最新高一數(shù)學教案(七篇)

格式:DOC 上傳日期:2023-05-08 07:01:02
最新高一數(shù)學教案(七篇)
時間:2023-05-08 07:01:02     小編:zxfb

作為一位不辭辛勞的人民教師,常常要根據(jù)教學需要編寫教案,教案有利于教學水平的提高,有助于教研活動的開展。大家想知道怎么樣才能寫一篇比較優(yōu)質的教案嗎?下面是小編整理的優(yōu)秀教案范文,歡迎閱讀分享,希望對大家有所幫助。

高一數(shù)學教案篇一

(1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);

(2)理解任意角的三角函數(shù)不同的定義方法;

(3)了解如何利用與單位圓有關的有向線段,將任意角α的正弦、余弦、正切函數(shù)值分別用正弦線、余弦線、正切線表示出來;

(4)掌握并能初步運用公式一;

(5)樹立映射觀點,正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù)。

初中學過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù)。引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義。根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號。最后主要是借助有向線段進一步認識三角函數(shù)。講解例題,總結方法,鞏固練習。

任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點。過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導學生從自己已有認知基礎出發(fā)學習三角函數(shù),但它對準確把握三角函數(shù)的本質有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數(shù)值是一個確定的實數(shù)也有不同,這些都會影響學生對三角函數(shù)概念的理解。

本節(jié)利用單位圓上點的坐標定義任意角的正弦函數(shù)、余弦函數(shù)。這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應關系,也表明了這兩個函數(shù)之間的關系。

教學重難點

重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).

難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解。

高一數(shù)學教案篇二

學習是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了高一數(shù)學教案:數(shù)列,希望對您有所幫助!

1.使學生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。

(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的。

(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式。

(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項。

2.通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力。

3.通過由求的過程,培養(yǎng)學生嚴謹?shù)目茖W態(tài)度及良好的思維習慣。

(1)為激發(fā)學生學習數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等。

(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導思想,應及早引導學生發(fā)現(xiàn)數(shù)列與函數(shù)的關系。在教學中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關系,從而數(shù)列就有其特殊的表示法——遞推公式法。

(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助。

(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結論,如正負相間用來調(diào)整等。如果學生一時不能寫出通項公式,可讓學生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關系。

(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應補充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調(diào)的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況。

(6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學生應提出這一問題,學生運用函數(shù)知識是可以解決的。

上述提供的高一數(shù)學教案:數(shù)列希望能夠符合大家的實際需要!

高一數(shù)學教案篇三

1、了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關系。

2、會求一些簡單函數(shù)的反函數(shù)。

3、在嘗試、探索求反函數(shù)的過程中,深化對概念的認識,總結出求反函數(shù)的一般步驟,加深對函數(shù)與方程、數(shù)形結合以及由特殊到一般等數(shù)學思想方法的認識。

4、進一步完善學生思維的深刻性,培養(yǎng)學生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力。

求反函數(shù)的方法。

反函數(shù)的概念。

設計意圖一、創(chuàng)設情境,引入新課

1、復習提問

①函數(shù)的概念

②y=f(x)中各變量的意義

2、同學們在物理課學過勻速直線運動的位移和時間的函數(shù)關系,即s=vt和t=(其中速度v是常量),在s=vt 中位移s是時間t的函數(shù);在t=中,時間t是位移s的函數(shù)。在這種情況下,我們說t=是函數(shù)s=vt的反函數(shù)。什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學習的內(nèi)容。

3、板書課題

由實際問題引入新課,激發(fā)了學生學習興趣,展示了教學目標。這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學生知道學習這一概念的必要性。

二、實例分析,組織探究

1、問題組一:

(用投影給出函數(shù)與;與()的圖象)

(1)這兩組函數(shù)的圖像有什么關系?這兩組函數(shù)有什么關系?(生答:與的圖像關于直線y=x對稱;與()的圖象也關于直線y=x對稱。是求一個數(shù)立方的運算,而是求一個數(shù)立方根的運算,它們互為逆運算。同樣,與()也互為逆運算。)

(2)由,已知y能否求x?

