每個人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。
《乘法分配律》教學(xué)反思與改進(jìn)篇一
一共25個小組參加植樹活動,每組里8人負(fù)責(zé)挖坑和種樹,4人負(fù)責(zé)抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)?8+6)個25更能凸顯出應(yīng)用乘法分配律后帶來的方便,也為乘法分配律的應(yīng)用打下伏筆和基礎(chǔ)。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學(xué)生理解帶來的困難。
通過引入解決問題讓學(xué)生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。
如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關(guān)系。然后觀察它們之們的形式變化特點,兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進(jìn)行分析。在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機(jī)會
借助對同一實際問題的不同解決方法讓學(xué)生體會乘法分配律的合理性。這是生活中遇到過的,學(xué)生能夠理解兩個算式表達(dá)的意思,也能順利地解決兩個算式相等的問題。
讓學(xué)生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學(xué)生親歷規(guī)律形成的科學(xué)過程設(shè)計中,不著痕跡的讓學(xué)生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學(xué)思想和方法。
相對于乘法運算中的其他規(guī)律而言,乘法分配律的結(jié)構(gòu)是最復(fù)雜的,等式變形的能力是教學(xué)的難點。為了突破這個教學(xué)難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負(fù)責(zé),人負(fù)責(zé)。一共有多少同學(xué)參加這次植樹活動?
學(xué)生主動去設(shè)計、解決,調(diào)動學(xué)生的積極性。讓學(xué)生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學(xué)生,發(fā)揮學(xué)生的主體性,通過去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗證、完善,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。讓學(xué)生能自由地利用自己的知識經(jīng)驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。
在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗。
當(dāng)然,對乘法分配律的意義還需做到更式形結(jié)合解釋,那就更有利于模型的建立。
乘法分配律教學(xué)反思是必要的,所以老師們一定也要好好地去對待。不斷的反思,才可以促進(jìn)不斷的進(jìn)步。以上面的文章,希望與各位同行們共同進(jìn)步。
《乘法分配律》教學(xué)反思與改進(jìn)篇二
這節(jié)課是在學(xué)生學(xué)習(xí)乘法分配律基礎(chǔ)上進(jìn)行教學(xué)的。在第一課時學(xué)生對于乘法分配律的意義已經(jīng)有了初步的理解,對于乘法分配律的結(jié)構(gòu)也有了一定的認(rèn)識,能初步利用乘法分配律進(jìn)行簡便計算。本課內(nèi)容的教學(xué)重點是靈活根據(jù)題型應(yīng)用乘法分配律進(jìn)行簡便計算。
1.課始通過復(fù)習(xí)乘法分配律的意義,以及應(yīng)用乘法分配律進(jìn)行填空的練習(xí),讓學(xué)生進(jìn)一步熟悉乘法分配律的結(jié)構(gòu)及特點,加深對乘法分配律意義的理解。
