(jié)課你學(xué)會了什么呢?用學(xué)到的方法我們都可以做些什么?
找因數(shù)的教學(xué)設(shè)計篇十七
第45—46頁。
1、經(jīng)歷找兩個數(shù)的公因數(shù)的過程,理解公因數(shù)和最大公因數(shù)的意義。2、探索找兩個數(shù)的公因數(shù)的方法,學(xué)會正確找出兩個數(shù)的公因數(shù)和最大的公因數(shù)。
3、使學(xué)生能探索出解決問題的有效方法。
探索找兩個數(shù)的公因數(shù)的方法。
實物投影儀等。
一、填一填。
1、呈現(xiàn)找公因數(shù)的一般方法:
(1)讓學(xué)生分別找出12和18的因數(shù),并交流找因數(shù)的方法。
引出公因數(shù)和最大公因數(shù)的概念。
(3)組織學(xué)生展開討論,再引導(dǎo)學(xué)生理解“兩個數(shù)公有的因數(shù)是它們的公因數(shù),其中最大的一個是它們的最大公因數(shù)”。
(4)小結(jié):找公因數(shù)的一般方法是先用想乘法算式的方式分別找出兩個數(shù)的因數(shù),再找出公有的因數(shù)和最大公因數(shù)。
2、引導(dǎo)學(xué)生討論其它的方法。
二、練一練。
1、第1、2題,通過這兩題的練習(xí),使學(xué)生進一步明確找兩個數(shù)的公因數(shù)的一般方法,并對找有特征的數(shù)字的最大公因數(shù)的特殊方法有所體驗。
2、第3題,學(xué)生獨立完成。
4、讓學(xué)生用自己的語言來表述自己的發(fā)現(xiàn)。
5、第5題,寫出下列各分數(shù)分子和分母的最大公因數(shù)?,F(xiàn)自己寫一寫,然后說一說自己是怎樣找公因數(shù)的。
三、數(shù)學(xué)探索。
1、寫出1、2、3、4、5、……、20等各數(shù)和4的最大公因數(shù)。
(1)先讓學(xué)生填表,找出這些數(shù)與4的最大公因數(shù)。
(2)再根據(jù)表格完成折線統(tǒng)計圖。
(3)組織學(xué)生觀察表格,討論“你發(fā)現(xiàn)了什么規(guī)律?”
2、找一找1、2、3、4、5、……、20等各數(shù)和10的最大公因數(shù),是否也有規(guī)律,與同學(xué)說一說你的發(fā)現(xiàn)。
四、總結(jié):
誰能說一說找公因數(shù)的一般方法是什么?
板書設(shè)計:
找最大公因數(shù)
12=()×()=()×()=()×()
18=()×()=()×()=()×()
12的因數(shù):18的因數(shù):
找因數(shù)的教學(xué)設(shè)計篇十八
1、理解和掌握因數(shù)和倍數(shù)的概念,認識他們之間的聯(lián)系和區(qū)別。
2、學(xué)會求一個數(shù)的因數(shù)或倍數(shù)的方法,能夠熟練的求出一個數(shù)的因數(shù)或倍數(shù)。
3、知道一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
理解和掌握因數(shù)和倍數(shù)的概念。
課件
師:我和你們的關(guān)系是
生:師生關(guān)系。
師:對,我是你們的老師,你們是我的學(xué)生,我們的關(guān)系是師生關(guān)系。是啊,人與人之間的關(guān)系是相互的。再比如:我們班的曹雪飛與賀正博之間是同桌關(guān)系,他們之間的關(guān)系是相互依存的,不能單獨存在,我們可以說曹雪飛是賀正博的同桌,或者說賀正博是曹雪飛的同桌,而不能說曹雪飛是同桌!在數(shù)學(xué)王國里,在整數(shù)乘法中也存在著這樣相互依存的關(guān)系,這節(jié)課,我們一起探討兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。(板書課題:因數(shù)與倍數(shù))
(設(shè)計意圖:先讓學(xué)生體會關(guān)系,再通過同桌關(guān)系讓學(xué)生體會相互依存,不能獨立存在,進而為因數(shù)與倍數(shù)的相互依存關(guān)系打下基礎(chǔ)。)
(一)1、出示主題圖,仔細觀察,你得到了哪些數(shù)學(xué)信息?
學(xué)生說:圖上有兩行飛機,每行六架,一共有12架。(注意培養(yǎng)學(xué)生提取數(shù)學(xué)信息的能力和語言表達能力,即:數(shù)學(xué)語言要求簡練嚴謹)
教師:你們能夠用乘法算式表示出來嗎?