(3)是否是一個函數(shù)?它與有何關系?

(4)與有何聯(lián)系?

2、問題組二:

(1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

(2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

(3)函數(shù) ()的定義域與函數(shù)()的值域有什么關系?

3、滲透反函數(shù)的概念。

(教師點明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點)

從學生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學生的認知特點,有利于培養(yǎng)學生抽象、概括的能力。

通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設計問題,使學生對反函數(shù)有一個直觀的粗略印象,為進一步抽象反函數(shù)的概念奠定基礎。

三、師生互動,歸納定義

1、(根據(jù)上述實例,教師與學生共同歸納出反函數(shù)的定義)

函數(shù)y=f(x)(x∈a) 中,設它的值域為 c.我們根據(jù)這個函數(shù)中x,y的關系,用 y 把 x 表示出來,得到 x = j (y) 。如果對于y在c中的任何一個值,通過x = j (y),x在a中都有的值和它對應,那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù)。這樣的函數(shù) x = j (y)(y ∈c)叫做函數(shù)y=f(x)(x∈a)的反函數(shù)。記作: 。考慮到"用 x表示自變量, y表示函數(shù)"的習慣,將中的x與y對調(diào)寫成。

2、引導分析:

1)反函數(shù)也是函數(shù);

2)對應法則為互逆運算;

3)定義中的"如果"意味著對于一個任意的函數(shù)y=f(x)來說不一定有反函數(shù);

4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;

5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);

6)要理解好符號f;

7)交換變量x、y的原因。

3、兩次轉換x、y的對應關系

(原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價的)

4、函數(shù)與其反函數(shù)的關系

函數(shù)y=f(x)

函數(shù)

定義域

a

c

值 域

c

a

四、應用解題,總結步驟

1、(投影例題)

【例1】求下列函數(shù)的反函數(shù)

(1)y=3x-1 (2)y=x 1

【例2】求函數(shù)的反函數(shù)。

(教師板書例題過程后,由學生總結求反函數(shù)步驟。)

2、總結求函數(shù)反函數(shù)的步驟:

1° 由y=f(x)反解出x=f(y)。

2° 把x=f(y)中 x與y互換得。

3° 寫出反函數(shù)的定義域。

(簡記為:反解、互換、寫出反函數(shù)的定義域)【例3】(1)有沒有反函數(shù)?

(2)的反函數(shù)是________.

(3)(x<0)的反函數(shù)是__________.

在上述探究的基礎上,揭示反函數(shù)的定義,學生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預設產(chǎn)生矛盾沖突,體會反函數(shù)。在剖析定義的過程中,讓學生體會函數(shù)與方程、一般到特殊的數(shù)學思想,并對數(shù)學的符號語言有更好的把握。

通過動畫演示,表格對照,使學生對反函數(shù)定義從感性認識上升到理性認識,從而消化理解。

通過對具體例題的講解分析,在解題的步驟上和方法上為學生起示范作用,并及時歸納總結,培養(yǎng)學生分析、思考的習慣,以及歸納總結的能力。

題目的設計遵循了從了解到理解,從掌握到應用的不同層次要求,由淺入深,循序漸進。并體現(xiàn)了對定義的反思理解。學生思考練習,師生共同分析糾正。

五、鞏固強化,評價反饋

1、已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)

(1)y=-2x 3(xr) (2)y=-(xr,且x)

( 3 ) y=(xr,且x)

2、已知函數(shù)f(x)=(xr,且x)存在反函數(shù),求f(7)的值。

五、反思小結,再度設疑

本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟?;榉春瘮?shù)的兩個函數(shù)的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究。

(讓學生談一下本節(jié)課的學習體會,教師適時點撥)