2.分類型進(jìn)行練習(xí)。采用邊講邊練相結(jié)合的方法,讓學(xué)生通過專項練習(xí)進(jìn)一步鞏固每一類型題目。共分為四類:第一類是a×(b+c);
第二類是a×b+a×c;第三類是a×b+a;第四類是接近整十整百的數(shù)乘一個數(shù)。整體教學(xué)就是穩(wěn)扎穩(wěn)打,一步一個腳印,讓所有學(xué)生都能掌握其中的變式練習(xí),然后再進(jìn)行綜合訓(xùn)練,讓學(xué)生靈活解決問題。
1.由于分類型講解練習(xí),導(dǎo)致時間分配不足,個別題型沒有足夠的時間進(jìn)行練習(xí)。
2.學(xué)生的注意力集中不夠,導(dǎo)致個別學(xué)生對某一類型的題目沒有掌握。
1.加強(qiáng)小組合作的學(xué)習(xí),能自己解決的問題,就自己解決,能小組解決的問題,就小組解決,充分發(fā)揮小組組際間的交流,留給學(xué)生更多的時間和空間,發(fā)揮學(xué)生主體作用。
2.抓住易出錯類型題,重點講解,重點訓(xùn)練。
《乘法分配律》教學(xué)反思與改進(jìn)篇三
計算教學(xué)是小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,幾乎每一冊的教材中都有計算的教學(xué),而其中的“簡便計算”教學(xué)更是計算教學(xué)的一部“重頭戲”。學(xué)好簡便運算,不僅能降低計算的難度,而且能提高計算的正確率和速度,更重要的是,能使學(xué)生將學(xué)到的定理、定律、法則、性質(zhì)等運算規(guī)律融會貫通,達(dá)到學(xué)以致用的目的,從而能培養(yǎng)學(xué)生良好的計算習(xí)慣。
乘法分配律的教學(xué)是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)習(xí)這幾個定律中的難點。所以,對于乘法分配律的教學(xué),我沒有把重點放在規(guī)律的數(shù)學(xué)語言表達(dá)上,而是注重引導(dǎo)學(xué)生積極主動的參與感悟、體驗、發(fā)現(xiàn)數(shù)學(xué)規(guī)律的過程,并且學(xué)會用辯證的思維方式思考問題,培養(yǎng)良好的思維習(xí)慣,真正落實學(xué)生的主體地位。
在教學(xué)中,我主要做到了以下幾點:
興趣是形成良好學(xué)習(xí)習(xí)慣的催化劑。以學(xué)生身邊熟悉的情境為教學(xué)的切入點,激發(fā)學(xué)生主動學(xué)習(xí)的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學(xué)習(xí)情境,也就是根據(jù)例題圖,提出問題:買5件夾克衫和5條褲子,一共要付多少元?通過兩種算式的比較,喚醒了學(xué)生已有的知識經(jīng)驗,并有意識的蘊含新知識的教學(xué),激發(fā)了學(xué)生的學(xué)習(xí)興趣。
配養(yǎng)學(xué)生主動探究的學(xué)習(xí)習(xí)慣,是數(shù)學(xué)老師在數(shù)學(xué)課上的重要任務(wù)。先讓學(xué)生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(65+45)×5=65×5+45×5這個等式,讓學(xué)生觀察,初步感知“乘法分配律”。再展開類比:假如我們要選擇另外兩種服裝,買的數(shù)量都相同,一共要付多少元?你還能用兩種方法來求一共要付的錢嗎?讓學(xué)生在再次解決問題的過程中進(jìn)一步感受乘法分配律的存在。然后我引導(dǎo)學(xué)生觀察,初步發(fā)現(xiàn)規(guī)律,再引導(dǎo)學(xué)生舉例驗證自己的發(fā)現(xiàn),得到更多的等式,繼續(xù)引導(dǎo)學(xué)生觀察,直到發(fā)現(xiàn)規(guī)律,同時質(zhì)疑是否有反例,再一致確定規(guī)律的存在,并得出字母公式。