學(xué)生說出算式,教師板書:2×6=12
2.出示:因為2×6=12
所以2是12的因數(shù),6也是12的因數(shù);
12是2的倍數(shù),12也是6的倍數(shù)。
(注:由乘法算式理解因數(shù)和倍數(shù)相互依存,不能獨立存在。)
3.教師出示圖2:師:根據(jù)圖上的內(nèi)容,可以寫出怎樣的算式?
3×4=12
從這道算式中,你知道誰是誰的因數(shù)?誰是誰的倍數(shù)嗎?(讓學(xué)生自己說一說,進而加深因數(shù)倍數(shù)關(guān)系的認識。)
教師小結(jié):因數(shù)和倍數(shù)是相互依存的,為了方便,我們在研究因數(shù)與倍數(shù)時,我們所說的數(shù)是整數(shù),一般不包括0.
4、師:誰來說一道乘法算式考考大家。
(指名生說一說)
5、讓其他學(xué)生來說一說誰是誰的因數(shù)誰是誰的倍數(shù)。
(注:可以讓幾位學(xué)生互相說一說。)
6、看來都難不住你們,那老師來考考你們:18÷3=6在這道算式中,誰來說說誰是誰的因數(shù)誰是誰的倍數(shù)。
(設(shè)計意圖:18÷3=6是為了培養(yǎng)學(xué)生思維的逆向性)
(二)找因數(shù):
出示例1:18的因數(shù)有哪幾個?
注意:請同學(xué)們四人以小組討論,在找18的因數(shù)中如何做到不重復(fù),不遺漏。
學(xué)生嘗試完成:匯報
(18的因數(shù)有:1,2,3,6,9,18)
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)
師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)
師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)
師:18和36的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
請同學(xué)們觀察一個數(shù)的因數(shù)有什么特點。
在教師引導(dǎo)下,學(xué)生總結(jié)出:任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是(),因數(shù)的個數(shù)是有限的。
(設(shè)計意圖:培養(yǎng)學(xué)生探索、歸納、總結(jié)、概括的能力。)
3、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如18的因數(shù)
1、2、3、6、9、18
小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(三)找倍數(shù):
1、我們學(xué)會找一個數(shù)的因數(shù)了,那如何找一個數(shù)的倍數(shù)呢?2的倍數(shù)你能找出來嗎?
匯報:2、4、6、8、10、16、……
師:為什么找不完?
你是怎么找到這些倍數(shù)的?
(生:只要用2去乘1、乘2、乘3、乘4、…)
那么2的倍數(shù)最小是幾?最大的你能找到嗎?
2、再找3和5的倍數(shù)。
3的倍數(shù)有:3,6,9,12,……
你是怎么找的?(用3分別乘以1,2,3,……倍)
5的倍數(shù)有:5,10,15,20,……
師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?讓學(xué)生觀察2、3、5的倍數(shù),說一說一個數(shù)的倍數(shù)有什么特點。
學(xué)生試著總結(jié):一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
通過今天這節(jié)課的學(xué)習(xí),你有什么收獲?
學(xué)生匯報這節(jié)課的學(xué)習(xí)所得。
2、教材第15頁練習(xí)二第1題。組織學(xué)生獨立完成,然后在小組中互相交流檢查。
找因數(shù)的教學(xué)設(shè)計篇十九
教材分析:
這部分教材首先以例題的形式介紹因數(shù)和倍數(shù)的概念,然后在例1和例2中分別介紹了求一個數(shù)的因數(shù)和倍數(shù)的方法,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背,向?qū)W生滲透從具體到一般的抽象歸納的思想方法。
了解學(xué)生:
學(xué)生已經(jīng)學(xué)習(xí)了四年的數(shù)學(xué),有了四年整數(shù)知識的基礎(chǔ),本課利用實物圖引出乘法算式,然后引出因數(shù)和倍數(shù)的含義,培養(yǎng)了學(xué)生的抽象概括能力。
教學(xué)目標:
1、知識技能:(1)理解和掌握因數(shù)、倍數(shù)的概念,認識它們之間的聯(lián)系和區(qū)別。(2)學(xué)會求一個數(shù)的因數(shù)或倍數(shù)的方法,能夠熟練地求出一個數(shù)的因數(shù)或倍數(shù)。(3)知道一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
