范文為教學(xué)中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。范文怎么寫才能發(fā)揮它最大的作用呢?下面是小編幫大家整理的優(yōu)質(zhì)范文,僅供參考,大家一起來看看吧。
圓柱的體積教學(xué)設(shè)計(jì)篇一
【教學(xué)目標(biāo)】1、理解圓柱體積公式的推導(dǎo)過程。
2、能夠初步地學(xué)會(huì)運(yùn)用體積公式解決簡(jiǎn)單的實(shí)際問題。
3、進(jìn)一步提高學(xué)生解決問題的能力。
【教學(xué)重點(diǎn)】1、理解圓柱體積公式的推導(dǎo)過程。
2、能夠初步地學(xué)會(huì)運(yùn)用體積公式解決簡(jiǎn)單的實(shí)際問題。
【教學(xué)難點(diǎn)】理解圓柱體積公式的推導(dǎo)過程。
【教學(xué)過程】
活動(dòng)一:復(fù)習(xí)舊知。
1、什么是體積?(指名說)
物體所占空間的大小叫做物體的體積。
2、長方體的體積該怎樣計(jì)算?歸納到底面積乘高上來)
3、圓的面積怎樣計(jì)算?
4、圓是把圓面積轉(zhuǎn)化成近似的長方形面積進(jìn)行計(jì)算的。的面積是怎樣推倒得來的?
活動(dòng)二:經(jīng)歷圓柱體積的推導(dǎo)過程,得出公式。
圖形來計(jì)算它的體積?
啟發(fā)學(xué)生思考。
2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會(huì)拼成怎樣的圖形?教師演示。
引導(dǎo)學(xué)生進(jìn)行觀察。
3、思考:
1)圓柱切開后可以拼成一個(gè)什么形體?
2)通過實(shí)驗(yàn)?zāi)惆l(fā)現(xiàn)了什么?
小組討論:實(shí)驗(yàn)前后,什么變了?什么沒變?
討論后,整理出來,再進(jìn)行匯報(bào)。
*拼成的近似長方體體積大小沒變,形狀變了。
*拼成的近似長方體和圓柱相比,底面形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。
*近似長方形的高就是圓柱的高,沒有變化。
4、根據(jù)圓面積的推導(dǎo)公式進(jìn)行猜想:說說你猜想的結(jié)果。
如果把圓柱體32等份,64等份,128等份拼成的長方體的形狀怎么樣?生;平均分的分?jǐn)?shù)越多,拼起來的形體越近似于長方體。
2、通過以上的觀察你發(fā)現(xiàn)了什么?
師:平均分的分?jǐn)?shù)越多,每分扇形的底面就越小,弧就越短,拼成的長方體的長就越近似于一條線段,這樣整個(gè)形體就越近似于長方體。
3、推導(dǎo)圓柱體積公式。
小組討論:怎樣計(jì)算圓柱的體積?
學(xué)生匯報(bào)討論結(jié)果。
長方體的體積可以用底面積乘高來計(jì)算,而在推導(dǎo)過程中,長方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來計(jì)算。
師:圓柱的體積怎樣計(jì)算?用字母公式,怎樣表示?
板書:v=sh
4、算一算:已知一根柱子的底面半徑為0.4米,高為5米。你能算出它的體積嗎?
要求這根柱子的體積,要先求什么?
請(qǐng)你先求底面積,再求體積,自己試計(jì)算。請(qǐng)生板演。
活動(dòng)三:試一試。
正確理解題意,自己完成。
說明:求水桶的容積,就是求水桶的體積。想一想先求什么?
2、一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?
先求底面半徑再求底面積,最后求體積。
已知底面周長對(duì)解決問題有什么幫助嗎?必須先求出什么?
【板書設(shè)計(jì)】
圓柱的體積=底面積x高
v=sh
【課后反思】
圓柱的體積練習(xí)
【教學(xué)目標(biāo)】
1、進(jìn)一步理解圓柱體積公式的由來。
2、能靈活地運(yùn)用公式解決一些簡(jiǎn)單的實(shí)際問題,提高解決問題的能力。
【教學(xué)重點(diǎn)】能靈活地運(yùn)用公式解決一些簡(jiǎn)單的實(shí)際問題,提高解決問題的能力。
【教學(xué)難點(diǎn)】能靈活地運(yùn)用公式解決一些簡(jiǎn)單的實(shí)際問題,提高解決問題的能力。
【教學(xué)過程】
活動(dòng)一:復(fù)習(xí)圓柱體積的計(jì)算公式。
1、長、正方體的體積都可以用什么公式進(jìn)行計(jì)算?
2、圓柱的體積該怎樣計(jì)算?
指名請(qǐng)學(xué)生說。明確:長、正方體和圓柱的體積都可以用底面積乘高來進(jìn)行計(jì)算。
活動(dòng)二:解決簡(jiǎn)單的實(shí)際問題。
1、看圖計(jì)算下面各圓柱的體積。
說說每個(gè)圖已知什么和什么,求什么?怎么求?
2、一個(gè)底面直徑是14厘米,高是20厘米的杯子。能裝下3000毫升的牛奶多少杯?
要求能裝多少杯牛奶,必須先求什么?
自己試獨(dú)立計(jì)算,請(qǐng)同學(xué)板演。集體講評(píng)。
請(qǐng)先求杯子的容積,再求能裝幾杯?自己獨(dú)立計(jì)算。
3、一個(gè)裝滿稻谷的圓柱形糧屯,底面面積為2平方米,高為80厘米。每立方米稻谷約重600千克,這個(gè)糧屯存放的稻谷約重多少千克?通過讀題,你發(fā)現(xiàn)了什么?(要換算單位)
要求這個(gè)糧屯能存放多少稻谷,必須先求什么?(先求體積)明確題意后,自己獨(dú)立計(jì)算。
師:高相等,可以比較底面積的大小。
先獨(dú)立思考,然后同桌交流自己的想法。說說看不計(jì)算,怎樣判斷他們的大???
這個(gè)鐵塊的體積和什么有關(guān)系?求鐵塊的體積就是求什么?
求鐵塊的體積就是求底面直徑是10厘米,高2厘米的圓柱形的水的體積。
6、一根圓柱形木料底面周長是12.56分米,高是4米。
1)它的表面積是多少平方米?
2)它的體積是多少立方米?
3)如果把它截成三段小圓柱,表面積增加多少平方分米?
圓柱的表面積包括什么?怎樣計(jì)算?側(cè)面積怎樣計(jì)算?
體積怎樣計(jì)算?要求底面積先求什么?
表面積增加的部分是什么?增加了幾個(gè)底面?必須先求什么?弄清題意,自己計(jì)算。
圓柱的體積教學(xué)設(shè)計(jì)篇二
1.經(jīng)歷同桌合作,測(cè)量、計(jì)算圓柱形物體體積的過程。
2.會(huì)測(cè)量圓柱形物體的有關(guān)數(shù)據(jù),能根據(jù)圓柱的高及底面直徑或周長計(jì)算圓柱的體積。
3.能與同伴合作尋找解決問題的有效方法,能表達(dá)解決問題的大致過程和結(jié)果。
能根據(jù)學(xué)生自己測(cè)量的數(shù)據(jù)進(jìn)行圓柱體積的計(jì)算。
給出圓柱底面周長如何計(jì)算圓柱的體積。
學(xué)生自備的茶葉筒或露露瓶。
1.師:同學(xué)們,我們要想計(jì)算這個(gè)茶葉筒的體積,應(yīng)該首先知道哪些數(shù)據(jù)?
生:茶葉筒的高,底面直徑或半徑。
師:很好,那么我們就來親手量一量你們手里的圓柱體的各個(gè)數(shù)據(jù),并計(jì)算出它們的體積。
學(xué)生同桌合作測(cè)量并計(jì)算。
2.交流測(cè)量數(shù)據(jù)的方法和計(jì)算的結(jié)果。
生:利用周長先求出半徑,再進(jìn)行計(jì)算。
師:你們會(huì)不會(huì)測(cè)量茶葉筒的底面周長呢?如果已經(jīng)忘記,就進(jìn)行一下提示:在圓柱的底面上做一標(biāo)記,然后把圓柱體在直尺上進(jìn)行滾動(dòng)。或用皮尺測(cè)量。請(qǐng)大家實(shí)際測(cè)量一下底面周長,并進(jìn)行計(jì)算,看看和剛才計(jì)算的結(jié)果是否一致。
2.獨(dú)立完成練一練的1-3題。
1.練一練的第4小題。
圓柱的體積
1.結(jié)合具體事例,經(jīng)歷探索容積計(jì)算問題的過程。
2.掌握計(jì)算容積的'方法,能解決有關(guān)容積的簡(jiǎn)單實(shí)際問題。
3.在解決容積問題的過程中,體驗(yàn)數(shù)學(xué)與日常生活的密切聯(lián)系。
利用體積公式計(jì)算保溫杯的容積。
計(jì)算容積所需要的數(shù)據(jù)是容器內(nèi)壁的高、底面直徑或半徑,如何獲得這些數(shù)據(jù)。
1.求下列圓柱的體積(口答列式)。
(1)底面積3平方分米,高4分米;
(2)底面半徑2厘米,高2厘米;
(3)底面直徑2分米,高3分米。
追問:圓柱的體積是怎樣計(jì)算的?(板書:v=sh)
2.復(fù)習(xí)容積。
提問:什么是容積?它與物體的體積有什么區(qū)別?我們是按什么方法計(jì)算容積的?
3.引入新課。
我們已經(jīng)學(xué)習(xí)過圓柱的體積計(jì)算,知道了容積和容積的計(jì)算方法。這節(jié)課,就在計(jì)算圓柱體積的基礎(chǔ)上,學(xué)習(xí)圓柱的容積計(jì)算。(板書課題)
1.教學(xué)例題。
出示例題,讀題。提問:這道題求什么?你能計(jì)算它的容積嗎?請(qǐng)大家仔細(xì)看一下題目,解答這道題還要注意些什么?(統(tǒng)一單位或改寫體積單位,取近似數(shù))指名學(xué)生板演,其余學(xué)生做在練習(xí)本上。集體訂正,說明每一步求的什么,怎樣求的。同時(shí)注意是怎樣統(tǒng)一單位和取近似值的。
2.注意體積單位和容積單位的區(qū)別,以及它們之間的換算:
1立方分米=1升1立方厘米=1毫升
4.學(xué)生獨(dú)立完成。然后進(jìn)行全班交流。
2.計(jì)算容積與計(jì)算體積有什么相同點(diǎn)和不同點(diǎn)?
把6個(gè)這樣的保溫杯倒?jié)M水,大約需要多少千克水?
注意大頭蛙的話:1毫升水重1克。
1.拿一個(gè)水杯,量出它的內(nèi)直徑和高,算一算這個(gè)水杯大約可以裝多少水?
注意:如果給出水杯的外壁直徑、杯壁厚度和高,怎么計(jì)算?(內(nèi)壁就減兩個(gè)厚度,高減一個(gè)厚度,因?yàn)樗瓫]有蓋。)
2.練一練1:求水杯的水有多少是求水杯的容積嗎?水杯的高度與計(jì)算容積有關(guān)嗎?需要用哪個(gè)數(shù)據(jù)來計(jì)算?(杯中水的高度)
3.練一練第4小題。怎么鋼管的體積?