對于乘法分配律的教學(xué),我把重點放在讓學(xué)生通過多種方法的計算去完整地感知,對所列算式進(jìn)行觀察、比較和歸納,大膽提出自己的猜想并舉例進(jìn)行驗證。讓學(xué)生在課堂上經(jīng)歷了數(shù)學(xué)研究的基本過程:即感知——猜想——驗證——總結(jié)——應(yīng)用的過程,學(xué)生不僅自主發(fā)現(xiàn)了乘法分配律,掌握了乘法分配律的相關(guān)知識,而且掌握了科學(xué)探究的方法,數(shù)學(xué)思維的能力也得到了發(fā)展。
學(xué)生在學(xué)習(xí)數(shù)學(xué)知識的過程中能學(xué)會與人合作交流,這也是一種良好的學(xué)習(xí)習(xí)慣,而倡導(dǎo)課堂教學(xué)的動態(tài)生成是新課程標(biāo)準(zhǔn)的重要理念。在數(shù)學(xué)學(xué)習(xí)中,每個學(xué)生的思維方式、智力、活動水平都是不一樣的。因此,為了讓不同的學(xué)生在數(shù)學(xué)學(xué)習(xí)中都得到發(fā)展,我在本課教學(xué)中立足通過生生、師生之間多向互動,特別是通過學(xué)生之間的互相啟發(fā)與補(bǔ)充來培養(yǎng)他們的合作意識,實現(xiàn)對“乘法分配律”的主動建構(gòu)。學(xué)生在這樣一個開放的環(huán)境中博采眾長,共同經(jīng)歷猜想、驗證、歸納知識的形成過程,共同體驗成功的快樂。既培養(yǎng)了學(xué)生的問題意識,又拓寬了學(xué)生思維,增強(qiáng)思維的條理性,學(xué)生也學(xué)得積極主動。
在練習(xí)題型的設(shè)計上,我基本尊重課本上知識的體系,在第4個練習(xí)中,三組題目的對比練習(xí)主要是鞏固學(xué)生對乘法分配律的理解,讓學(xué)生通過對比體會計算的簡便。而在計算的過程中會選擇更合理的方法進(jìn)行計算,這有助于幫助學(xué)生提高計算的正確性,有利于學(xué)生養(yǎng)成良好的計算習(xí)慣。我在設(shè)計教學(xué)時,先出示一組題,在學(xué)生發(fā)現(xiàn)它們之間的聯(lián)系后,有意讓女生做簡便的一題,讓學(xué)生初步感知女生做的題比較簡便,然后再出示第二組,還是有意讓女生做簡便的一題,所以還是女生優(yōu)先,至此我引導(dǎo)學(xué)生發(fā)現(xiàn):有時先加再乘比較簡便,有時先乘再加比較簡便,可以根據(jù)實際情況的不同,作出合理的選擇,甚至可以根據(jù)乘法分配律先做適當(dāng)改寫,使計算更簡便。
這樣設(shè)計,使學(xué)生經(jīng)歷了兩輪比賽,對運用乘法分配律可以使計算簡便有了初步的體驗,并且產(chǎn)生了濃厚的學(xué)習(xí)興趣,對下一課時運用乘法分配律進(jìn)行簡便計算打下了良好的基礎(chǔ)。最后增加了一個變式題:“5件夾克衫比5條褲子貴多少元?”這是乘法分配律的變式,這在第三課時將會碰到這種題型,所以這里先埋下一個伏筆。由基本題到變式題,有機(jī)地聯(lián)系在一起。使學(xué)生逐步加深認(rèn)識,在弄清算理的基礎(chǔ)上,學(xué)生能根據(jù)題目的特點,靈活地運用所學(xué)知識進(jìn)行練習(xí)。從課堂反饋來看,學(xué)生熱情較高,能夠?qū)W以致用。學(xué)生通過自己的努力以及和同學(xué)的交流合作,思維能力得到了發(fā)展。
教學(xué)過程是一個不斷探討的過程,不斷追尋的過程。作為一名數(shù)學(xué)老師,希望能在與學(xué)生有限的接觸時間內(nèi)幫助學(xué)生更快更好地養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣,使我們的學(xué)生終身受益。這是一個值得我永遠(yuǎn)追求并為之努力的目標(biāo)。
《乘法分配律》教學(xué)反思與改進(jìn)篇四
乘法分配律是四年級學(xué)習(xí)的重點,也是難點之一。它是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的,是一節(jié)比較抽象的概念課,教學(xué)是我根據(jù)教學(xué)內(nèi)容的特點,為學(xué)生提供多種探究方法,激發(fā)學(xué)生的自主意識。
