最新一元二次方程教案第一課時(匯總9篇)

格式:DOC 上傳日期:2023-09-29 05:16:05
最新一元二次方程教案第一課時(匯總9篇)
時間:2023-09-29 05:16:05     小編:字海

作為一名老師,常常要根據(jù)教學(xué)需要編寫教案,教案是教學(xué)活動的依據(jù),有著重要的地位。優(yōu)秀的教案都具備一些什么特點呢?以下是小編為大家收集的教案范文,僅供參考,大家一起來看看吧。

一元二次方程教案第一課時篇一

1、知識與能力目標(biāo):要求學(xué)生會根據(jù)實際問題列出一元二次方程,體會方程的模型思想,培養(yǎng)學(xué)生歸納、分析的能力。

2、過程與方法目標(biāo):引導(dǎo)學(xué)生分析實際問題中的數(shù)量關(guān)系,回顧一元一次方程的概念,組織學(xué)生討論,讓學(xué)生自己抽象出一元二次方程的概念。

3.、情感、態(tài)度與價值觀:通過數(shù)學(xué)建模的分析、思考過程,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會做數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識并與校園綠化相結(jié)合。

教學(xué)重點、難點

教學(xué)重點:通過實際問題模型建立一元二次方程的概念,認識一元二次方程一般形式.

2。難點:通過實際問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念。

教學(xué)過程:

(一)創(chuàng)設(shè)情景,導(dǎo)入新課

分析:設(shè)長方形綠地的寬為x米,則列方程,

整理可得。

分析:設(shè)長方形綠地的寬為x米,則列方程,

整理可得。

【設(shè)計意圖】因為數(shù)學(xué)來源與生活,所以以學(xué)生的實際生活背景為素材創(chuàng)設(shè)情景,易于被學(xué)生接受、感知。同時幫助學(xué)生從實際問題中提煉出數(shù)學(xué)問題,初步培養(yǎng)學(xué)生的空間概念和抽象能力。情景分析中學(xué)生自然會想到用方程來解決問題,但所列的方程不是以前學(xué)過的,從而激發(fā)學(xué)生的求知欲望,順利地進入新課,并激發(fā)學(xué)生環(huán)保意識。

一元二次方程教案第一課時篇二

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.

3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

教學(xué)重點:

1.體會方程與函數(shù)之間的聯(lián)系。

2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

教學(xué)難點:

1.探索方程與函數(shù)之間關(guān)系的過程。

2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。

啟發(fā)引導(dǎo)合作交流

課件

計算機、實物投影。

檢查預(yù)習(xí)引出課題

1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.

2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解。

教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價。

學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。

這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。

一元二次方程教案第一課時篇三

1、知識與技能目標(biāo):認識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。

2、過程與方法:學(xué)生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。

3、情感態(tài)度與價值觀:學(xué)生在獨立思考的過程中,能將生活中的經(jīng)驗與所學(xué)的知識結(jié)合起來,形成實事求是的態(tài)度以及進行質(zhì)疑和獨立思考的習(xí)慣。

重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。

難點:找對題目中的數(shù)量關(guān)系從而列出一元二次方程。

(一)導(dǎo)入新課

生:老師,這是雷鋒叔叔。

生:是的老師。

生:想。

師:同學(xué)們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學(xué)習(xí)一元二次方程。

(二)新課教學(xué)

師:我們來看到這個題目,要設(shè)計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計為全高?同學(xué)們用ac來表示上部,bc來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學(xué)們的式子。

(下去巡視)

(三)小結(jié)作業(yè)

師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強鞏固,做練習(xí)題的1、2(2)題。

一元二次方程教案第一課時篇四

2.知道的一般形式,會把化成一般形式。

3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

教學(xué)重點和難點:

重點:的概念和它的一般形式。

難點:對的一般形式的正確理解及其各項系數(shù)的確定。

教學(xué)建議:

1.教材分析:

1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出的概念,介紹了的一般形式以及中各項的名稱。

1.了解整式方程和的概念;

2.知道的一般形式,會把化成一般形式。

3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

教學(xué)難點和難點:

重點:

1.的有關(guān)概念

2.會把化成一般形式

難點:的含義.

第12頁

一元二次方程教案第一課時篇五

1、知識與技能目標(biāo):認識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。

2、過程與方法:學(xué)生通過觀察與模仿,建立起對一元二次方程的感性認識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。

3、情感態(tài)度與價值觀:學(xué)生在獨立思考的過程中,能將生活中的經(jīng)驗與所學(xué)的知識結(jié)合起來,形成實事求是的態(tài)度以及進行質(zhì)疑和獨立思考的習(xí)慣。

二、教學(xué)重難點

重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。

難點:找對題目中的數(shù)量關(guān)系從而列出一元二次方程。

三、教學(xué)過程

(一)導(dǎo)入新課

生:老師,這是雷鋒叔叔。

生:是的老師。

生:想。

師:同學(xué)們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學(xué)習(xí)一元二次方程。

(二)新課教學(xué)

師:我們來看到這個題目,要設(shè)計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計為全高?同學(xué)們用ac來表示上部,bc來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學(xué)們的式子。

(下去巡視)

(三)小結(jié)作業(yè)

師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強鞏固,做練習(xí)題的1、2(2)題。

四、板書設(shè)計

五、教學(xué)反思

將本文的word文檔下載到電腦,方便收藏和打印

推薦度:

點擊下載文檔

搜索文檔

一元二次方程教案第一課時篇六

表示整數(shù)),則另一奇數(shù)為,b.設(shè)較小的奇數(shù)為,則另一奇數(shù)為;c.設(shè)較小的奇數(shù)為,則另一個奇數(shù)。,另一個為,

據(jù)題意,得

整理后,得

解這個方程,得。

由得,由得,

答:這兩個奇數(shù)是17,19或者-19,-17。

解法(二)設(shè)較小的奇數(shù)為,則較大的奇數(shù)為。

據(jù)題意,得

整理后,得

解這個方程,得。

當(dāng)時,

當(dāng)時,。

答:兩個奇數(shù)分別為17,19;或者-19,-17。

第12頁

一元二次方程教案第一課時篇七

一、教材分析

1、教材的地位和作用

一元二次方程是中學(xué)教學(xué)的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學(xué)生學(xué)了實數(shù)與代數(shù)式的運算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學(xué)習(xí)一元二次方程的基礎(chǔ),通過一元二次方程的學(xué)習(xí),就可以對上述內(nèi)容加以鞏固,一元二次方程也是以后學(xué)習(xí)(指數(shù)方式,對數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎(chǔ),此外,學(xué)習(xí)一元二次方程對其他學(xué)科也有重要的`意義。

2、教學(xué)目標(biāo)及確立目標(biāo)的依據(jù)

九年義務(wù)教育大綱對這部分的要求是:使學(xué)生了解一元二次方程的概念,依據(jù)教學(xué)大綱的要求及教材的內(nèi)容,針對學(xué)生的理解和接受知識的實際情況,以提高學(xué)生的素質(zhì)為主要目的而制定如下教學(xué)目標(biāo)。

知識目標(biāo):使學(xué)生進一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。

能力目標(biāo):通過一元二次方程概念的教學(xué),培養(yǎng)學(xué)生善于觀察,發(fā)現(xiàn),探索,歸納問題的能力,培養(yǎng)學(xué)生創(chuàng)造性思維和邏輯推理的能力。

德育目標(biāo):培養(yǎng)學(xué)生把感性認識上升到理性認識的辯證唯物主義的觀點。

3、重點,難點及確定重難點的依據(jù)

一元二次方程有著承上啟下的作用,在今后的學(xué)習(xí)中有廣泛的應(yīng)用,因此本節(jié)課做為起始課的重點是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點。

二、教材處理

在教學(xué)中,我發(fā)現(xiàn)有的學(xué)生對概念背得很熟,但在準(zhǔn)確和熟練應(yīng)用方面較差,缺乏應(yīng)變能力,針對學(xué)生中存在的這些問題,本節(jié)課突出對教學(xué)概念形成過程的教學(xué),采用探索發(fā)現(xiàn)的方法研究概念,并引導(dǎo)學(xué)生進行創(chuàng)造性學(xué)習(xí)。

三、教學(xué)方法和學(xué)法

教學(xué)中,我運用啟發(fā)引導(dǎo)的方法讓學(xué)生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學(xué)生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達到問題解決。

四、教學(xué)手段

采用投影儀

五、教學(xué)程序

1、新課導(dǎo)入:

(1)什么叫一元一次方程?(并引入一元二次方程的概念做鋪墊)

(2)列方程解應(yīng)用題的方法,步驟?(并引例打基礎(chǔ))

課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實際問題引出一元二次方程,可以幫助學(xué)生認識到一元二次方程是來源于客觀需要的)

設(shè)出求知數(shù),列出代數(shù)式,并根據(jù)等量關(guān)系列出方程

數(shù)學(xué)教案-

將本文的word文檔下載到電腦,方便收藏和打印

推薦度:

點擊下載文檔

搜索文檔

一元二次方程教案第一課時篇八

1. 了解整式方程和的概念;

2. 知道的一般形式,會把化成一般形式。

3. 通過本節(jié)課引入的,初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

重點和難點:

重點:的概念和它的一般形式。

難點:對的一般形式的正確理解及其各項系數(shù)的確定。

建議:

1.? 教材分析:

1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出的概念,介紹了的一般形式以及中各項的名稱。

2)重點、難點分析

理解的定義:

是 的重要組成部分。方程 ,只有當(dāng) 時,才叫做。如果 且 ,它就是了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:

(1)的條件是確定的,如方程 ( ),把它化成一般形式為 ,由于 ,所以 ,符合的定義。

(2)條件是用“關(guān)于 的”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于 的 ”,這時題中隱含了 的條件,這在解題中是不能忽略的。

(3)方程中含有字母系數(shù)的 項,且出現(xiàn)“關(guān)于 的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關(guān)于 的方程 ”,這就有兩種可能,當(dāng) 時,它是一元一次方程 ;當(dāng) 時,它是,解題時就會有不同的結(jié)果。

目的

1.了解整式方程和的概念;

2.知道的一般形式,會把化成一般形式。

3.通過本節(jié)課引入的,初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

難點和難點:

重點:

1.的有關(guān)概念

2.會把化成一般形式

難點: 的含義。

第 1 2 頁

一元二次方程教案第一課時篇九

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。

3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

重點:一元二次方程的概念和它的一般形式。

難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。

1.教材分析:

1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。

2)重點、難點分析

理解一元二次方程的定義:

是一元二次方程的重要組成部分。方程,只有當(dāng)時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:

(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。

(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。

(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時,它是一元一次方程;當(dāng)時,它是一元二次方程,解題時就會有不同的結(jié)果。

【本文地址:http://mlvmservice.com/zuowen/3594696.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