1)鋼管體積=大圓柱體積-小圓柱體積
2)鋼管體積=鋼管環(huán)形底面積高
圓柱的體積教學(xué)設(shè)計(jì)篇三
本節(jié)內(nèi)容包括圓柱的體積計(jì)算公式的推導(dǎo),利用公式直接計(jì)算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學(xué)生學(xué)過的知識(shí)作鋪墊,采用遷移法,引導(dǎo)學(xué)生將圓柱體化成已學(xué)過的立體圖形,再通過觀察、比較找兩個(gè)圖形之間的關(guān)系,可推導(dǎo)出圓柱的體積計(jì)算公式。例4是圓柱的體計(jì)算公式的直接運(yùn)用,是圓柱體積計(jì)算的基本,但這題又給學(xué)生設(shè)置了單位不統(tǒng)一的障礙,讓學(xué)生在直接應(yīng)用公式計(jì)算的同時(shí)注意計(jì)量單位的統(tǒng)一。例5是圓柱體積計(jì)算公式的擴(kuò)展練習(xí),意在讓學(xué)生加深理解容積的概念,使之明確求水桶的容積就是求水桶內(nèi)部的體積。例5除了在意義上擴(kuò)展外,公式的運(yùn)用中也有加深,水桶的底面積沒有直接給出,因此要先求出水桶的`底面積,再求出水桶的體積。
1.運(yùn)用遷移規(guī)律,引導(dǎo)學(xué)生借助因面積計(jì)算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計(jì)算公式,并理解這個(gè)過程。
2.會(huì)用圓柱的體積計(jì)算圓柱形物體的體積和容積。
3.引導(dǎo)學(xué)生逐步學(xué)會(huì)轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實(shí)際問題的能力
4.借助實(shí)物演示,培養(yǎng)學(xué)生抽象、概括的思維能力。
圓柱體、長方體彩圖各一張,圓柱的體積公式演示教具。
小刀,用土豆做成的一個(gè)圓柱體。
我們能把一個(gè)圓采用化曲為直、化圓為方的方法推導(dǎo)出了圓面積的計(jì)算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個(gè)學(xué)過的立體圖形來求它的體積呢?今天我們一起來探討這個(gè)問題。板書課題:圓柱的體積。
[評(píng)析:復(fù)習(xí)抓住教學(xué)重點(diǎn),瞄準(zhǔn)學(xué)習(xí)新知識(shí)所必須的舊知識(shí),、舊方法進(jìn)行鋪墊,溝通了知識(shí)之間的內(nèi)在聯(lián)系,銜接自然。新課引入教師引出了學(xué)習(xí)新知識(shí)的思路,導(dǎo)出了解決問題的方法,從而調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,激發(fā)了學(xué)生探求新知識(shí)的欲望。
1.探究推導(dǎo)圓柱的體積計(jì)算公式。
(2)請(qǐng)學(xué)生演示教具,學(xué)生邊演示邊講解切割拼合過程。
(3)根據(jù)學(xué)生講解,出示圓柱和長方體的彩圖。
(4)學(xué)生觀察兩個(gè)立體圖,找出兩圖之間有哪些部分是相等的?
(5)依據(jù)長方體的體積計(jì)算公式推導(dǎo)出圓柱的體積計(jì)算公式。板書:v=sh
(6)要用這個(gè)公式計(jì)算圓柱的體積必須知道什么條件?
2.教學(xué)例4
(1)出示例4。
(3)請(qǐng)一名同學(xué)板演,其余同學(xué)在作業(yè)本上做。
(5)教師歸納學(xué)生所用的解題方法。強(qiáng)調(diào)在解題的過程中要注意單位統(tǒng)一。
3.教學(xué)例5
(1)請(qǐng)同學(xué)們想一想,如果已知圓柱底面的半徑rt和高h(yuǎn),怎樣求圓柱的體積?請(qǐng)學(xué)生自學(xué)并填寫第44頁第一自然段的空白部分。
(2)出示例5,指名讀題。請(qǐng)同學(xué)們思考解題方法。
(3)請(qǐng)學(xué)生講解題思路討論、歸納統(tǒng)一的解題方法。
(4)讓學(xué)生按討論的方法做例5。
(5)教師評(píng)講、總結(jié)方法。
(6)學(xué)生討論。比較例4、例5有哪些相同和不同點(diǎn)。
1.做第44頁下面做一做的題目。兩人板演,其余在自己作業(yè)本主做,做完后及時(shí)反饋練習(xí)中出現(xiàn)的錯(cuò)誤,并加以評(píng)講。
2.剛才同學(xué)們?cè)谧隼?時(shí),還有下面幾種解法,請(qǐng)大家仔細(xì)思考,這些解法是對(duì)還是錯(cuò)?試說明理由。
(1)v=sh=5o2.1=105
答:它的體積是105立方厘米
(2)2.1米=210厘米
v=sh=50210=10500
答:它的體積是10500立方厘米。
(3)50立方厘米=0.5立方米
v=sh=0.52.1=1.05(立方米)
答:它的體積是1.05立方米。
(4)50平方厘米=0.005平方米。
v=0.00521=0.01051
答:它的體積是0.01051(立方米)。
問:這節(jié)課里我們學(xué)到了哪些知識(shí)?根據(jù)學(xué)生回答教師總結(jié)。
練習(xí)十一的第1、2題。
圓柱的體積教學(xué)設(shè)計(jì)篇四
各位領(lǐng)導(dǎo)、老師們:
大家好,今天我說課的內(nèi)容是《圓柱的體積》。
《圓柱的體積》是九年義務(wù)教育人教版小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)第三單元的內(nèi)容。本單元是小學(xué)階段學(xué)習(xí)幾何形體知識(shí)的最后部分,是幾何知識(shí)的綜合運(yùn)用?!秷A柱的體積》是在學(xué)生已經(jīng)學(xué)過了圓的面積公式的推導(dǎo)過程和長方體、正方體的體積公式的基礎(chǔ)上進(jìn)行教學(xué)的,學(xué)好這部分知識(shí),為今后學(xué)習(xí)復(fù)雜的形體知識(shí)打下扎實(shí)的基礎(chǔ),是后續(xù)學(xué)習(xí)的前提。
根據(jù)學(xué)生已有的知識(shí)水平和認(rèn)知規(guī)律,我初步擬定以下目標(biāo):
1、使學(xué)生能理解圓柱的體積公式,能夠運(yùn)用公式正確的計(jì)算圓柱的體積。
2、滲透轉(zhuǎn)化、等積變形、極限的數(shù)學(xué)思想。
3、通過圓柱體積公式的推導(dǎo)過程,讓學(xué)生感受探索數(shù)學(xué)奧秘的樂趣,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的信心。
由于圓柱體積計(jì)算是圓錐體積計(jì)算的基礎(chǔ),因此圓柱體積和應(yīng)用是本節(jié)課教學(xué)重點(diǎn)。而圓柱體積計(jì)算公式的推導(dǎo)過程比較復(fù)雜,需要用轉(zhuǎn)化的方法來考慮,我把推導(dǎo)圓柱體積公式的過程定為本節(jié)課的難點(diǎn)。
為了掃清學(xué)生認(rèn)知上的思維障礙,在實(shí)施教學(xué)過程中,我采用以下教學(xué)方法:直觀演示法和知識(shí)遷移法。不僅能夠清楚地展現(xiàn)知識(shí)的形成過程,還能提高學(xué)生靈活運(yùn)用知識(shí)的能力。
本節(jié)課我采用的學(xué)法有觀察法和小組合作交流法
為了有效的突出重點(diǎn)、突破難點(diǎn),我設(shè)計(jì)了以下教學(xué)環(huán)節(jié)。
(一)復(fù)習(xí)舊知,揭示課題
1、上課伊始先出示一組立體圖形(長方體、正方體、圓柱)。
問:你會(huì)計(jì)算那些圖形的體積?提出“圓柱的體積怎樣計(jì)算?”從而揭示課題:這節(jié)課我們就來探討圓柱的體積。
(二)觀察、質(zhì)疑、大膽猜想
師出示兩組不同的圓柱,讓學(xué)生說一說哪個(gè)圓柱大,由此引到圓柱也有體積。鼓勵(lì)學(xué)生大膽猜想,并說明理由。這一環(huán)節(jié)調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性及強(qiáng)烈的探究欲望,學(xué)生為了驗(yàn)證自己的猜想是正確的,極力想辦法,找出推導(dǎo)圓柱體積的方法。
怎樣證明圓柱的大小呢?圓柱的體積可能怎樣計(jì)算呢?讓學(xué)生利用自己的生活經(jīng)驗(yàn)和原有的知識(shí)自然的想到圓柱的體積的大小與底面積和高有關(guān),從而大膽的猜想出圓柱的體積公式。
(三)演示操作,探究新知。
實(shí)踐是檢驗(yàn)真理的唯一標(biāo)準(zhǔn),根據(jù)學(xué)生的猜想,我提出以下問題讓學(xué)生思考:1、可以把長方體的體積計(jì)算公式直接移植過來嗎?2、圓柱和長方體有什么聯(lián)系和區(qū)別?學(xué)生思考后就會(huì)發(fā)現(xiàn)圓柱和長方體都有高,但底面不同,如果能把底面轉(zhuǎn)化成長方形就好了。然后讓學(xué)生小組合作討論交流如何把圓柱體轉(zhuǎn)化成長方體,并讓學(xué)生上臺(tái)操作演示是如何轉(zhuǎn)化的。
同時(shí)引導(dǎo)學(xué)生觀察轉(zhuǎn)化前后兩種幾何形體之間的內(nèi)在聯(lián)系,圓柱的底面與長方體的底面有什么關(guān)系?圓柱的高與長方體的高又有什么關(guān)系?讓他們把各自的發(fā)現(xiàn)在組內(nèi)互相交流,在交流中探究出圓柱的體積的計(jì)算方法。為了加深學(xué)生對(duì)圓柱體積公式的理解,我又課件演示,沿著圓柱底面直徑把圓柱切開,可以得到大小相等的16塊,再拼在一起,可以得到一個(gè)長方體,進(jìn)而可以想到把底面平均分成的次數(shù)越多平成的圖形越接近于長方體。最后讓學(xué)生小組內(nèi)說一說圓柱體計(jì)算公式的推導(dǎo)過程,再指名說,根據(jù)學(xué)生的小結(jié)我板書:圓柱的體積=底面積×高。并引導(dǎo)學(xué)生用字母表示出來。
整個(gè)探究過程充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,激發(fā)求知欲望,調(diào)動(dòng)學(xué)生的各種感官,引導(dǎo)學(xué)生完成“經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程”。讓知識(shí)在觀察、操作、比較中內(nèi)化,實(shí)現(xiàn)由感性到理性,由具體到抽象,這種教學(xué)方法有助于突破難點(diǎn),讓學(xué)生感受到了成功的喜悅。
關(guān)于難點(diǎn)的突破,我主要從以下幾個(gè)方面著手:
(1)引導(dǎo)學(xué)生通過觀察比較,明確圓柱體的體積與它的底面積和高有關(guān)。
(2)運(yùn)用知識(shí)遷移的規(guī)律,啟發(fā)引導(dǎo),層層深入促進(jìn)學(xué)生在積極的思維中獲得新知識(shí)。
(3)充分利用直觀教具,師生互動(dòng),通過演示操作,幫助學(xué)生找出兩種幾何形體轉(zhuǎn)化前后的關(guān)系。
(4)根據(jù)新舊知識(shí)的連接點(diǎn),精心設(shè)計(jì)討論內(nèi)容,分散難點(diǎn),促進(jìn)知識(shí)的形成。
(四)教學(xué)例6
在掌握了圓柱體積計(jì)算的方法之后,我安排例6讓學(xué)生進(jìn)行嘗試練習(xí),這樣既可以調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性和主動(dòng)性,又可以培養(yǎng)學(xué)生學(xué)習(xí)新知識(shí)的能力,同時(shí)把所學(xué)知識(shí)轉(zhuǎn)化為相應(yīng)的技能。
(五)練習(xí)
1.基礎(chǔ)練習(xí)。通過練習(xí),鞏固新知識(shí),加深對(duì)新知識(shí)的理解,
2、拓展練習(xí)
這道題的安排是對(duì)所學(xué)內(nèi)容的深化,在掌握基礎(chǔ)知識(shí)的前提下,培養(yǎng)思維的靈活性,同時(shí)深化教學(xué)內(nèi)容,防止思維定勢(shì)。
我的板書簡(jiǎn)潔清晰,一目了然,能夠清楚的反映出本節(jié)課的知識(shí)。
總之,本節(jié)課我是本著復(fù)習(xí)舊知——發(fā)現(xiàn)問題——提出問題——猜想假設(shè)——實(shí)踐操作——解決問題這一條線進(jìn)行教學(xué)的。放手讓學(xué)生自己發(fā)現(xiàn)問題、解決問題,充分體現(xiàn)了學(xué)生的主體地位,讓學(xué)生體驗(yàn)到了成功的快樂。
我的說課到此結(jié)束,歡迎各位領(lǐng)導(dǎo)多提寶貴意見。謝謝!