(1)通過學(xué)生比賽列式計算解決情景問題后,觀察、比較、分析理解乘法分配律的含義,教師引導(dǎo)學(xué)生概括出乘法分配律的內(nèi)容。
(2)初步感受乘法分配律能使一些計算簡便。
(3)培養(yǎng)學(xué)生分析、推理、概括的思維能力。
1、總體上我的教學(xué)思路是由具體——抽象——具體。
在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,老師都予以肯定和表揚,目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗。
2、從學(xué)生已有知識出發(fā)。
教師要深入了解各層次學(xué)生思維實際,提供充分的信息,為各層次學(xué)生參與探索學(xué)習(xí)活動創(chuàng)造條件,沒有學(xué)生主體的主動參與,不會有學(xué)生主體的主動發(fā)展,教師若不了解學(xué)生實際,一下子把學(xué)習(xí)目標(biāo)定得很高,勢必會造成部分學(xué)生高不可攀而坐等觀望,失去信心浪費寶貴的學(xué)習(xí)時間。以往教學(xué)該課時都是以計算引入,有復(fù)習(xí)舊知,也有比一比誰的計算能力強(qiáng)開場。我想是不是可以拋開計算,帶著愉快的心情進(jìn)課堂,因此,我在一開始設(shè)計了一個植樹的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進(jìn)生活,開始學(xué)習(xí)新知。這樣所設(shè)的起點較低,學(xué)生比較容易接受。
3、鼓勵學(xué)生大膽猜想。
猜想是科學(xué)發(fā)現(xiàn)的前奏。學(xué)生的學(xué)習(xí)活動中同樣不能沒有猜想,否則,主體性探究 活動便缺少了內(nèi)在的動力,自主學(xué)習(xí)的過程也成了失去目標(biāo)的無意義操作。學(xué)生看到加法交換律和加法結(jié)合律,從直觀上產(chǎn)生了關(guān)于乘法運算定律的猜想。于是,接下來的舉例就成了驗證猜想的必需,無論猜想的結(jié)論是“是”還是“非”,學(xué)生的思維一直是活躍著的,對學(xué)生都是有意義的。這個過程是教會學(xué)生 學(xué)習(xí)與掌握探索方法的過程,是培養(yǎng)學(xué)生學(xué)習(xí)品格的過程。
4、師生平等交流。
教學(xué)過程是師生共創(chuàng)共生的過程,新課程確定的培養(yǎng)目標(biāo)和所倡導(dǎo)的學(xué)習(xí)方式要求 教師必須轉(zhuǎn)換角色。改變已有的教學(xué)行為,教師必須從“師道尊嚴(yán)”的架子中走出來,與學(xué)生平等地參與教學(xué),成為共同建構(gòu)學(xué)習(xí)的參與者。在以上教學(xué)片斷中,教 師讓學(xué)生充分經(jīng)歷學(xué)習(xí)過程,調(diào)動學(xué)生學(xué)習(xí)的熱情:猜想——傾聽——舉例——驗證,在 欣賞學(xué)生的“閃光”處給學(xué)生“點撥”。教師沒有過多的講授,也沒有花大量的時間去 刻意的創(chuàng)設(shè)教學(xué)情境,只是做喚醒學(xué)生主體意識的工作,引導(dǎo)學(xué)生大膽猜想,大膽表達(dá)。學(xué)生借助已有的知識經(jīng)驗,自主解決新問題,使學(xué)生的主體地位得以體現(xiàn)。
5、將學(xué)生放在主體位置。
把學(xué)生放在主動探索知識規(guī)律的主體位置上,讓學(xué)生能自由地利用自己的知識經(jīng)驗、思維方式去嘗試解決問題。在探究這一系列的等式有什么共同點的活動中,學(xué)生涌現(xiàn)出的各種說法,說明學(xué)生的智力潛能是巨大的。所以我在這里花了較多的時間,讓學(xué)生多說,談?wù)劯髯圆煌目捶ǎf說自己的新發(fā)現(xiàn),教師盡可能少說,為的就是要還給學(xué)生自由探索的時間和空間,從而能使學(xué)生的主動性、自主性和創(chuàng)造性得到充分的發(fā)揮。
在教學(xué)過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內(nèi)容時,學(xué)生難以完整地總結(jié)出乘法分配律,另外還有部分學(xué)困生對乘法分配律不太理解,運用時問題較多等,今后的工作中,要多向以下幾個方面努力:
1、多聽課,多學(xué)習(xí)。尤其是優(yōu)秀教師的課,學(xué)習(xí)他們的新思想、新方法,改善課堂教學(xué),提高課堂教學(xué)藝術(shù)和課堂效率。
2、加強(qiáng)同科組教師之間的溝通和交流,相互學(xué)習(xí),取長補(bǔ)短,共同進(jìn)步。
3、認(rèn)真鉆研教材,把握好教材的重點、難點、關(guān)鍵點、易混點,上課時才能做到心中有數(shù),游刃有余。
《乘法分配律》教學(xué)反思與改進(jìn)篇五
乘法分配律是北師大版小學(xué)數(shù)學(xué)四年級上冊第三單元最后一節(jié)的教學(xué)內(nèi)容。本課是在學(xué)生已經(jīng)學(xué)習(xí)掌握了乘法交換律、結(jié)合律,并能初步應(yīng)用這些定律進(jìn)行一些簡便計算的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。乘法分配律是本單元教學(xué)的一個重點,也是本單元內(nèi)容的難點,教材是按照發(fā)現(xiàn)問題--提出假設(shè)--舉例驗證--歸納結(jié)論等層次進(jìn)行的。然而乘法分配律又不是單一的乘法運算,還涉及到加法的運算,是學(xué)生學(xué)習(xí)的難點。因此本節(jié)課不僅使學(xué)生學(xué)會什么是乘法分配律,更要讓學(xué)生經(jīng)歷探索規(guī)律的`過程,進(jìn)而培養(yǎng)學(xué)生的分析、推理、抽象、概括的思維能力。
1、上課一開始,我創(chuàng)造性地使用教材,創(chuàng)設(shè)了訂校服的教學(xué)情境,使學(xué)生解決非常熟悉的生活問題、
2、在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機(jī)會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學(xué)生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。
3、本節(jié)課有一定的亮點,但其中出現(xiàn)了不少問題:學(xué)生參與的積極性沒有預(yù)想中那么高。可能與我相對缺乏激勵性語言有關(guān)。也有可能今天的題材學(xué)生不太感興趣。
4、以后注意,學(xué)生不感興趣的材料,教師應(yīng)該想辦法使呈現(xiàn)的這個材料變得能讓學(xué)生感興趣
乘法分配律是第三單元的一個難點。在理解、掌握和運用上都有一定難度。因此如何上好這一課,讓學(xué)生真正地理解乘法分配律,并在理解的基礎(chǔ)上運用好它?我覺得要注重形式上的認(rèn)識,更要注重意義上的理解。因為單從形式上去記住乘法分配律是有局限性的,以后在運用乘法分配律的時候,遇到一些變式如:99×24+24會變得難以解決。注重意義的理解,能讓學(xué)生從更高的層面上去理解乘法分配律,那么將來無論形式上怎么變化,學(xué)生都能輕松運用乘法分配律。
北師大版的教材注重學(xué)生的探索活動,在探索中讓學(xué)生自己去發(fā)現(xiàn)的規(guī)律,才能讓他們真正地理解。本課是“探索與發(fā)現(xiàn)”的第三節(jié)課了,學(xué)生已經(jīng)有了一定的探索能力。因此本課的設(shè)計完全圍繞著學(xué)生的自主活動在進(jìn)行。
總體上我的教學(xué)思路是由具體——抽象——具體。在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在學(xué)習(xí)中大膽放手,把學(xué)生放在主動探索知識規(guī)律的主體位置上,讓學(xué)生能自由地利用自己的知識經(jīng)驗、思維方式去發(fā)現(xiàn)規(guī)律,驗證規(guī)律,表示規(guī)律,歸納規(guī)律,應(yīng)用規(guī)律。