2、過程方法:經(jīng)歷因數(shù)和倍數(shù)的認識以及求一個數(shù)的因數(shù)或倍數(shù)的過程,體驗類推、列舉和歸納總結(jié)等學(xué)習(xí)方法。
3、情感態(tài)度:在學(xué)習(xí)活動中,感受數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,體驗發(fā)現(xiàn)知識的樂趣。
教學(xué)重點:學(xué)會求一個數(shù)的因數(shù)或倍數(shù)的方法。
教學(xué)難點:理解和掌握因數(shù)和倍數(shù)的概念。
教學(xué)準備:課件、作業(yè)紙。
教學(xué)過程:
一、創(chuàng)設(shè)情境——找朋友
1、唱一唱:你們聽過“找朋友”這首歌嗎?誰愿意大聲的唱給大家聽?(一名學(xué)生唱,師評價:老師很喜歡你的聲音,你敢于表現(xiàn)自己,老師很愿意和你成為好朋友)
2、說一說:誰能具體的說一說“誰是誰的好朋友”?(鼓勵:老師希望能聽到更多人的聲音)
學(xué)生完整敘述:“××是 李老師的朋友,李老師是××的朋友”。
3、引入新課:同學(xué)們說的很好,那能不能說老師是朋友,××是朋友?看來,朋友是相互依存的,一個人不會是朋友。今天我們就來認識數(shù)學(xué)中的一對朋友“因數(shù)和倍數(shù)”(板書課題)
二、探究新知
1、提出問題:現(xiàn)在有12名同學(xué)參加訓(xùn)練,要排成整齊的隊伍,可以怎樣排?用一個簡單的乘法算式表示出排列的方法。
學(xué)生可能得到:每排6人,排成2排,2×6=12;
每排4人,排成3排,4×3=12;
每排12人,排成1排,1×12=12。
課件出示相應(yīng)的圖和算式。
2、揭示概念:以2×6=12為例。
邊說邊板書:( )是12的因數(shù),( )是12的因數(shù);
12是( )的倍數(shù),12是( )的倍數(shù)。
學(xué)生同桌互相說,指名兩名同學(xué)說。(評價:這么短的時間內(nèi),同學(xué)們就能準確、完整的表述它們之間的因倍關(guān)系,真了不起。)
突出強調(diào):能不能說12是倍數(shù),2是因數(shù)?(學(xué)生回答,揭示并板書:相互依存)
3、強化概念:另外兩道乘法算式,你也能像這樣準確地寫出它們之間的關(guān)系嗎?分組比賽,在作業(yè)紙上完成,看哪個組能完全做對。
學(xué)生在作業(yè)紙上完成,同時課件出示:(指名兩名學(xué)生在白板上利用普通筆標注答案)
找因數(shù)的教學(xué)設(shè)計篇二十
教學(xué)內(nèi)容:青島版教材小學(xué)數(shù)學(xué)五年級上冊88—91頁。
教學(xué)目標:
1、使學(xué)生初步認識因數(shù)和倍數(shù)的含義,探索求一個數(shù)的因數(shù)或倍數(shù)的方法,發(fā)現(xiàn)一個數(shù)的因數(shù)、倍數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征。
2、使學(xué)生在認識因數(shù)和倍數(shù)以及探索一個數(shù)的因數(shù)或倍數(shù)的過程中,進一步體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平,對數(shù)學(xué)產(chǎn)生好奇心,培養(yǎng)學(xué)習(xí)興趣。
教學(xué)重點:理解因數(shù)和倍數(shù)的意義,探索求一個數(shù)因數(shù)或倍數(shù)的方法。
教學(xué)難點:探索求一個數(shù)因數(shù)或倍數(shù)的方法。
教具準備:多媒體課件、學(xué)生練習(xí)題
教學(xué)過程:
一、談話導(dǎo)入。
師:同學(xué)們看這是什么?
生:小正方形。
師:想不想知道王老師給大家?guī)砹硕嗌賯€這樣的小正方形?
生:想。
師:多少個?
生:12個。
師:想一想你能不能把這12個完全一樣的小正方形拼成一個長方形呢?
生:能。
【設(shè)計意圖】:以學(xué)生熟悉情景引入,激發(fā)學(xué)生的好奇心。
二、教學(xué)因數(shù)和倍數(shù)的意義
師:增加一點難度,用一道算式說明你的想法,讓其他同學(xué)猜一猜你是怎么擺的,好嗎?
生:好!
學(xué)生匯報:
生1:1×12=12
師:他是怎么擺的?
生:一行擺1個,擺了12行;也可以一行擺12個,擺1行。
課件出示擺法。
師:把第一種擺法豎起來就和第二種擺法一樣了,我們把這兩種擺法算作一種擺法。(用課件舍去一種)
生2:2×6=12
師:猜一猜他是在怎么擺的?
生:一行擺2個,擺了6行;也可以一行擺6個,擺2行。
師:這兩種情況,我們也算一種。
生3:3×4=12
師:他又是怎么擺的?