圓柱的體積教學(xué)設(shè)計(jì)篇五
1、結(jié)合實(shí)際讓學(xué)生探索并掌握?qǐng)A柱體積的計(jì)算方法,能正確運(yùn)用公式解決簡(jiǎn)單的實(shí)際問題。
2、讓學(xué)生經(jīng)歷觀察、猜想、驗(yàn)證等數(shù)學(xué)活動(dòng)過程,培養(yǎng)學(xué)生空間想象能力和探究推理能力,滲透“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3、通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,獲得成功的喜悅。
理解并掌握?qǐng)A柱體積計(jì)算公式,并能應(yīng)用公式計(jì)算圓柱的體積。
掌握?qǐng)A柱體積公式的推導(dǎo)過程。
圓柱的體積演示教具、多媒體課件、圓柱實(shí)物2個(gè)(一個(gè)為橡皮泥)、水槽、水。
一、情境激趣導(dǎo)入新課
2、提問:“能用一句話說說什么是圓柱的體積嗎?”(板書課題)
二、自主探究,學(xué)習(xí)新知
(一)設(shè)疑
1、從剛才的實(shí)驗(yàn)中你有辦法得到這個(gè)圓柱學(xué)具的體積嗎?
2、再出示一個(gè)用橡皮泥捏成的圓柱體模型,你又能用什么好辦法求出它的體積?
3、如果要求大廳內(nèi)圓柱的體積,或壓路機(jī)前輪的體積,還能用剛才的方法嗎?(生搖頭)
(二)猜想
1、猜想一下圓柱的體積大小可能與什么有關(guān)?理由是什么?
2、大家再來大膽猜測(cè)一個(gè),圓柱的體積公式可能是什么?說說你的理由?
(三)驗(yàn)證
1、為了證實(shí)剛才的猜想,我們可以通過實(shí)驗(yàn)來驗(yàn)證。怎樣進(jìn)行這個(gè)實(shí)驗(yàn)?zāi)??結(jié)合我們以往學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),說說自己的想法。(用轉(zhuǎn)化的方法,根據(jù)學(xué)生敘述課件演示圓的面積公式推導(dǎo)過程)
2、圓柱能轉(zhuǎn)化成我們學(xué)過的什么圖形呢?它又是怎么轉(zhuǎn)化成這種圖形的?(小組討論后匯報(bào)交流)
3、指名兩位學(xué)生上臺(tái)用圓柱體積教具進(jìn)行操作,把圓柱體轉(zhuǎn)化為近似的長方體。
4、根據(jù)學(xué)生操作,師再次課件演示圓柱轉(zhuǎn)化成長方體的過程。并引導(dǎo)學(xué)生分析當(dāng)分的份數(shù)越多時(shí),拼成的圖形越接近長方體。
5、通過上面的觀察小組討論:
(1)圓柱體通過切拼后,轉(zhuǎn)化為近似的長方體,什么變了?什么沒變?
(2)長方體的底面積與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?
(3)長方體的高與原來圓柱體的哪部分有關(guān)系?有什么關(guān)系?
(4)你認(rèn)為圓柱的體積可以怎樣計(jì)算?
(生匯報(bào)交流,師根據(jù)學(xué)生講述適時(shí)板書。)
小結(jié):把圓柱體轉(zhuǎn)化成長方體后,形狀變了,體積不變,長方體的底面積等于圓柱的底面積,高等于圓柱的高,因?yàn)殚L方體的體積等于底面積×高,所以圓柱體積也等于底面積×高,用字母表示是v=sh。
6、同桌相互說說圓柱體積的推導(dǎo)過程。
7、完成“做一做”:一根圓形木料,底面積為75cm2,長是90cm。它的體積是多少?(生練習(xí)展示并評(píng)價(jià))
8、求圓柱體積要具備什么條件?
9、思考:如果只知道圓柱的底面半徑和高,你有辦法求出圓柱的體積嗎?如果是底面直徑和高,或是底面周長和高呢?(學(xué)生討論交流)
小結(jié):可以根據(jù)已知條件先求出圓柱的底面積,再求圓柱的體積。
10、出示課前的圓柱,說一說現(xiàn)在你可以用什么辦法求出這個(gè)圓柱的體積?(測(cè)不同數(shù)據(jù)計(jì)算)
11、練一練:列式計(jì)算求下列各圓柱體的體積。
(1)底面半徑2cm,高5cm。
(2)底面直徑6dm,高1m。
(3)底面周長6.28m,高4m。
三、練習(xí)鞏固拓展提升
1、判斷正誤:
(1)等底等高的圓柱體和長方體體積相等?!ǎ?/p>
(2)一個(gè)圓柱的底面積是10cm2,高是5m,它的.體積是10×5=50cm3。.....()
(3)圓柱的底面積越大,它的體積就越大。............()
(4)一個(gè)圓柱的體積是80cm3,底面積是20cm2,它的高是4cm。......()
四、全課總結(jié)自我評(píng)價(jià)
通過這節(jié)課的學(xué)習(xí)你有什么感受和收獲?
圓柱的體積是幾何知識(shí)的綜合運(yùn)用,它是在學(xué)生了解了圓柱的特征、掌握了長方體和正方體體積以及圓的面積計(jì)算公式推導(dǎo)過程的基礎(chǔ)上進(jìn)行教學(xué)的。由于圓柱是一種含有曲面的幾何體,這給體積的認(rèn)識(shí)和計(jì)算增加了難度。為了降低學(xué)習(xí)難度,讓學(xué)生更好地理解和掌握?qǐng)A柱體積的計(jì)算方法,為后面學(xué)習(xí)圓錐體積打下堅(jiān)實(shí)的基礎(chǔ),因此在本節(jié)課的教學(xué)設(shè)計(jì)上我十分注重從生活情境入手,讓學(xué)生經(jīng)歷圓柱體積的探究過程,通過一系列的數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生探究數(shù)學(xué)知識(shí)的能力和方法,同時(shí)在學(xué)習(xí)活動(dòng)中體驗(yàn)學(xué)習(xí)的樂趣。
從本節(jié)課教學(xué)目標(biāo)的達(dá)成來看,較好地體現(xiàn)了以下幾方面:
一、創(chuàng)設(shè)生活情境,體現(xiàn)數(shù)學(xué)生活化。
《新課程標(biāo)準(zhǔn)》指出:要?jiǎng)?chuàng)設(shè)與學(xué)生生活環(huán)境、知識(shí)背景密切相關(guān)的,又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測(cè)、交流、反思等活動(dòng)中逐步體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗(yàn),感受數(shù)學(xué)的力量,同時(shí)掌握必要的基礎(chǔ)知識(shí)與基本技能。在本節(jié)課中,我從生活情境入手,創(chuàng)設(shè)了一個(gè)裝水的學(xué)具槽放入圓柱學(xué)具使水面上升的情境,引導(dǎo)學(xué)生觀察思考,直觀感知圓柱體積的概念,同時(shí)意識(shí)到過去學(xué)的排水法可以用來求圓柱的體積,緊接著當(dāng)老師再出示橡皮泥捏成的圓柱體模型,并追問大廳內(nèi)圓柱的體積等問題時(shí),學(xué)生意識(shí)到前面所說求體積計(jì)算方法的局限性,從而產(chǎn)生思維困惑,進(jìn)一步激發(fā)了探究圓柱體積計(jì)算方法的欲望。這樣的導(dǎo)入不僅為學(xué)生創(chuàng)造了一個(gè)十分寬松的生活化學(xué)習(xí)環(huán)境,還為學(xué)生后面構(gòu)建數(shù)學(xué)模型,發(fā)現(xiàn)圓柱體積公式奠定了基礎(chǔ)。在練習(xí)的設(shè)計(jì)上,為避免純數(shù)學(xué)的計(jì)算,我以學(xué)生熟悉的學(xué)校圓柱形花壇為背景,提出求花壇填土體積這樣的問題,讓學(xué)生學(xué)會(huì)靈活應(yīng)用知識(shí)解決簡(jiǎn)單的實(shí)際問題,在鞏固體積計(jì)算方法的同時(shí),進(jìn)一步感受到數(shù)學(xué)知識(shí)的使用價(jià)值。這樣的教學(xué)安排不僅體現(xiàn)了數(shù)學(xué)來源于生活,又應(yīng)用于生活的思想,也使數(shù)學(xué)的課堂教學(xué)充滿濃濃的生活味。
二、引導(dǎo)學(xué)生經(jīng)歷知識(shí)探究的全過程。
動(dòng)手實(shí)踐、自主探究、合作交流是《新課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本課教學(xué)中,由于學(xué)具的欠缺,沒能給學(xué)生提供小組動(dòng)手操作的機(jī)會(huì),為了彌補(bǔ)這一不足,最大限度發(fā)揮學(xué)生自主學(xué)習(xí)的作用,教學(xué)中我努力為學(xué)生搭建探究平臺(tái),通過觀察、設(shè)疑、猜想、驗(yàn)證,經(jīng)歷圓柱體積的轉(zhuǎn)化過程,發(fā)展學(xué)生的空間想象能力。在探究圓柱體積的過程中,我從本班學(xué)情出發(fā),大膽放手讓學(xué)生猜想“圓柱體積大小可能與什么有關(guān),可能怎樣計(jì)算,為什么?”,然后再結(jié)合以往學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),回顧圓的面積推導(dǎo)過程,實(shí)現(xiàn)知識(shí)遷移,明確“轉(zhuǎn)化”思想在數(shù)學(xué)研究中的重要意義。為了讓學(xué)生直觀感受到圓柱體轉(zhuǎn)化為長方體的過程,我較好地借助實(shí)物模型和多媒體課件演示,把二者有機(jī)結(jié)合,先讓兩個(gè)學(xué)生上臺(tái)操作演示,然后再課件動(dòng)態(tài)模擬,在學(xué)生充分觀察的基礎(chǔ)上,小組討論交流:當(dāng)圓柱體轉(zhuǎn)化成近似的長方體后什么變了,什么沒變?長方體的底面積與圓柱的底面積有什么關(guān)系?長方體的高與圓柱的高有什么關(guān)系?從而得出結(jié)論:圓柱的體積等于底面積乘以高。整個(gè)探究過程以學(xué)生自主學(xué)習(xí)為主,知識(shí)的形成給學(xué)生留下深刻的印象。伴隨著問題的圓滿解決,學(xué)生體驗(yàn)到了成功的喜悅與滿足。
三、注重學(xué)法指導(dǎo)和數(shù)學(xué)思想方法的滲透。
“學(xué)會(huì)學(xué)習(xí)”是對(duì)學(xué)生“學(xué)”的最高要求,因此在教學(xué)中不但要教給學(xué)生知識(shí),更要教給學(xué)生學(xué)習(xí)的方法,讓學(xué)生終身受用。在本節(jié)課的教學(xué)中,我把“觀察、猜想、驗(yàn)證”的學(xué)法指導(dǎo),貫穿于整個(gè)學(xué)習(xí)過程,使學(xué)生學(xué)得主動(dòng)有效。在探究方法的引導(dǎo)上從回憶圓的面積公式推導(dǎo)入手,確定轉(zhuǎn)化的方法,體驗(yàn)轉(zhuǎn)化的過程,驗(yàn)證轉(zhuǎn)化的結(jié)果,使“轉(zhuǎn)化”、“極限”等數(shù)學(xué)思想在課中得到良好滲透,學(xué)生進(jìn)一步體會(huì)到科學(xué)、條理的數(shù)學(xué)思維方式,從而發(fā)展了學(xué)生的數(shù)學(xué)能力。