在教學(xué)過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內(nèi)容時,學(xué)生難以完整地總結(jié)出乘法分配律,另外還有部分學(xué)困生對乘法分配律不太理解,運用時問題較多等。
《乘法分配律》教學(xué)反思與改進(jìn)篇六
以學(xué)生身邊熟悉的情境為教學(xué)的切入點,激發(fā)學(xué)生主動學(xué)習(xí)的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學(xué)習(xí)情境——為樹勛中心小學(xué)購買舞蹈服裝。通過兩種算式的比較,喚醒了學(xué)生已有的知識經(jīng)驗,使學(xué)生初步感知乘法分配律。讓學(xué)生始終處于主動探索知識的最佳狀態(tài),促使學(xué)生對原有知識進(jìn)行更新、深化、突破、超越。
一堂數(shù)學(xué)課可以有不同種教法,怎樣教才能在數(shù)學(xué)活動中培養(yǎng)學(xué)生
的創(chuàng)新能力呢?我覺得,最重要的是保證學(xué)生的主體地位,提供自主探索的機(jī)會。在探索乘法運算律的過程中,提出的問題有易到難,層層遞進(jìn),不僅為學(xué)生提供了自主探索的時間和空間,使學(xué)生經(jīng)歷乘法運算律的產(chǎn)生和形成過程,而且讓學(xué)生發(fā)現(xiàn)其中的數(shù)學(xué)規(guī)律與奧秘,從而激發(fā)學(xué)生對數(shù)學(xué)深層次的熱愛。
現(xiàn)代教育觀認(rèn)為:課堂教學(xué)不只是知識的傳授過程,更是學(xué)生的發(fā)展過程。從數(shù)學(xué)學(xué)科的特點看,學(xué)生所學(xué)的數(shù)學(xué)知識是前人思維的結(jié)果。學(xué)習(xí)這些知識,不是簡單地吸收,而必須通過自己的思維,把前人的思維結(jié)果轉(zhuǎn)化為自己的思維結(jié)果。教師的任務(wù)是引導(dǎo)和幫助學(xué)生去進(jìn)行再創(chuàng)造,而不是把現(xiàn)成的結(jié)論灌輸給學(xué)生。讓學(xué)生在探索未知領(lǐng)域的過程中,付出與前人發(fā)現(xiàn)這些知識所曾經(jīng)付出的大體相同的智力代價,從而有效地實現(xiàn)知識訓(xùn)練智力的價值。例如在“乘法分配律”教學(xué)中,我先讓學(xué)生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(65+35)×12=65×12+35×12這個等式,讓學(xué)生觀察,初步感知“乘法分配律。然后照樣子寫出幾組這樣的等式,引導(dǎo)學(xué)生再觀察,讓學(xué)生說明自己
發(fā)現(xiàn)的規(guī)律、并用不同的方法來表示這個規(guī)律。這樣學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。不僅要讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且讓學(xué)生學(xué)習(xí)科學(xué)探究的方法,以培養(yǎng)學(xué)生主動探究、發(fā)現(xiàn)知識的能力。
建構(gòu)主義強(qiáng)調(diào),學(xué)習(xí)不是簡單地讓學(xué)習(xí)者占有別人的知識,而是學(xué)習(xí)者主動地建構(gòu)自己的知識經(jīng)驗,形成自己的見解。在學(xué)習(xí)過程中學(xué)習(xí)者不僅要不斷監(jiān)視自己對知識的理解程度,判斷自己的進(jìn)展與目標(biāo)的差距,采取各種增進(jìn)和幫助思考的策略,而且還要不斷地反思自己的學(xué)習(xí)過程。由于數(shù)學(xué)對象的抽象性、數(shù)學(xué)活動的探索性決定了小學(xué)生不可能一次性地直接把握數(shù)學(xué)活動的本質(zhì),必須要經(jīng)過多次的反復(fù)思考、深入研究和自我調(diào)整才可能洞察數(shù)學(xué)活動的本質(zhì)特征。就小學(xué)數(shù)學(xué)課堂教學(xué)而言,反思的內(nèi)容主要有:對自己的思考過程進(jìn)行反思,對解題思路、分析過程、運算過程、語言的表述進(jìn)行反思,對所涉及的數(shù)學(xué)思想方法反思等。