生:一行擺3個,擺了4行;也可以一行擺4個,擺3行。
師:還有其他擺法嗎?
生:沒有了。
師:對,如果把12個同樣大小的正方形拼成一個長方形,就只有這三種擺法,大家千萬不要小看了這三種擺法,更不要小看了這三種擺法下面的三道乘法算式,今天我們的新課就藏在這三道乘法算式里面。因數(shù)和倍數(shù)(板書課題)
2.教學(xué)“因數(shù)和倍數(shù)”的意義。
師:我們以3×4=12為例,在數(shù)學(xué)上可以說3是12的因數(shù),4也是12的因數(shù),12是3的倍數(shù),12也是4的倍數(shù)。這里還有兩道算式,同桌兩個同學(xué)先互相說一說誰是誰的因數(shù),誰是誰的倍數(shù)。
學(xué)生匯報:任選一道回答。
生1:12是12的因數(shù),1是12的因數(shù),12是2的倍數(shù),12是1的倍數(shù)。
師:說的多好啊!雖然有點像繞口令,但數(shù)學(xué)上確實是這樣的。我們再一起說一遍。
師:還有一道算式,誰來說一說?
生:2是12的因數(shù),6是12的因數(shù),12是2的倍數(shù),12也是6的倍數(shù)。
師明確:為了研究方便,我們所說的因數(shù)和倍數(shù)都是指自然數(shù),(0除外)。
師:通過剛才的練習(xí),你有沒有發(fā)現(xiàn)12的因數(shù)一共有哪些?(生邊說老師邊有序的用課件出示12的所有的因數(shù)。)
師:好了,剛才我們已經(jīng)初步研究了因數(shù)和倍數(shù),屏幕顯示:試一試:你能從中選兩個數(shù),說一說誰是誰的因數(shù)?誰是誰因數(shù)和倍數(shù)?行不行?先自己試一試。
3、5、18、20、36
【設(shè)計意圖】讓學(xué)生經(jīng)歷知識的形成過程。通過實際例子,讓學(xué)生進一步理解,因數(shù)和倍數(shù)之間存在著相互依存的關(guān)系。
三、教學(xué)尋找因數(shù)的方法。
1、找一個數(shù)的因數(shù)。
師:說出幾個36的因數(shù)并不難,關(guān)鍵是怎樣找的既有序又全面,有沒有信心挑戰(zhàn)一下?
生:有。
師:老師提個要求:
1)、可以獨立完成,也可以同桌交流。
2)、把這個數(shù)的因數(shù)找全以后,把你的方法記錄在下面。并總結(jié)你是怎樣找的。
2、探索交流找一個數(shù)的因數(shù)的方法。
找一名有代表性的作業(yè)板書在黑板上。
師:他找對了嗎?
生:沒有,漏下了一對。
師:為什么會漏掉?僅僅是因為粗心嗎?
生:不是,他沒有按照一定的順序找!
師:那么要找到36所有的因數(shù)關(guān)鍵是什么?
生:有序。
師生共同邊說邊有序的把36的所有的因數(shù)板書出來。師:還有問題嗎?
生:沒有了。
生:你們沒有,老師有一個問題,你們?yōu)槭裁凑业?就不再接著往下找了?
生:再接著找就重復(fù)了。
師:那么找到什么時候就不找了?
生:找到重復(fù)了,就不在往下找了。
師、生共同總結(jié)找因數(shù)的方法。(一對一對有序的找,一直找到重復(fù)為止)。
師:有失誤的學(xué)生對自己的錯誤進行調(diào)整。
3、鞏固練習(xí)。
找出下面各數(shù)的因數(shù)。
4、尋找一個數(shù)的因數(shù)的特點。
【設(shè)計意圖】放手讓學(xué)生自主找一個數(shù)的因數(shù),并總結(jié)找一個數(shù)因數(shù)的方法。學(xué)生非常喜歡,而且也能夠讓學(xué)生在活動中提升。
四、教學(xué)尋找倍數(shù)的方法。
1、找一個數(shù)的倍數(shù)。
生:能!
師:試試看,找個小的可以嗎?
生:行!
師:找一下3的倍數(shù)。30秒時間,把答案寫在練習(xí)紙上。??
師:有什么問題嗎?
生:老師,寫不完。
師:為什么寫不完?
生:有很多個!
師:那怎么才能全都表示出來呢?
生:可以加省略號。
師:你太厲害了!你把語文上的知識都用上了,太真聰明了!難道不該再來點掌聲嗎?
師:誰能總結(jié)一下你是怎樣找到的?
生:從小到大依次乘自然數(shù)。
師:你真會思考!