圓柱的體積教學(xué)設(shè)計(jì)篇六
1. 教學(xué)內(nèi)容
本節(jié)課是人教版六年小學(xué)數(shù)學(xué)課本第十二冊(cè)第三單元第二小節(jié)第一課時(shí)。內(nèi)容包括圓柱體的體積計(jì)算公式的推導(dǎo)和運(yùn)用公式計(jì)算它的體積。
2. 本節(jié)課在教材中所處的地位和作用
《圓柱和圓錐》這一單元是小學(xué)階段學(xué)習(xí)幾何形體知識(shí)的最后部分,是幾何知識(shí)的綜合運(yùn)用。學(xué)好這部分知識(shí),為今后學(xué)習(xí)復(fù)雜的形體知識(shí)打下扎實(shí)的基礎(chǔ),是后繼學(xué)習(xí)的前提。
3. 教材的重點(diǎn)和難點(diǎn)
由于圓柱體積計(jì)算是圓錐體積計(jì)算的基礎(chǔ),因此圓柱體積和應(yīng)用是本節(jié)課教學(xué)重點(diǎn)。其中,圓柱體積計(jì)算公社的推導(dǎo)過程比較復(fù)雜,需要用轉(zhuǎn)化的方法來考慮,推導(dǎo)過程要有一定的邏輯推理能力,因此,推導(dǎo)圓柱體積公式的過程是本節(jié)課的難點(diǎn)。
4. 教學(xué)目標(biāo)
(1) 知道圓柱體積計(jì)算公式的推導(dǎo)過程,會(huì)應(yīng)用該公式計(jì)算圓柱的.體積。
(2) 初步建立空間觀念和邏輯推理能力。
(3) 知道知識(shí)間是可以互相轉(zhuǎn)化的。
從形式已有的知識(shí)水平和認(rèn)識(shí)規(guī)律出發(fā),為了更好地突出重點(diǎn),化解難點(diǎn),掃清學(xué)生認(rèn)知上的思維障礙,在實(shí)施教學(xué)過程中,主要體現(xiàn)以下幾個(gè)特點(diǎn):
1. 直觀演示,操作發(fā)現(xiàn)
教師充分利用直觀教具演示,引導(dǎo)學(xué)生觀察比較,再讓學(xué)生動(dòng)手操作討論,使學(xué)生在豐富感性認(rèn)識(shí)的基礎(chǔ)上,在老師的指導(dǎo)下,推導(dǎo)出圓柱體積計(jì)算的公式。從而使學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),體會(huì)知識(shí)的由來,并通過已學(xué)知識(shí)解決實(shí)際問題,充分發(fā)揮了直觀教學(xué)在知識(shí)形成過程中的積極作用,同時(shí)也培養(yǎng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的能力和學(xué)習(xí)習(xí)慣。
2. 巧設(shè)疑問,體現(xiàn)兩“主”
教師通過設(shè)疑,指明觀察方向,營造探究新知識(shí)的氛圍,在引導(dǎo)學(xué)生歸納推理等方面充分發(fā)揮了其主導(dǎo)作用,有目的、有計(jì)劃、有層次地啟迪學(xué)生的思維,充分發(fā)揮了學(xué)生的主體作用。把學(xué)生當(dāng)作教學(xué)活動(dòng)的主體,成為學(xué)習(xí)活動(dòng)的主人,使學(xué)生在觀察、比較、討論、研究等一系列活動(dòng)中參與教學(xué)全過程,從而達(dá)到掌握新知識(shí)和發(fā)展能力的目的。
3. 運(yùn)用遷移,深化提高
運(yùn)用知識(shí)的遷移規(guī)律,培養(yǎng)學(xué)生利用舊知學(xué)習(xí)新知的能力,從而使學(xué)生主動(dòng)學(xué)習(xí),掌握知識(shí),形成技能。
課堂教學(xué)中,不是老師單純地傳授知識(shí),而是在老師的指引下,讓學(xué)生自己學(xué),任何人都不能替代學(xué)生學(xué)習(xí)。所以要把教法融于學(xué)法中,在學(xué)法中體現(xiàn)教法。
本節(jié)課的教學(xué),使學(xué)生掌握一些基本的學(xué)習(xí)方法
1. 學(xué)會(huì)通過觀察、比較、推理能概括出圓柱體積的推導(dǎo)過程。
2. 學(xué)會(huì)利用舊知轉(zhuǎn)化成新知,解決新問題的能力。
3. 學(xué)會(huì)利用知識(shí)的遷移規(guī)律,把知識(shí)轉(zhuǎn)化成相應(yīng)的技能,從而提高靈活運(yùn)用的能力。
對(duì)本節(jié)課的教學(xué),我們?cè)O(shè)計(jì)了以下幾個(gè)環(huán)節(jié)。
(一)復(fù)習(xí)舊知識(shí),為引入新知識(shí)作準(zhǔn)備
1. 求下面各圓的面積(口算),單位為厘米
(1) 半徑為1厘米;
(2)直徑為4厘米;
(3)周長為62。8厘米。
2. 什么叫做體積?怎樣計(jì)算長方體的體積?
(二)導(dǎo)入新課,隱射教學(xué)目標(biāo)
1.觀察比較:出示幾組圓柱體實(shí)物(同底等高、同底不等高、等高不等底),引導(dǎo)學(xué)生觀察比較,老師提出問題:通過觀察,你想知道些什么?了解些什么?引導(dǎo)學(xué)生產(chǎn)生疑問后,教師這時(shí)交待,我們今天要學(xué)習(xí)的新知識(shí),就能很好地解決這個(gè)問題(揭示課題)。讓學(xué)生自行設(shè)疑,教師向?qū)W生交待學(xué)習(xí)任務(wù),使學(xué)生對(duì)新知識(shí)產(chǎn)生強(qiáng)烈的求知欲望,從而進(jìn)入最佳的學(xué)習(xí)狀態(tài)。
2. 展示學(xué)習(xí)目標(biāo),學(xué)生認(rèn)讀目標(biāo)
教師通過展示目標(biāo),學(xué)生認(rèn)讀目標(biāo),這時(shí)學(xué)生就能清楚地知道了學(xué)習(xí)的主要任務(wù)和要求,從而把教師的教學(xué)目標(biāo),轉(zhuǎn)化成了學(xué)生的學(xué)習(xí)目標(biāo)。使學(xué)生帶著目標(biāo),有目的、有準(zhǔn)備地學(xué)習(xí)下一步的新知識(shí),學(xué)生就真正能成為學(xué)習(xí)的主人,也使教學(xué)變得更加明確具體,可操作、可檢測(cè)。同時(shí)也能激發(fā)起全體學(xué)生的參與達(dá)標(biāo)意識(shí),學(xué)生的主體地位就充分地顯示出來了。
(三)導(dǎo)入新課,實(shí)施教學(xué)目標(biāo)
1.設(shè)疑:要判斷圓柱體積的大小,究竟哪個(gè)大?哪個(gè)???到底圓柱的體積與什么有關(guān)呢?能不能把圓柱轉(zhuǎn)化成我們學(xué)過的立體圖形來計(jì)算它的體積?這里老師引導(dǎo)學(xué)生回憶圓的面積公式的推導(dǎo)過程,教師出示投影,幫助學(xué)生思考。
2.演示操作,揭示新知。
引導(dǎo)學(xué)生用字母表示出來,最后讓學(xué)生看書質(zhì)疑。
這部分教學(xué)設(shè)計(jì)意圖:根據(jù)教材特點(diǎn),學(xué)生的認(rèn)知過程,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,激發(fā)求知欲望,調(diào)動(dòng)學(xué)生的各種感官,完成從演示——觀察——操作——比較——?dú)w納——推理的認(rèn)識(shí)過程,讓知識(shí)在觀察、操作、比較中內(nèi)化,實(shí)現(xiàn)由感性到理性,由具體到抽象,這種教學(xué)方法符合學(xué)生的認(rèn)知規(guī)律,有助于突破難點(diǎn),化解難點(diǎn)。
關(guān)于難點(diǎn)的突破,我們主要從以下幾個(gè)方面著手:
(1) 引導(dǎo)學(xué)生通過觀察比較,明確圓柱體的體積與它的底面積和高有關(guān)。
(2) 運(yùn)用知識(shí)遷移的規(guī)律,啟發(fā)引導(dǎo),層層深入促進(jìn)學(xué)生在積極的思維中獲得新知識(shí)。
(3) 充分利用直觀教具,師生互動(dòng),通過演示操作,幫助學(xué)生找出兩種幾何形體轉(zhuǎn)化前后的關(guān)系。
(4) 根據(jù)新舊知識(shí)的連接點(diǎn),精心設(shè)計(jì)討論內(nèi)容,分散難點(diǎn),促進(jìn)知識(shí)的形成。
3. 運(yùn)用。
出示例1:先由學(xué)生自己嘗試練習(xí),請(qǐng)一位學(xué)生板演,集體講評(píng)時(shí)提問學(xué)生,在解題時(shí)要注意什么?讓學(xué)生自己來概括總結(jié),通過學(xué)生的語言說出:(1)單位要統(tǒng)一(2)求出的是體積要用體積單位。
在掌握了圓柱體積計(jì)算的方法之后,安排例1進(jìn)行嘗試練習(xí),這樣既可以調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性和主動(dòng)性,又可以培養(yǎng)學(xué)生學(xué)習(xí)新知識(shí)的能力,同時(shí)把所學(xué)知識(shí)轉(zhuǎn)化為相應(yīng)的技能。
(四)鞏固練習(xí),檢驗(yàn)?zāi)繕?biāo)
2.完成練習(xí)六第2題。
通過練習(xí),鞏固新知識(shí),加深對(duì)新知識(shí)的理解,把所學(xué)知識(shí)進(jìn)一步轉(zhuǎn)化為能力,在練習(xí)中發(fā)展智力,培養(yǎng)優(yōu)良的思維品質(zhì)和學(xué)習(xí)習(xí)慣。
3.變式練習(xí):已知圓柱的體積、底面積,求圓柱的高。
這道題的安排是對(duì)所學(xué)內(nèi)容的深化,在掌握基礎(chǔ)知識(shí)的前提下,培養(yǎng)思維的靈活性,同時(shí)深化教學(xué)內(nèi)容,防止思維定勢(shì)。
4.動(dòng)手實(shí)踐:讓學(xué)生測(cè)量自帶的圓柱體。
這道題的設(shè)計(jì),一方面培養(yǎng)了學(xué)生解決實(shí)際問題的能力,另一方面也加深了對(duì)圓柱體積計(jì)算公式的理解,同時(shí)數(shù)學(xué)知識(shí)也和學(xué)生的生活實(shí)際結(jié)合起來,使學(xué)生明白,我們所學(xué)的數(shù)學(xué)是身邊的數(shù)學(xué),是有趣的、有用的數(shù)學(xué),從而激發(fā)學(xué)生的學(xué)習(xí)興趣。
(五)總結(jié)全課,深化教學(xué)目標(biāo)
結(jié)合板書,引導(dǎo)學(xué)生說出本課所學(xué)的內(nèi)容,我們是這樣設(shè)計(jì)的:這節(jié)課我們學(xué)習(xí)了哪些內(nèi)容?圓柱體積的計(jì)算公式是怎樣推導(dǎo)出來的?你有什么收獲?然后教師歸納,通過本節(jié)課的學(xué)習(xí),我們懂得了新知識(shí)的得來是通過已學(xué)的知識(shí)來解決的,以后希望同學(xué)們多動(dòng)腦,勤思考,在我們的生活中還有好多問題需要利用所學(xué)知識(shí)來解決的,望同學(xué)們能學(xué)會(huì)運(yùn)用,善于用轉(zhuǎn)化的思想來武裝自己的頭腦,思考問題。