在數(shù)學(xué)活動中,當(dāng)學(xué)生在探索過程中遇到障礙或出現(xiàn)錯誤時,教師可以提出一些針對性的、具有啟發(fā)性的問題引導(dǎo)學(xué)生主動地反思探索過程;當(dāng)數(shù)學(xué)活動結(jié)束后,要引導(dǎo)學(xué)生反思整個探索過程和所獲得結(jié)論的合理性,以獲得成功的體驗。在“乘法分配律”教學(xué)中,我先向?qū)W生我先讓學(xué)生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(65+35)×12=65×12+35×12這個等式,讓學(xué)生觀察,是讓學(xué)生初步感知這個規(guī)律。同時也體現(xiàn)了教學(xué)的差異性,給沒有發(fā)現(xiàn)規(guī)律的同學(xué)以再次發(fā)現(xiàn)的機(jī)會。然后照樣子寫出幾組這樣的等式,引導(dǎo)學(xué)生再觀察,讓學(xué)生說明自己發(fā)現(xiàn)的規(guī)律、并用不同的方法來表示這個規(guī)律,來加深學(xué)生的數(shù)學(xué)體驗。又如,學(xué)習(xí)了“乘法分配律”后,教師可讓學(xué)生反思:“乘法分配律”是怎樣總結(jié)出來的?從中你受到了什么啟發(fā)?什么知識與“乘法分配律”有聯(lián)系?學(xué)了“乘法分配律”后有什么用?這樣既豐富了學(xué)生的數(shù)學(xué)體驗,又提高了學(xué)生的“反思”的意識和能力。
本課中注意引導(dǎo)了學(xué)生在數(shù)學(xué)活動中體驗數(shù)學(xué),在數(shù)學(xué)中感悟數(shù)學(xué),實現(xiàn)了運算律的抽象化與外化運用的認(rèn)知飛躍,同時也體驗到了學(xué)習(xí)數(shù)學(xué)的樂趣。
《乘法分配律》教學(xué)反思與改進(jìn)篇七
這節(jié)課是在學(xué)生學(xué)習(xí)乘法分配律基礎(chǔ)上進(jìn)行教學(xué)的。在第一課時學(xué)生對于乘法分配律的意義已經(jīng)有了初步的理解,對于乘法分配律的結(jié)構(gòu)也有了一定的認(rèn)識,能初步利用乘法分配律進(jìn)行簡便計算。本課內(nèi)容的教學(xué)重點是靈活根據(jù)題型應(yīng)用乘法分配律進(jìn)行簡便計算。
1、課始通過復(fù)習(xí)乘法分配律的意義,以及應(yīng)用乘法分配律進(jìn)行填空的練習(xí),讓學(xué)生進(jìn)一步熟悉乘法分配律的結(jié)構(gòu)及特點,加深對乘法分配律意義的理解。
2、分類型進(jìn)行練習(xí)。采用邊講邊練相結(jié)合的方法,讓學(xué)生通過專項練習(xí)進(jìn)一步鞏固每一類型題目。共分為四類:第一類是a×(b+c);
第二類是a×b+a×c;第三類是a×b+a;第四類是接近整十整百的數(shù)乘一個數(shù)。整體教學(xué)就是穩(wěn)扎穩(wěn)打,一步一個腳印,讓所有學(xué)生都能掌握其中的變式練習(xí),然后再進(jìn)行綜合訓(xùn)練,讓學(xué)生靈活解決問題。
1、由于分類型講解練習(xí),導(dǎo)致時間分配不足,個別題型沒有足夠的時間進(jìn)行練習(xí)。
2、學(xué)生的注意力集中不夠,導(dǎo)致個別學(xué)生對某一類型的題目沒有掌握。
1、加強(qiáng)小組合作的學(xué)習(xí),能自己解決的問題,就自己解決,能小組解決的問題,就小組解決,充分發(fā)揮小組組際間的交流,留給學(xué)生更多的時間和空間,發(fā)揮學(xué)生主體作用。
2、抓住易出錯類型題,重點講解,重點訓(xùn)練。
《乘法分配律》教學(xué)反思與改進(jìn)篇八
《乘法分配律的運用》教學(xué)設(shè)計及反思
教學(xué)目標(biāo)
(一)使學(xué)生學(xué)會用乘法分配律進(jìn)行簡算,提高計算能力.
(二)培養(yǎng)學(xué)生靈活運用乘法運算定律進(jìn)行計算的習(xí)慣.