進一步強化反函數(shù)的概念,并能正確求出反函數(shù)。反饋學生對知識的掌握情況,評價學生對學習目標的落實程度。具體實踐中可采取同學板演、分組競賽等多種形式調(diào)動學生的積極性。"問題是數(shù)學的心臟"學生帶著問題走進課堂又帶著新的問題走出課堂。

六、作業(yè)

習題2.4第1題,第2題

進一步鞏固所學的知識。

教學設計說明

"問題是數(shù)學的心臟"。一個概念的形成是螺旋式上升的,一般要經(jīng)過具體到抽象,感性到理性的過程。本節(jié)教案通過一個物理學中的具體實例引入反函數(shù),進而又通過若干函數(shù)的圖象進一步加以誘導剖析,最終形成概念。

反函數(shù)的概念是教學中的難點,原因是其本身較為抽象,經(jīng)過兩次代換,又采用了抽象的符號。由于沒有一一映射,逆映射等概念的支撐,使學生難以從本質上去把握反函數(shù)的概念。為此,我們大膽地使用教材,把互為反函數(shù)的兩個函數(shù)的圖象關系預先揭示,進而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質,進而得出概念,這正是數(shù)學研究的順序,符合學生認知規(guī)律,有助于概念的建立與形成。另外,對概念的剖析以及習題的配備也很精當,通過不同層次的問題,滿足學生多層次需要,起到評價反饋的作用。通過對函數(shù)與方程的分析,互逆探索,動畫演示,表格對照、學生討論等多種形式的教學環(huán)節(jié),充分調(diào)動了學生的探求欲,在探究與剖析的過程中,完善學生思維的深刻性,培養(yǎng)學生的逆向思維。使學生自然成為學習的主人。

高一數(shù)學教案篇四

第一節(jié) 集合的含義與表示

學時:1學時

[學習引導]

一、自主學習

1.閱讀課本 .

2.回答問題:

⑴本節(jié)內(nèi)容有哪些概念和知識點?

⑵嘗試說出相關概念的含義?

3完成 練習

4小結

二、方法指導

1、要結合例子理解集合的概念,能說出常用的數(shù)集的名稱和符號。

2、理解集合元素的特性,并會判斷元素與集合的關系

3、掌握集合的表示方法,并會正確運用它們表示一些簡單集合。

4、在學習中要特別注意理解空集的意義和記法

[思考引導]

一、提問題

1.集合中的元素有什么特點?

2、集合的常用表示法有哪些?

3、集合如何分類?

4.元素與集合具有什么關系?如何用數(shù)學語言表述?

5集合 和 是否相同?

二、變題目

1.下列各組對象不能構成集合的是( )

a.北京大學2008級新生

b.26個英文字母

c.著名的藝術家

d.2008年北京奧運會中所設定的比賽項目

2.下列語句:①0與 表示同一個集合;

②由1,2,3組成的集合可表示為 或 ;

③方程 的解集可表示為 ;

④集合 可以用列舉法表示。

其中正確的是( )

a.①和④ b.②和③

c.② d.以上語句都不對

[總結引導]

1.集合中元素的三特性:

2.集合、元素、及其相互關系的數(shù)學符號語言的表示和理解:

3.空集的含義:

[拓展引導]

1.課外作業(yè): 習題11第 題;

2.若集合 ,求實數(shù) 的值;

3.若集合 只有一個元素,則實數(shù) 的值為 ;若 為空集,則 的取值范圍是 .

撰稿:程曉杰 審稿:宋慶

高一數(shù)學教案篇五

知識結構

重難點分析

本節(jié)的重點是二次根式的化簡。本章自始至終圍繞著二次根式的化簡與計算進行,而二次根式的化簡不但涉及到前面學習過的算術平方根、二次根式等概念與二次根式的運算性質,還要牽涉到絕對值以及各種非負數(shù)、因式分解等知識,在應用中常常需要對字母進行分類討論。

本節(jié)的難點是正確理解與應用公式。這個公式的表達形式對學生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學生往往容易出現(xiàn)錯誤。

教法建議

1.性質的引入方法很多,以下2種比較常用:

(1)設計問題引導啟發(fā):由設計的問題

1)、、各等于什么?