圓柱的體積教學(xué)設(shè)計(jì)篇七
一、把握教材,目標(biāo)定位
《圓柱的體積》是在學(xué)生初步認(rèn)識(shí)了圓柱體的基礎(chǔ)上,進(jìn)一步研究圓柱體的特征,讓學(xué)生比較深入地研究立體幾何圖形,是學(xué)生發(fā)展空間觀念的又一次飛躍。圓柱體是基本的立體幾何圖形,通過學(xué)習(xí),可以培養(yǎng)學(xué)生形成初步的空間觀念,為下一步學(xué)習(xí)“圓錐的體積”打下基礎(chǔ)。根據(jù)本節(jié)課的性質(zhì)特點(diǎn)和六年級(jí)學(xué)生以形象思維為主、空間觀念還比較薄弱的特點(diǎn),我確定本節(jié)課的教學(xué)目標(biāo)為:
1、知識(shí)與能力:通過推導(dǎo)圓柱體積公式的過程,向?qū)W生滲透轉(zhuǎn)化思想,建立空間觀念,培養(yǎng)學(xué)生判斷、推理的能力和遷移能力。
2、過程與方法:結(jié)合具體情境和實(shí)踐活動(dòng),理解圓柱體積的含義。探索并掌握?qǐng)A柱體積的計(jì)算方法,能正確計(jì)算圓柱的體積,并會(huì)解決一些簡(jiǎn)單的實(shí)際問題。
3、情感、態(tài)度、價(jià)值觀:感悟數(shù)學(xué)知識(shí)的內(nèi)在聯(lián)系,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),激發(fā)學(xué)生的學(xué)習(xí)興趣。
教學(xué)的重點(diǎn)和難點(diǎn):
由于圓柱體積計(jì)算是圓錐體積計(jì)算的基礎(chǔ),因此圓柱體積和應(yīng)用是本節(jié)課教學(xué)重點(diǎn)。其中,圓柱體積計(jì)算公式的推導(dǎo)過程比較復(fù)雜,需要用轉(zhuǎn)化的'方法來推導(dǎo),推導(dǎo)過程要有一定的邏輯推理能力,因此,推導(dǎo)圓柱體積公式的過程是本節(jié)課的難點(diǎn)。
二、把握學(xué)情,選擇教法
(一)學(xué)情分析
六年級(jí)的學(xué)生已經(jīng)有了較豐富的生活經(jīng)驗(yàn),這些感性經(jīng)驗(yàn)是他們進(jìn)一步學(xué)習(xí)的基礎(chǔ),本節(jié)課的學(xué)習(xí)過程正是讓學(xué)生的感性經(jīng)驗(yàn)上升到理性經(jīng)驗(yàn)的過程,符合學(xué)生的年齡特征和認(rèn)知規(guī)律,在這一過程中,能使學(xué)生體會(huì)到認(rèn)識(shí)事物和歸納事物特征的方法,學(xué)會(huì)運(yùn)用數(shù)學(xué)的思維方式去認(rèn)識(shí)世界。
(二)、選擇教法,實(shí)踐課題。
《新課程標(biāo)準(zhǔn)》指出:數(shù)學(xué)教學(xué)應(yīng)聯(lián)系現(xiàn)實(shí)生活,使學(xué)生從中獲得數(shù)學(xué)學(xué)習(xí)的積極情感體驗(yàn),感受數(shù)學(xué)的力量。同時(shí)我緊密結(jié)合自己的課題“培養(yǎng)學(xué)生自主合作學(xué)習(xí)能力與學(xué)生數(shù)學(xué)素養(yǎng)的策略研究”、“在數(shù)學(xué)課上如何激發(fā)學(xué)生的學(xué)習(xí)興趣”。通過教學(xué)實(shí)踐,使學(xué)生學(xué)會(huì)自主學(xué)習(xí)和小組合作,培養(yǎng)學(xué)生的創(chuàng)新精神和小組合作及應(yīng)用數(shù)學(xué)意識(shí)。因此,在本節(jié)課中,我認(rèn)為運(yùn)用活動(dòng)教學(xué)形態(tài),多媒體演示形態(tài),采取“引導(dǎo)-合作-自主—探究”的教學(xué)方法,使每個(gè)學(xué)生都能參與到學(xué)習(xí)中,感受到學(xué)習(xí)的樂趣,從而突破本課的難點(diǎn)。
三、教學(xué)策略的選擇。
現(xiàn)代教育心理學(xué)認(rèn)為:小學(xué)生思維的發(fā)展是從具體形象思維向抽象思維過渡的。因此,按小學(xué)認(rèn)知規(guī)律從“具體感知-形成表象-進(jìn)行抽象”的過程,我打算主要采用觀察發(fā)現(xiàn)法、實(shí)驗(yàn)法,以及分組討論、合作學(xué)習(xí)等形式,并運(yùn)用多媒體課件輔助教學(xué),讓學(xué)生在觀察、感知各種實(shí)物的基礎(chǔ)上,動(dòng)手操作,分組討論、合作學(xué)習(xí),教師恰當(dāng)點(diǎn)撥,適時(shí)引導(dǎo)等方法及手段,激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,讓學(xué)生通過動(dòng)手操作、觀察、實(shí)驗(yàn)得出結(jié)論,體現(xiàn)了以學(xué)生為主體、教師為主導(dǎo)的教學(xué)原則。
四、說教法
為了掃清學(xué)生認(rèn)知上的思維障礙,在實(shí)施教學(xué)過程中,我采用以下教學(xué)方法:直觀演示法和知識(shí)遷移法。不僅能夠清楚地展現(xiàn)知識(shí)的形成過程,還能提高學(xué)生靈活運(yùn)用知識(shí)的能力。
五、說學(xué)法
本節(jié)課我采用的學(xué)法有觀察法和小組合作交流法
六、說教學(xué)過程
為了有效的突出重點(diǎn)、突破難點(diǎn),我設(shè)計(jì)了以下教學(xué)環(huán)節(jié)。
(一)復(fù)習(xí)舊知,揭示課題
1、上課伊始先出示一組立體圖形(長方體、正方體、圓柱)。
問:你會(huì)計(jì)算那些圖形的體積?提出“圓柱的體積怎樣計(jì)算?”從而揭示課題:這節(jié)課我們就來探討圓柱的體積。
(二)觀察、質(zhì)疑、大膽猜想
師出示兩組不同的圓柱,讓學(xué)生說一說哪個(gè)圓柱大,由此引到圓柱也有體積。鼓勵(lì)學(xué)生大膽猜想,并說明理由。這一環(huán)節(jié)調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性及強(qiáng)烈的探究欲望,學(xué)生為了驗(yàn)證自己的猜想是正確的,極力想辦法,找出推導(dǎo)圓柱體積的方法。
怎樣證明圓柱的大小呢?圓柱的體積可能怎樣計(jì)算呢?讓學(xué)生利用自己的生活經(jīng)驗(yàn)和原有的知識(shí)自然的想到圓柱的體積的大小與底面積和高有關(guān),從而大膽的猜想出圓柱的體積公式。
(三)演示操作,探究新知。
實(shí)踐是檢驗(yàn)真理的唯一標(biāo)準(zhǔn),根據(jù)學(xué)生的猜想,我提出以下問題讓學(xué)生思考:1、可以把長方體的體積計(jì)算公式直接移植過來嗎?2、圓柱和長方體有什么聯(lián)系和區(qū)別?學(xué)生思考后就會(huì)發(fā)現(xiàn)圓柱和長方體都有高,但底面不同,如果能把底面轉(zhuǎn)化成長方形就好了。然后讓學(xué)生小組合作討論交流如何把圓柱體轉(zhuǎn)化成長方體,并讓學(xué)生上臺(tái)操作演示是如何轉(zhuǎn)化的。
同時(shí)引導(dǎo)學(xué)生觀察轉(zhuǎn)化前后兩種幾何形體之間的內(nèi)在聯(lián)系,圓柱的底面與長方體的底面有什么關(guān)系?圓柱的高與長方體的高又有什么關(guān)系?讓他們把各自的發(fā)現(xiàn)在組內(nèi)互相交流,在交流中探究出圓柱的體積的計(jì)算方法。為了加深學(xué)生對(duì)圓柱體積公式的理解,我又課件演示,沿著圓柱底面直徑把圓柱切開,可以得到大小相等的16塊,再拼在一起,可以得到一個(gè)長方體,進(jìn)而可以想到把底面平均分成的次數(shù)越多平成的圖形越接近于長方體。最后讓學(xué)生小組內(nèi)說一說圓柱體計(jì)算公式的推導(dǎo)過程,再指名說,根據(jù)學(xué)生的小結(jié)我板書:圓柱的體積=底面積×高。并引導(dǎo)學(xué)生用字母表示出來。
整個(gè)探究過程充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,激發(fā)求知欲望,調(diào)動(dòng)學(xué)生的各種感官,引導(dǎo)學(xué)生完成“經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程”。讓知識(shí)在觀察、操作、比較中內(nèi)化,實(shí)現(xiàn)由感性到理性,由具體到抽象,這種教學(xué)方法有助于突破難點(diǎn),讓學(xué)生感受到了成功的喜悅。
關(guān)于難點(diǎn)的突破,我主要從以下幾個(gè)方面著手:(1)引導(dǎo)學(xué)生通過觀察比較,明確圓柱體的體積與它的底面積和高有關(guān)。(2)運(yùn)用知識(shí)遷移的規(guī)律,啟發(fā)引導(dǎo),層層深入促進(jìn)學(xué)生在積極的思維中獲得新知識(shí)。(3)充分利用直觀教具,師生互動(dòng),通過演示操作,幫助學(xué)生找出兩種幾何形體轉(zhuǎn)化前后的關(guān)系。(4)根據(jù)新舊知識(shí)的連接點(diǎn),精心設(shè)計(jì)討論內(nèi)容,分散難點(diǎn),促進(jìn)知識(shí)的形成。
(四)、教學(xué)例6
在掌握了圓柱體積計(jì)算的方法之后,我安排例6讓學(xué)生進(jìn)行嘗試練習(xí),這樣既可以調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性和主動(dòng)性,又可以培養(yǎng)學(xué)生學(xué)習(xí)新知識(shí)的能力,同時(shí)把所學(xué)知識(shí)轉(zhuǎn)化為相應(yīng)的技能。
(五)、練習(xí)
1.基礎(chǔ)練習(xí)。通過練習(xí),鞏固新知識(shí),加深對(duì)新知識(shí)的理解,
2、拓展練習(xí)
這道題的安排是對(duì)所學(xué)內(nèi)容的深化,在掌握基礎(chǔ)知識(shí)的前提下,培養(yǎng)思維的靈活性,同時(shí)深化教學(xué)內(nèi)容,防止思維定勢(shì)。
七、說板書設(shè)計(jì)
我的板書簡(jiǎn)潔清晰,一目了然,能夠清楚的反映出本節(jié)課的知識(shí)。
總之,本節(jié)課我是本著復(fù)習(xí)舊知——發(fā)現(xiàn)問題——提出問題——猜想假設(shè)——實(shí)踐操作——解決問題這一條線進(jìn)行教學(xué)的。放手讓學(xué)生自己發(fā)現(xiàn)問題、解決問題,充分體現(xiàn)了學(xué)生的主體地位,讓學(xué)生體驗(yàn)到了成功的快樂。
我的說課到此結(jié)束,歡迎各位領(lǐng)導(dǎo)多提寶貴意見。謝謝!