教學(xué)重點和難點
能比較熟練地應(yīng)用運算定律進(jìn)行簡算是教學(xué)的重點;反向應(yīng)用乘法分配律是學(xué)習(xí)的難點. 教學(xué)過程設(shè)計
1.口算:
我們已經(jīng)學(xué)過乘法分配律,今天繼續(xù)研究怎樣應(yīng)用乘法分配律使計算簡便.(板書:乘法分配律的應(yīng)用)
1.創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)積極性.
出示102×( ).
請同學(xué)任意填上一個兩位數(shù),老師可以迅速說出它的得數(shù),而不用筆算.
2.教學(xué)例6:用簡便方法計算.
(1)計算102×43.
這是一道兩位數(shù)乘三位數(shù)的乘法,用筆算比較麻煩.想一想,能否把算式改成乘法分配律的形式,然后應(yīng)用運算定律進(jìn)行簡算?
經(jīng)過討論后,可能出現(xiàn)兩種情況:一種是把原式改寫為(100+2)×43,然后按乘法分配律進(jìn)行計算;一種是把原式改寫成102×(40+3).不要簡單的否定,可以讓學(xué)生用兩種方法都做一
做,對比一下,找出哪種方法簡便.
在此基礎(chǔ)上引導(dǎo)學(xué)生觀察這類題目的特點,以及怎樣應(yīng)用乘法分配律,從而使學(xué)生明確:“兩個數(shù)相乘,把其中一個比較接近整十、整百、整千的數(shù)改寫成一個整十、整百、整千的數(shù)與一個數(shù)的和,再應(yīng)用乘法分配律可以使計算簡便.
(2)計算102×24.
訂正時說明怎樣簡算的?根據(jù)是什么.
(3)計算9×37+9×63.
啟發(fā)提問:
①這類題目的結(jié)構(gòu)形式是怎樣的?有什么特點?
②根據(jù)乘法分配律,可以把原式改寫成什么形式?這樣算為什么簡便?
在學(xué)生充分討論的基礎(chǔ)上,師板書:
提問:這題能簡算嗎?什么地方錯了?應(yīng)怎樣改?
啟發(fā)學(xué)生明確:題里兩個乘式?jīng)]有相同的因數(shù).應(yīng)該有一個相同的因數(shù),另外兩個因數(shù)加起來應(yīng)是能湊成整十、整百、整千的數(shù).
2.根據(jù)乘法分配律把相等的式子用“=”連接起來.
討論:2,3兩題為什么不相等?要使等號兩邊式子相等、符合乘法分配律的形式,應(yīng)該改哪個地方?
在討論基礎(chǔ)上得出:
第2題,如果左邊算式不變,右邊算式應(yīng)改為35×12+45×12,使兩個加數(shù)分別與同一個數(shù)相乘;如果右邊算式不變,兩個積里有相同的因數(shù)45,把相同的因數(shù)提到括號外面,兩個不同的因數(shù)就是兩個加數(shù),改為(35+12)×45.
第3題右邊兩個積里相同的因數(shù)是4,不同的因數(shù)是11和25,應(yīng)改為(11+25)×4.因此
要特別注意:括號里的每一個加數(shù)都要同括號外面的數(shù)相乘;反過來,必須是兩個積里有相同的因數(shù),才能把相同的因數(shù)提到括號外面.而三個數(shù)連乘則是可以改變運算順序,它是乘法結(jié)合律.必須要掌握這兩個運算定律的區(qū)別.
練習(xí)十四第5~10題.
教學(xué)反思:本節(jié)課從學(xué)生實際出發(fā),創(chuàng)設(shè)了具體的生活情境,引導(dǎo)學(xué)生開展觀察、猜想、舉例驗證、交流等活動,從激活學(xué)生已有的知識經(jīng)驗和探究欲望入手,引導(dǎo)學(xué)生主動參與數(shù)學(xué)的學(xué)習(xí)過程,從而發(fā)展學(xué)生數(shù)學(xué)思維數(shù)學(xué)能力,在學(xué)習(xí)過程中學(xué)會學(xué)習(xí),學(xué)會與人交流合作。新理念還體現(xiàn)不夠,學(xué)生的積極性沒有充分調(diào)動起來。
【本文地址:http://mlvmservice.com/zuowen/2842824.html】