2)、、各等于什么?

啟發(fā)、引導學生猜想出

(2)從算術平方根的意義引入。

2.性質的鞏固有兩個方面需要注意:

(1)注意與性質進行對比,可出幾道類型不同的題進行比較;

(2)學生初次接觸這種形式的表示方式,在教學時要注意細分層次加以鞏固,如單個數(shù)字,單個字母,單項式,可進行因式分解的多項式,等等。

(第1課時)

1.掌握二次根式的性質

2.能夠利用二次根式的性質化簡二次根式

3.通過本節(jié)的學習滲透分類討論的數(shù)學思想和方法

對比、歸納、總結

1.重點:理解并掌握二次根式的性質

2.難點:理解式子中的可以取任意實數(shù),并能根據(jù)字母的取值范圍正確地化簡有關的二次根式。

1課時

五、教b具學具準備

投影儀、膠片、多媒體

復習對比,歸納整理,應用提高,以學生活動為主

一、導入新課

我們知道,式子()表示非負數(shù)的算術平方根。

問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?

答:式子表示非負數(shù)的算術平方根,即,且,從而可以取任意實數(shù)。

二、新課

計算下列各題,并回答以下問題:

(1);(2);(3);

1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?

2.各小題的結果和相應的被開方數(shù)的冪的底數(shù)有什么關系?

3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結論?并用語言敘述你的結論。

高一數(shù)學教案篇六

1.使學生理解集合的含義,知道常用集合及其記法;

2.使學生初步了解屬于關系和集合相等的意義,初步了解有限集、無限集、空集的意義;

3.使學生初步掌握集合的表示方法,并能正確地表示一些簡單的集合。

集合的含義及表示方法。

1.情境。

新生自我介紹:介紹家庭、原畢業(yè)學校、班級。

2.問題。

在介紹的過程中,常常涉及像家庭、學校、班級、男生、女生等概念,這些概念與學生相比,它們有什么共同的特征?

1.介紹自己;

2.列舉生活中的集合實例;

3.分析、概括各集合實例的共同特征。

1.集合的含義:一般地,一定范圍內(nèi)不同的、確定的對象的全體組成一個集合。構成集合的每一個個體都叫做集合的一個元素。

2.元素與集合的關系及符號表示:屬于,不屬于。

3.集合的表示方法:

另集合一般可用大寫的拉丁字母簡記為集合a、集合b.

4.常用數(shù)集的記法:自然數(shù)集n,正整數(shù)集n*,整數(shù)集z,有理數(shù)集q,實數(shù)集r.

5.有限集,無限集與空集。

6.有關集合知識的歷史簡介。

1.例題。

例1 表示出下列集合:

(1)中國的直轄市;(2)中國國旗上的顏色。

小結:集合的確定性和無序性

例2 準確表示出下列集合:

(1)方程x2―2x-3=0的解集;

(2)不等式2-x0的解集;

(3)不等式組 的解集;

(4)不等式組 2x-1-33x+10的解集。

解:略。

小結:(1)集合的表示方法列舉法與描述法;

(2)集合的分類有限集⑴,無限集⑵與⑶,空集⑷

例3 將下列用描述法表示的集合改為列舉法表示:

(1){(x,y)| x+y = 3,x n,y n }

(2){(x,y)| y = x2-1,|x |2,x z }

(3){y| x+y = 3,x n,y n }

(4){ x r | x3-2x2+x=0}

小結:常用數(shù)集的記法與作用。

例4 完成下列各題:

(1)若集合a={ x|ax+1=0}=,求實數(shù)a的值;

(2)若-3{ a-3,2a-1,a2-4},求實數(shù)a.