課件出示3的倍數(shù)。
2、找5、7的倍數(shù)。
師:我們再來練習(xí)找一下5的倍數(shù)。
生:5的倍數(shù)有:5、10、15、20、25??
生:7的倍數(shù)有:7、14、21、28、35??
師:你能像總結(jié)一個數(shù)因數(shù)的特點一樣,來總結(jié)一下一個數(shù)的倍數(shù)有什么特征嗎?
生:能!
學(xué)生總結(jié):一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
【設(shè)計意圖】在探索求一個數(shù)的倍數(shù)和因數(shù)的方法時,創(chuàng)設(shè)具體的情境讓學(xué)生去合作交流,并結(jié)合具體事例,讓學(xué)生自己觀察并發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征,豐富了教學(xué)方式,讓學(xué)生在觀察中發(fā)現(xiàn),在合作中體驗成功的喜悅,在主動參與、樂于探究中發(fā)展自我。
四、知識拓展
認識“完美數(shù)”。
師:(課件出示6的因數(shù))在6的因數(shù)中還藏著另外一個秘密,(這是孩子們都瞪大眼睛在看,在聽!)我們把6的因數(shù)中最大的一個去掉,剩下1、2、3,然后把它們再加起來又回到6本身,數(shù)學(xué)家給這樣的數(shù)起了一個名字,叫“完美數(shù)”。依次出示第二個、第三個一直到第六個完美數(shù)。
小結(jié):其實有關(guān)因數(shù)和倍數(shù)的秘密還有很多,它們在等待著同學(xué)們在以后的學(xué)習(xí)中去研究、去探索。
【設(shè)計意圖】豐富學(xué)生的知識,陶冶學(xué)生的情操。
教學(xué)反思:
找一個數(shù)因數(shù)的方法是本節(jié)課的難點,如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學(xué)生來說有一定困難,這里充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進行。接著讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進行反思,吸收同伴中好的方法,這時如果再給予有效的指導(dǎo)和總結(jié)就更好了。
找因數(shù)的教學(xué)設(shè)計篇二十一
教學(xué)目標:
1.通過解決實際問題,初步了解兩個數(shù)的公因數(shù)和最大公因數(shù)在現(xiàn)實生活中的應(yīng)用。
2.在探索新知的過程中,培養(yǎng)學(xué)好數(shù)學(xué)的信心以及小組成員之間互相合作的精神。
重點難點:
初步了解兩個數(shù)的公因數(shù)和最大公因數(shù)在現(xiàn)實生活中的應(yīng)用。初步了解兩個數(shù)的公因數(shù)和最大公因數(shù)在現(xiàn)實生活中的應(yīng)用。
教學(xué)方法:
自主學(xué)習(xí)、合作探究
教學(xué)過程:
一、激趣導(dǎo)入
(約5分鐘)
課件展示教材62頁例3,今天我們要給這個房子鋪磚大家感興趣嗎?要求要用整數(shù)塊。
二、自主學(xué)習(xí)
(約5分鐘)
1.幾個數(shù)()叫做這幾個數(shù)的公因數(shù),其中最大的一個叫做()
2.16的因數(shù)有(),24的因數(shù)有(),16和24的公因數(shù)是(),最小公因數(shù)是(),最大公因數(shù)是()。
3.a=225,b=235,那么a和b的最大公因數(shù)是()。
4.用短除法求出99和36的最大公因數(shù)。
三、合作交流
(約13分鐘)
小組合作學(xué)習(xí)教材第62頁例3。
1.學(xué)具操作。
用按一定比例縮小的方格紙表示地面,用不同邊長的正方形紙表示地磚,我們發(fā)現(xiàn)邊長是厘米的正方形的紙可以正好鋪滿,沒有剩余,其它的都不行。
2.仔細觀察,你們發(fā)現(xiàn)能鋪滿的地磚邊長有什么特點?把你的發(fā)現(xiàn)在小組里交流。
3.總結(jié)。
解決這類問題的關(guān)鍵,是把鋪磚問題轉(zhuǎn)化成求公因數(shù)的問題來求。
四、精講點撥
(約8分鐘)
根據(jù)自主學(xué)習(xí)、合作探究的情況明確展示任務(wù),進行展示。教師引導(dǎo)講解。
五、測評總結(jié)(約9分鐘)
1.達標練習(xí)
2.全課總結(jié)
這節(jié)課你都學(xué)到了什么知識?有什么收獲?
3.作業(yè)布置
練習(xí)十五5,6題。
板書設(shè)計:
最大公因數(shù)(2)
鋪磚問題:求公因數(shù)
【本文地址:http://mlvmservice.com/zuowen/4129114.html】