圓柱的體積教學(xué)設(shè)計(jì)篇八
1.結(jié)合具體情境,讓學(xué)生探索并掌握?qǐng)A柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡(jiǎn)單的實(shí)際問題。
2.讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3.通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
掌握和運(yùn)用圓柱體積計(jì)算公式,圓柱體積公式的推導(dǎo)過程。
從生活情境入手,通過組織猜測(cè)、操作、交流等數(shù)學(xué)活動(dòng),使學(xué)生經(jīng)歷“做數(shù)學(xué)”的過程,鼓勵(lì)學(xué)生獨(dú)立思考,引導(dǎo)學(xué)生自主探索、合作交流,讓學(xué)生根據(jù)已有的知識(shí)經(jīng)驗(yàn)創(chuàng)造性地建構(gòu)圓柱體積計(jì)算公式,鼓勵(lì)解決問題策略的多樣化,讓學(xué)生的思維得到發(fā)展,創(chuàng)新精神、實(shí)踐能力得到提高。
(一)創(chuàng)設(shè)情景提出問題情境引入:
(二)動(dòng)手實(shí)驗(yàn),探索公式
1.觀察、比較,建立猜想引導(dǎo)生觀察例4中的三個(gè)幾何體,提問:
(1)長方體、正方體的體積相等嗎?為什么?
(板書:長方體的體積=底面積x高)
2.實(shí)驗(yàn)操作,驗(yàn)證猜想讓學(xué)生自主探究(材料:圓柱體插拼教學(xué)具、師準(zhǔn)備課件),想辦法驗(yàn)證圓柱的體積與長方體、正方體的體積相等。
教師提示:你能想辦法把圓柱轉(zhuǎn)化成長方體嗎?圓是如何轉(zhuǎn)化成長方形的`?可以模仿這樣的方法來轉(zhuǎn)化。
(1)小組合作研究怎樣將圓柱體轉(zhuǎn)化成一個(gè)長方體
(2)小組代表匯報(bào),全班交流
(學(xué)生按照自己的方式來轉(zhuǎn)化,會(huì)有多種轉(zhuǎn)化方法,教師適時(shí)加以鼓勵(lì))
演示操作
a請(qǐng)一名學(xué)生演示用切插拼的方法把圓柱體轉(zhuǎn)化成長方體。其他學(xué)生模仿操作。
b思考:這是一個(gè)標(biāo)準(zhǔn)的長方體嗎?為什么?如果分割得份數(shù)越多,你會(huì)有什么發(fā)現(xiàn)?
c電腦演示圓柱體轉(zhuǎn)化成長方體的過程(從16等份到32等份再到64等份)
3.觀察比較,推導(dǎo)公式
a圓柱體轉(zhuǎn)化成長方體后,什么變了,什么沒有變?
b根據(jù)學(xué)生的觀察、分析、推想,老師完成板書:
長方體的體積=底面積x高
圓柱的體積=底面積x高
d小結(jié):要想求出一個(gè)圓柱的體積,需要知道什么條件?e學(xué)生自學(xué)第8頁例4上面的一段話:用字母表示公式。
學(xué)生反饋?zhàn)詫W(xué)情況,師板書公式:v=sh
(三)鞏固練習(xí),拓展應(yīng)用
1.出示第26頁試一試,學(xué)生理解題意,獨(dú)立完成。集體訂正,說一說每一步列式的根據(jù)是什么?使學(xué)生明確應(yīng)用體積公式求圓柱的體積一般需要兩個(gè)條件,即底面積和高。
2.完成第26頁的“練一練”的第1題。
先看圖說說每個(gè)圓柱中的已知條件,再各自計(jì)算,計(jì)算后,說一說計(jì)算的過程,強(qiáng)調(diào):計(jì)算圓柱體的體積要先算出底面積。
3.完成第26頁的“練一練”的第2題。
讀題后強(qiáng)調(diào)說說為什么電飯煲要從里面量底面直徑和高,然后列式解答。
4、把直尺繞著它的一條邊旋轉(zhuǎn)一圈得到了一個(gè)什么圖形?它的體積你會(huì)計(jì)算嗎?
(四)總結(jié)回顧評(píng)價(jià)反思
這節(jié)課你學(xué)會(huì)了什么?你是怎樣學(xué)會(huì)的?
圓柱的體積教學(xué)設(shè)計(jì)篇九
本節(jié)內(nèi)容包括圓柱的體積計(jì)算公式的推導(dǎo),利用公式直接計(jì)算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學(xué)生學(xué)過的知識(shí)作鋪墊,采用遷移法,引導(dǎo)學(xué)生將圓柱體化成已學(xué)過的立體圖形,再通過觀察、比較找兩個(gè)圖形之間的關(guān)系,可推導(dǎo)出圓柱的體積計(jì)算公式。例4是圓柱的體計(jì)算公式的直接運(yùn)用,是圓柱體積計(jì)算的基本,但這題又給學(xué)生設(shè)置了單位不統(tǒng)一的障礙,讓學(xué)生在直接應(yīng)用公式計(jì)算的同時(shí)注意計(jì)量單位的統(tǒng)一。例5是圓柱體積計(jì)算公式的擴(kuò)展練習(xí),意在讓學(xué)生加深理解容積的概念,使之明確求水桶的容積就是求水桶內(nèi)部的體積。例5除了在意義上擴(kuò)展外,公式的運(yùn)用中也有加深,水桶的底面積沒有直接給出,因此要先求出水桶的底面積,再求出水桶的體積。
1、運(yùn)用遷移規(guī)律,引導(dǎo)學(xué)生借助因面積計(jì)算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計(jì)算公式,并理解這個(gè)過程。
2.會(huì)用圓柱的體積計(jì)算圓柱形物體的體積和容積。
3.引導(dǎo)學(xué)生逐步學(xué)會(huì)轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實(shí)際問題的能力
4.借助實(shí)物演示,培養(yǎng)學(xué)生抽象、概括的思維能力。
圓柱體、長方體彩圖各一張,圓柱的體積公式演示教具。
小刀,用土豆做成的一個(gè)圓柱體。
我們能把一個(gè)圓采用化曲為直、化圓為方的方法推導(dǎo)出了圓面積的計(jì)算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個(gè)學(xué)過的立體圖形來求它的體積呢?今天我們一起來探討這個(gè)問題。板書課題:圓柱的體積。
[評(píng)析:復(fù)習(xí)抓住教學(xué)重點(diǎn),瞄準(zhǔn)學(xué)習(xí)新知識(shí)所必須的舊知識(shí),、舊方法進(jìn)行鋪墊,溝通了知識(shí)之間的.內(nèi)在聯(lián)系,銜接自然。新課引入教師引出了學(xué)習(xí)新知識(shí)的思路,導(dǎo)出了解決問題的方法,從而調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,激發(fā)了學(xué)生探求新知識(shí)的欲望。
1.探究推導(dǎo)圓柱的體積計(jì)算公式。
(2)請(qǐng)學(xué)生演示教具,學(xué)生邊演示邊講解切割拼合過程。
(3)根據(jù)學(xué)生講解,出示圓柱和長方體的彩圖。
(4)學(xué)生觀察兩個(gè)立體圖,找出兩圖之間有哪些部分是相等的?
(5)依據(jù)長方體的體積計(jì)算公式推導(dǎo)出圓柱的體積計(jì)算公式。板書:v=sh
(6)要用這個(gè)公式計(jì)算圓柱的體積必須知道什么條件?