小結:集合與元素之間的關系。

2.練習:

(1)用列舉法表示下列集合:

①{ x|x+1=0};

②{ x|x為15的正約數(shù)};

③{ x|x 為不大于10的正偶數(shù)};

④{(x,y)|x+y=2且x-2y=4};

⑤{(x,y)|x{1,2},y{1,3}};

⑥{(x,y)|3x+2y=16,xn,yn}.

(2)用描述法表示下列集合:

①奇數(shù)的集合;②正偶數(shù)的集合;③{1,4,7,10,13}

(1)集合的概念集合、元素、屬于、不屬于、有限集、無限集、空集;

(2)集合的表示列舉法、描述法以及venn圖;

(3)集合的元素與元素的個數(shù);

(4)常用數(shù)集的記法。

高一數(shù)學教案篇七

【摘要】鑒于大家對數(shù)學網(wǎng)十分關注,小編在此為大家整理了此文空間幾何體的三視圖和直觀圖高一數(shù)學教案,供大家參考!

:空間幾何體的三視圖和直觀圖高一數(shù)學教案

1.2.1中心投影與平行投影 1.2.2空間幾何體的三視圖

:能畫出簡單幾何體的三視圖;能識別三視圖所表示的空間幾何體。

:畫出三視圖、識別三視圖。

:識別三視圖所表示的空間幾何體。

1. 討論:能否熟練畫出上節(jié)所學習的幾何體?工程師如何制作工程設計圖紙?

2. 引入:從不同角度看廬山,有古詩:橫看成嶺側成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。 對于我們所學幾何體,常用三視圖和直觀圖來畫在紙上。

三視圖:觀察者從不同位置觀察同一個幾何體,畫出的空間幾何體的圖形;

直觀圖:觀察者站在某一點觀察幾何體,畫出的空間幾何體的圖形。

用途:工程建設、機械制造、日常生活。

1. 教學中心投影與平行投影:

① 投影法的提出:物體在光線的照射下,就會在地面或墻壁上產(chǎn)生影子。人們將這種自然現(xiàn)象加以科學的抽象,總結其中的規(guī)律,提出了投影的方法。

② 中心投影:光由一點向外散射形成的投影。其投影的大小隨物體與投影中心間距離的變化而變化,所以其投影不能反映物體的實形。

③ 平行投影:在一束平行光線照射下形成的投影。 分正投影、斜投影。

討論:點、線、三角形在平行投影后的結果。

2. 教學柱、錐、臺、球的三視圖:

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖

討論:三視圖與平面圖形的關系? 畫出長方體的三視圖,并討論所反應的長、寬、高

結合球、圓柱、圓錐的模型,從正面(自前而后)、側面(自左而右)、上面(自上而下)三個角度,分別觀察,畫出觀察得出的各種結果。 正視圖、側視圖、俯視圖。

③ 試畫出:棱柱、棱錐、棱臺、圓臺的三視圖。 (

④ 討論:三視圖,分別反應物體的哪些關系(上下、左右、前后)?哪些數(shù)量(長、寬、高)

正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

⑤ 討論:根據(jù)以上的三視圖,如何逆向得到幾何體的形狀。

(試變化以上的三視圖,說出相應幾何體的擺放)

3. 教學簡單組合體的三視圖:

① 畫出教材p16 圖(2)、(3)、(4)的三視圖。

② 從教材p16思考中三視圖,說出幾何體。

4. 練習:

① 畫出正四棱錐的三視圖。

畫出右圖所示幾何體的三視圖。

③ 右圖是一個物體的正視圖、左視圖和俯視圖,試描述該物體的形狀。

5. 小結:投影法;三視圖;順與逆

練習:教材p17 1、2、3、4

第二課時 1.2.3 空間幾何體的直觀圖

教學要求:掌握斜二測畫法;能用斜二測畫法畫空間幾何體的直觀圖。

教學重點:畫出直觀圖。

【本文地址:http://mlvmservice.com/zuowen/2843358.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