2.教學(xué)例4
(1)出示例4。
(3)請(qǐng)一名同學(xué)板演,其余同學(xué)在作業(yè)本上做。
(5)教師歸納學(xué)生所用的解題方法。強(qiáng)調(diào)在解題的過程中要注意單位統(tǒng)一。
3.教學(xué)例5
(1)請(qǐng)同學(xué)們想一想,如果已知圓柱底面的半徑rt和高h(yuǎn),怎樣求圓柱的體積?請(qǐng)學(xué)生自學(xué)并填寫第44頁第一自然段的空白部分。
(2)出示例5,指名讀題。請(qǐng)同學(xué)們思考解題方法。
(3)請(qǐng)學(xué)生講解題思路討論、歸納統(tǒng)一的解題方法。
(4)讓學(xué)生按討論的方法做例5。
(5)教師評(píng)講、總結(jié)方法。
(6)學(xué)生討論。比較例4、例5有哪些相同和不同點(diǎn)。
1.做第44頁下面做一做的題目。兩人板演,其余在自己作業(yè)本主做,做完后及時(shí)反饋練習(xí)中出現(xiàn)的錯(cuò)誤,并加以評(píng)講。
2.剛才同學(xué)們?cè)谧隼?時(shí),還有下面幾種解法,請(qǐng)大家仔細(xì)思考,這些解法是對(duì)還是錯(cuò)?試說明理由。
(1)v=sh=5o2.1=105
答:它的體積是105立方厘米
(2)2.l米=210厘米
v=sh=50210=10500
答:它的體積是10500立方厘米。
(3)50立方厘米=0.5立方米
v=sh=0.52.1=1.05(立方米)
答:它的體積是l.05立方米。
(4)50平方厘米=0.005平方米。
v=0。00521=0.01051
答:它的體積是0.01051(立方米)。
問:這節(jié)課里我們學(xué)到了哪些知識(shí)?根據(jù)學(xué)生回答教師總結(jié)。
練習(xí)十一的第l、2題。
圓柱的體積教學(xué)設(shè)計(jì)篇十
教學(xué)內(nèi)容:
人教版《九年義務(wù)教育六年制小學(xué)數(shù)學(xué)教科書》(第十二冊(cè))第25頁圓柱體積公式的推導(dǎo)及“做一做”以及補(bǔ)充習(xí)題。教材簡(jiǎn)析:
圓柱是一種含有曲面的幾何體,給體積的認(rèn)識(shí)和計(jì)算增加了難度。教材將本課學(xué)習(xí)安排在圓柱的認(rèn)識(shí)和圓柱的表面積之后。讓學(xué)生有序地經(jīng)歷了探究物體與圖形的形狀、大小、位置關(guān)系的變換過程,掌握?qǐng)A柱體積的計(jì)算方法和公式的推導(dǎo)過程,建立初步的空間概念,培養(yǎng)形象思維,還可以為學(xué)習(xí)圓錐體積打下堅(jiān)實(shí)的基礎(chǔ),提高學(xué)生的知識(shí)遷移能力?;谝陨险J(rèn)識(shí),我在設(shè)計(jì)中突出了以下幾點(diǎn):
1.加強(qiáng)幾何的實(shí)踐操作,盡量讓學(xué)生自己動(dòng)手,親身經(jīng)歷圓柱的體積轉(zhuǎn)化過程,讓學(xué)生的多種感觀參與學(xué)習(xí)活動(dòng)。在理解知識(shí)的基礎(chǔ)上,發(fā)展學(xué)生思維。
2.加強(qiáng)幾何習(xí)題的設(shè)計(jì),設(shè)計(jì)一些實(shí)踐性、開放性強(qiáng)的習(xí)題,引導(dǎo)學(xué)生靈活運(yùn)用知識(shí),可以根據(jù)不同的條件求圓柱的體積。盡可能地滿足不同思維水平學(xué)生的需要,并滲透優(yōu)化解題策略。
3.加強(qiáng)空間觀念的培養(yǎng),提高學(xué)生形象思維及解決問題的能力。突出知識(shí)間的聯(lián)系對(duì)比,在操作、推導(dǎo)、對(duì)比、運(yùn)用中深化學(xué)生的空間觀念。
學(xué)情分析:
高年級(jí)學(xué)生發(fā)現(xiàn)問題、解決問題能力逐步增強(qiáng),這為學(xué)生的自主探究及合作學(xué)習(xí)創(chuàng)造了有利條件,他們?cè)趯W(xué)習(xí)圓的面積計(jì)算公式時(shí)已經(jīng)掌握了一些幾何知識(shí),了解部分幾何圖形之間的轉(zhuǎn)化方法。但學(xué)生的立體空間觀念還不是完全成熟,形體之間的轉(zhuǎn)化還有一定的困難。針對(duì)學(xué)生的實(shí)際,教學(xué)中我主要采用觀察、比較、操作等方法。組織學(xué)生探索規(guī)律,歸納總結(jié),體驗(yàn)知識(shí)的生成和形成。
教學(xué)目標(biāo):
1.結(jié)合具體情境,讓學(xué)生探索并掌握?qǐng)A柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡(jiǎn)單的實(shí)際問題。
2.讓學(xué)生經(jīng)歷觀察、猜想、驗(yàn)證等數(shù)學(xué)活動(dòng)過程,培養(yǎng)學(xué)生探究推理能力,體驗(yàn)數(shù)學(xué)研究的方法。
3.通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點(diǎn):掌握和運(yùn)用圓柱體積計(jì)算公式。(突破方法:通過觀察,猜想,驗(yàn)證等數(shù)學(xué)活動(dòng)掌握?qǐng)A柱體積計(jì)算公式,在解決問題中提高運(yùn)用公式的能力)
教學(xué)難點(diǎn):掌握?qǐng)A柱體積公式的推導(dǎo)過程。(突破方法:通過設(shè)疑,猜想,驗(yàn)證的過程,完成圓柱體積計(jì)算公式的推導(dǎo))
教法:直觀教學(xué)法,先利用教具演示讓學(xué)生觀察比較,再讓學(xué)生動(dòng)手操作。
學(xué)法:探究性學(xué)習(xí)法,在實(shí)踐操作過程中理解掌握?qǐng)A柱體積的計(jì)算方法。
教學(xué)設(shè)想:
1.課前互動(dòng),我們做一個(gè)吹氣球的游戲,讓學(xué)生來對(duì)比氣球變大后所占用空間的變化。在熱烈的氣氛中讓學(xué)生感受物體的體積就是物體所占用空間的大小。
2.教學(xué)一開始我讓學(xué)生說說我們學(xué)過哪些物體的體積?這些圖形有什么特征,而圓柱有什么特征?前面我們學(xué)過哪個(gè)圖形利用了化曲為直的思想?引導(dǎo)學(xué)生明白圓柱的體積利用類似求圓的面積計(jì)算公式一樣來探討問題設(shè)疑,讓學(xué)生明確學(xué)習(xí)目標(biāo)。
3.動(dòng)手實(shí)踐是學(xué)生體驗(yàn)的主要方式,合作交流是學(xué)生體驗(yàn)的有效途徑。所以在教學(xué)中我為圖形轉(zhuǎn)化、猜想推理創(chuàng)設(shè)有助于學(xué)生自主探究的三步曲:第一步:選擇轉(zhuǎn)化的方法。第二步:體驗(yàn)轉(zhuǎn)化的過程、第三步:驗(yàn)證轉(zhuǎn)化的結(jié)果。引導(dǎo)學(xué)生開展觀察、操作、猜想、交流、轉(zhuǎn)化的活動(dòng),讓學(xué)生在數(shù)學(xué)活動(dòng)中經(jīng)歷數(shù)學(xué)、體驗(yàn)數(shù)學(xué)。
4.最后的思維訓(xùn)練是計(jì)算正方體中最大圓柱體的體積,給學(xué)生以生動(dòng)、形象、直觀的認(rèn)識(shí),此題算法多樣,富于啟發(fā)地清晰揭示了知識(shí)的內(nèi)在規(guī)律,使它和教學(xué)過程有機(jī)組合,把學(xué)習(xí)延伸到實(shí)際,讓知識(shí)在體驗(yàn)中生成。
教學(xué)過程:
一、問題導(dǎo)入,質(zhì)疑問難
師:老師這里有兩個(gè)氣球,(師從兜里掏出兩個(gè)氣球,將其中一個(gè)遞給學(xué)生。)你試試把它們變大。(老師再把兩個(gè)氣球放回兜里。)為什么這個(gè)放不回去了?(因?yàn)槠渲幸粋€(gè)的體積變大了。)看來它占據(jù)了很大的空間。教室中還有哪些物體占據(jù)空間?引導(dǎo)出概念:物體所占空間的大小為物體的體積。
師:我們今天這節(jié)課學(xué)習(xí)體積,我們就一起來探索圓柱的體積的計(jì)算方法。
板書課題:圓柱的體積
二.探索新知
1.出示光盤,這是什么圖形?(圓形)
提問:這個(gè)圓,可以知道什么?(半徑、直徑、周長、面積)
2.在桌面上,在一張光盤上疊加一些光盤,發(fā)現(xiàn),這些光盤形成了一個(gè)什么圖形?(圓柱)。
繼續(xù)疊加,提問:圓柱在變化嗎?(變高了,體積變大了)追問:什么沒有變?(底面積)
猜想:圓柱的體積會(huì)和什么有關(guān)?(底面積和高)
3、出示和(內(nèi)底相等)光盤的燒杯,倒入和圓柱光盤等高的
(1)提問:它們之間有什么關(guān)系?(體積相等)
那么,燒杯里的水有多少呢?你有什么好辦法?
(生:把燒杯里的水分別倒入長方體、正方體玻璃器皿中,計(jì)算
長方體、正方體的體積)
(2)你覺得圓柱的體積和什么有關(guān)系?(長方體和正方體體積有關(guān))
(設(shè)計(jì)意圖:從生活情景入手,初略感知圓柱的體積與底面積和高有關(guān)。通過猜想,并在實(shí)驗(yàn)、交流中建立初步的圓柱體積與長方體和正方體體積的計(jì)算方法有關(guān)的直觀感知。然后順勢(shì)提出“如何計(jì)算圓柱體的體積”這一全課的核心問題,從而引發(fā)學(xué)生的猜測(cè)、操作、交流等數(shù)學(xué)活動(dòng),為學(xué)生經(jīng)歷了“做數(shù)學(xué)”的過程做鋪墊。)
三、圖柱轉(zhuǎn)化,自主探究,驗(yàn)證猜想。
(材料:圓柱體積木、圓柱體插拼教學(xué)具、課件)
(2)你覺得圓柱的體積和什么有關(guān)系?你能猜一猜圓柱的體積怎樣計(jì)算嗎?
1.小組合作交流:怎樣將圓柱體轉(zhuǎn)化成一個(gè)長方體呢?
2.小組代表匯報(bào)
(學(xué)生按照自己的方式來轉(zhuǎn)化,會(huì)有多種轉(zhuǎn)化方法,教師適時(shí)加以鼓勵(lì))
1
.演示操作
(1)請(qǐng)一名學(xué)生演示用切插拼的方法把圓柱體轉(zhuǎn)化成長方體。
圓柱的體積教學(xué)設(shè)計(jì)篇十一
1、教學(xué)內(nèi)容
本節(jié)課是人教版六年小學(xué)數(shù)學(xué)課本第十二冊(cè)第三單元第二小節(jié)第一課時(shí)。內(nèi)容包括圓柱體的體積計(jì)算公式的推導(dǎo)和運(yùn)用公式計(jì)算它的體積。
2、本節(jié)課在教材中所處的地位和作用
《圓柱和圓錐》這一單元是小學(xué)階段學(xué)習(xí)幾何形體知識(shí)的最后部分,是幾何知識(shí)的綜合運(yùn)用。圓柱的體積一課,是在學(xué)生已經(jīng)學(xué)過了圓面積公式的推導(dǎo)和長方體、正方體的體積公式的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,學(xué)生已經(jīng)有了把圓形拼成近似的長方形的經(jīng)驗(yàn),聯(lián)想到把圓柱切拼成長方體并不難,學(xué)好這部分知識(shí),為今后學(xué)習(xí)復(fù)雜的形體知識(shí)打下扎實(shí)的基礎(chǔ),是后繼學(xué)習(xí)的前提。
3、教材的重點(diǎn)和難點(diǎn)
由于圓柱體積計(jì)算是圓錐體積計(jì)算的基礎(chǔ),因此圓柱體積和應(yīng)用是本節(jié)課教學(xué)重點(diǎn)。其中,圓柱體積計(jì)算公式的推導(dǎo)過程比較復(fù)雜,需要用轉(zhuǎn)化的方法來考慮,推導(dǎo)過程要有一定的邏輯推理能力,因此,推導(dǎo)圓柱體積公式的過程是本節(jié)課的難點(diǎn)。弄清楚圓柱與轉(zhuǎn)化后的近似長方體之間的關(guān)系是教學(xué)關(guān)鍵。
4、教學(xué)目標(biāo)
(1)知道圓柱體積計(jì)算公式的推導(dǎo)過程,會(huì)應(yīng)用該公式計(jì)算圓柱的體積。
(2)初步建立空間觀念和邏輯推理能力。
(3)知道知識(shí)間是可以互相轉(zhuǎn)化的。
從學(xué)生已有的知識(shí)水平和認(rèn)識(shí)規(guī)律出發(fā),為了更好地突出重點(diǎn),化解難點(diǎn),掃清學(xué)生認(rèn)知上的思維障礙,在實(shí)施教學(xué)過程中,主要體現(xiàn)以下幾個(gè)特點(diǎn):
1、直觀演示,操作發(fā)現(xiàn)
教師充分利用直觀教具演示,引導(dǎo)學(xué)生觀察比較,再讓學(xué)生動(dòng)手操作討論,使學(xué)生在豐富感性認(rèn)識(shí)的基礎(chǔ)上,在老師的指導(dǎo)下,推導(dǎo)出圓柱體積計(jì)算的公式。從而使學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),體會(huì)知識(shí)的由來,并通過已學(xué)知識(shí)解決實(shí)際問題,充分發(fā)揮了直觀教學(xué)在知識(shí)形成過程中的積極作用,同時(shí)也培養(yǎng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的能力和學(xué)習(xí)習(xí)慣。
2、巧設(shè)疑問,體現(xiàn)兩“主”
教師通過設(shè)疑,指明觀察方向,營造探究新知識(shí)的氛圍,在引導(dǎo)學(xué)生歸納推理等方面充分發(fā)揮了其主導(dǎo)作用,有目的、有計(jì)劃、有層次地啟迪學(xué)生的思維,充分發(fā)揮了學(xué)生的主體作用。把學(xué)生當(dāng)作教學(xué)活動(dòng)的主體,成為學(xué)習(xí)活動(dòng)的主人,使學(xué)生在觀察、比較、討論、研究等一系列活動(dòng)中參與教學(xué)全過程,從而達(dá)到掌握新知識(shí)和發(fā)展能力的目的。
3、運(yùn)用遷移,深化提高
運(yùn)用知識(shí)的遷移規(guī)律,培養(yǎng)學(xué)生利用舊知學(xué)習(xí)新知的能力,從而使學(xué)生主動(dòng)學(xué)習(xí),掌握知識(shí),形成技能。
課堂教學(xué)中,不是老師單純地傳授知識(shí),而是在老師的指引下,讓學(xué)生自己學(xué),任何人都不能替代學(xué)生學(xué)習(xí)。所以要把教法融于學(xué)法中,在學(xué)法中體現(xiàn)教法。
本節(jié)課的教學(xué),使學(xué)生掌握一些基本的學(xué)習(xí)方法
1、學(xué)會(huì)通過觀察、比較、推理能概括出圓柱體積的推導(dǎo)過程。
2、學(xué)會(huì)利用舊知轉(zhuǎn)化成新知,解決新問題的能力。
3、學(xué)會(huì)利用知識(shí)的遷移規(guī)律,把知識(shí)轉(zhuǎn)化成相應(yīng)的技能,從而提高靈活運(yùn)用的能力。
對(duì)本節(jié)課的教學(xué),我們?cè)O(shè)計(jì)了以下幾個(gè)環(huán)節(jié)。
(一)復(fù)習(xí)舊知識(shí),為引入新知識(shí)作準(zhǔn)備
1、求下面各圓的面積(口算),單位為厘米
(1)半徑為1厘米;
(2)直徑為4厘米;
(3)周長為62.8厘米。
2、什么叫做體積?怎樣計(jì)算長方體的體積?
(二)導(dǎo)入新課,隱射教學(xué)目標(biāo)
1、觀察比較:出示幾組圓柱體實(shí)物(同底等高、同底不等高、等高不等底),引導(dǎo)學(xué)生觀察比較,老師提出問題:通過觀察,你發(fā)現(xiàn)誰的體積些大?再出示一個(gè)長方體實(shí)物,與一個(gè)圓柱體實(shí)物比較誰的體積大些?引導(dǎo)學(xué)生產(chǎn)生疑問后,教師這時(shí)交待,我們今天要學(xué)習(xí)的新知識(shí),就能很好地解決這個(gè)問題(揭示課題)。這一活動(dòng)的設(shè)計(jì),激發(fā)了學(xué)生的學(xué)習(xí)興趣,使學(xué)生為了驗(yàn)證自己的猜想而產(chǎn)生了強(qiáng)烈的求知欲望,從而進(jìn)入最佳的學(xué)習(xí)狀態(tài)。)
2、展示學(xué)習(xí)目標(biāo),學(xué)生認(rèn)讀目標(biāo)
教師通過展示目標(biāo),學(xué)生認(rèn)讀目標(biāo),這時(shí)學(xué)生就能清楚地知道了學(xué)習(xí)的主要任務(wù)和要求,從而把教師的教學(xué)目標(biāo),轉(zhuǎn)化成了學(xué)生的學(xué)習(xí)目標(biāo)。使學(xué)生帶著目標(biāo),有目的、有準(zhǔn)備地學(xué)習(xí)下一步的新知識(shí),學(xué)生就真正能成為學(xué)習(xí)的主人,也使教學(xué)變得更加明確具體,可操作、可檢測(cè)。同時(shí)也能激發(fā)起全體學(xué)生的參與達(dá)標(biāo)意識(shí),學(xué)生的主體地位就充分地顯示出來了。
(三)導(dǎo)入新課,實(shí)施教學(xué)目標(biāo)
1、設(shè)疑:要判斷圓柱體積的大小,究竟哪個(gè)大?哪個(gè)小?到底圓柱的體積的大小與什么有關(guān)呢?能不能把圓柱轉(zhuǎn)化成我們學(xué)過的立體圖形來計(jì)算它的體積?這里老師引導(dǎo)學(xué)生回憶圓的面積公式的推導(dǎo)過程,教師出示投影,幫助學(xué)生思考。
2、演示操作,揭示新知。
學(xué)生小組合作討論如何把圓柱轉(zhuǎn)化成我們學(xué)過的立體圖形,并讓學(xué)生上臺(tái)操作演示。讓學(xué)生動(dòng)手操作,啟發(fā)學(xué)生說出轉(zhuǎn)化成我們熟悉的形體。
引導(dǎo)學(xué)生用字母表示出來,最后讓學(xué)生看書質(zhì)疑。
這部分教學(xué)設(shè)計(jì)意圖:根據(jù)教材特點(diǎn),學(xué)生的認(rèn)知過程,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,激發(fā)求知欲望,調(diào)動(dòng)學(xué)生的各種感官,充分發(fā)揮了直觀教學(xué)在知識(shí)形成過程中的積極作用,同時(shí)也培養(yǎng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的能力和學(xué)習(xí)習(xí)慣。實(shí)現(xiàn)由感性到理性,由具體到抽象,這種教學(xué)方法符合學(xué)生的認(rèn)知規(guī)律,有助于突破難點(diǎn),化解難點(diǎn)。
關(guān)于難點(diǎn)的突破,我們主要從以下幾個(gè)方面著手:
(1)引導(dǎo)學(xué)生通過觀察比較,明確圓柱體的體積與它的底面積和高有關(guān)。
(2)運(yùn)用知識(shí)遷移的規(guī)律,啟發(fā)引導(dǎo),層層深入促進(jìn)學(xué)生在積極的思維中獲得新知識(shí)。
(3)充分利用直觀教具,師生互動(dòng),通過演示操作,幫助學(xué)生找出兩種幾何形體轉(zhuǎn)化前后的關(guān)系。
(4)根據(jù)新舊知識(shí)的連接點(diǎn),精心設(shè)計(jì)討論內(nèi)容,分散難點(diǎn),促進(jìn)知識(shí)的形成。
3、運(yùn)用。
出示例1:先由學(xué)生自己嘗試練習(xí),請(qǐng)一位學(xué)生板演,集體講評(píng)時(shí)提問學(xué)生,在解題時(shí)要注意什么?讓學(xué)生自己來概括總結(jié),通過學(xué)生的語言說出:
(1)單位要統(tǒng)一
(2)求出的是體積要用體積單位。
在掌握了圓柱體積計(jì)算的方法之后,安排例1進(jìn)行嘗試練習(xí),這樣既可以調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性和主動(dòng)性,又可以培養(yǎng)學(xué)生學(xué)習(xí)新知識(shí)的能力,同時(shí)把所學(xué)知識(shí)轉(zhuǎn)化為相應(yīng)的技能。
(四)鞏固練習(xí),檢驗(yàn)?zāi)繕?biāo)
1、求下面各圓柱的體積。
(1)底面圓的半徑是3厘米,高4厘米。
(2)底面積4.5平方米,高3米。
(3)底面圓的直徑是6分米,高是8分米。
(4)底面圓的周長是12.56厘米,高是6厘米。
通過練習(xí),鞏固新知識(shí),加深對(duì)新知識(shí)的理解,把所學(xué)知識(shí)進(jìn)一步轉(zhuǎn)化為能力,在練習(xí)中發(fā)展智力,培養(yǎng)優(yōu)良的思維品質(zhì)和學(xué)習(xí)習(xí)慣。
2、判斷:
(1)圓柱體、長方體和正方體的體積都可以用底面積乘以高的方法來計(jì)算。()
(2)圓柱的底面積擴(kuò)大3倍,體積也擴(kuò)大3倍。()
(3)一個(gè)長方體與一個(gè)圓柱體,底面積相等,高也相等,那么它們的體積也相等。()
(4)圓柱體體積一定,圓柱體底面積和高成反比例。()
(5)兩個(gè)圓柱體的側(cè)面積相等,體積也一定相等。()
(6)一個(gè)圓柱形的水桶能裝水15升,我們就說水桶的體積是15立方分米。()
3、變式練習(xí):已知圓柱的體積、底面積,求圓柱的高。
這道題的安排是對(duì)所學(xué)內(nèi)容的深化,在掌握基礎(chǔ)知識(shí)的前提下,培養(yǎng)思維的靈活性,同時(shí)深化教學(xué)內(nèi)容,防止思維定勢(shì)。
4、動(dòng)手實(shí)踐:讓學(xué)生測(cè)量自帶的圓柱體。
這道題的設(shè)計(jì),一方面培養(yǎng)了學(xué)生解決實(shí)際問題的能力,另一方面也加深了對(duì)圓柱體積計(jì)算公式的理解,同時(shí)數(shù)學(xué)知識(shí)也和學(xué)生的生活實(shí)際結(jié)合起來,使學(xué)生明白,我們所學(xué)的數(shù)學(xué)是身邊的數(shù)學(xué),是有趣的、有用的數(shù)學(xué),從而激發(fā)學(xué)生的學(xué)習(xí)興趣。
(五)總結(jié)全課,深化教學(xué)目標(biāo)
結(jié)合板書,引導(dǎo)學(xué)生說出本課所學(xué)的內(nèi)容,我們是這樣設(shè)計(jì)的:這節(jié)課我們學(xué)習(xí)了哪些內(nèi)容?圓柱體積的計(jì)算公式是怎樣推導(dǎo)出來的?你有什么收獲?然后教師歸納,通過本節(jié)課的學(xué)習(xí),我們懂得了新知識(shí)的得來是通過已學(xué)的知識(shí)來解決的,以后希望同學(xué)們多動(dòng)腦,勤思考,在我們的生活中還有好多問題需要利用所學(xué)知識(shí)來解決的,望同學(xué)們能學(xué)會(huì)運(yùn)用,善于用轉(zhuǎn)化的思想來武裝自己的頭腦,思考問題。
圓柱的體積教學(xué)設(shè)計(jì)篇十二
1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
2、初步學(xué)會(huì)用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識(shí)。
掌握?qǐng)A柱體積的計(jì)算公式。
圓柱體積的計(jì)算公式的推導(dǎo)。
一、復(fù)習(xí)
1、長方體的體積公式是什么?正方體呢?(長方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)
2、拿出一個(gè)圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。(刪掉)
3、復(fù)習(xí)圓面積計(jì)算公式的推導(dǎo)過程:把圓等分切割,拼成一個(gè)近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的計(jì)算公式導(dǎo)出求圓面積的計(jì)算公式。
二、新課
1、圓柱體積計(jì)算公式的推導(dǎo)。
(1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個(gè)近似長方體的立體圖形——課件演示)
(2)由于我們分的不夠細(xì),所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細(xì)分,拼成一個(gè)長方體)
反復(fù)播放這個(gè)過程,引導(dǎo)學(xué)生觀察思考,討論:在變化的過程中,什么變了什么沒變?
長方體和圓柱體的底面積和體積有怎樣的關(guān)系?
學(xué)生說演示過程,總結(jié)推倒公式。
(3)通過觀察,使學(xué)生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積×高,所以圓柱的體積=底面積×高,v=sh)
【本文地址:http://mlvmservice.com/zuowen/3759637.html】