2023年等差數(shù)列優(yōu)質(zhì)課教案人教版 等差數(shù)列優(yōu)質(zhì)課課件通用

格式:DOC 上傳日期:2023-05-07 18:50:37
2023年等差數(shù)列優(yōu)質(zhì)課教案人教版 等差數(shù)列優(yōu)質(zhì)課課件通用
時間:2023-05-07 18:50:37     小編:zdfb

作為一位不辭辛勞的人民教師,常常要根據(jù)教學(xué)需要編寫教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展。怎樣寫教案才更能起到其作用呢?教案應(yīng)該怎么制定呢?下面是小編整理的優(yōu)秀教案范文,歡迎閱讀分享,希望對大家有所幫助。

等差數(shù)列優(yōu)質(zhì)課教案人教版 等差數(shù)列優(yōu)質(zhì)課課件篇一

觀潮教案 推薦度:

請客教案 推薦度:

《窮人》教案 推薦度:

《春酒》教案 推薦度:

鉛球教案 推薦度:

相關(guān)推薦

在教學(xué)工作者實際的教學(xué)活動中,時常需要用到教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教案應(yīng)該怎么寫呢?以下是小編整理的等差數(shù)列優(yōu)質(zhì)課教案,希望對大家有所幫助。

1.知識與技能目標(biāo):掌握等差數(shù)列的概念;理解等差數(shù)列的通項公式的推導(dǎo)過程;了解 等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項公式解決相應(yīng)的一些問題。

2.過程與方法目標(biāo):讓學(xué)生親身經(jīng)歷“從特殊入手,研究對象的性質(zhì),再逐步擴(kuò)大到一般”這一研究過程,培養(yǎng)他們觀察、分析、歸納、推理的能力。通過階梯性的.強化練習(xí),培養(yǎng)學(xué)生分析問題解決問題的能力。

3.情感態(tài)度與價值觀目標(biāo):通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求索精神;使學(xué)生逐步養(yǎng)成細(xì)心觀察、認(rèn)真分析、及時總結(jié)的好習(xí)慣。

1.教學(xué)重點:等差數(shù)列的概念的理解,通項公式的推導(dǎo)及應(yīng)用。

2.教學(xué)難點:(1)對等差數(shù)列中“等差”兩字的把握;

(2)等差數(shù)列通項公式的推導(dǎo)。

一.課題引入

創(chuàng)設(shè)情境 引入課題:(這節(jié)課我們將學(xué)習(xí)一類特殊的數(shù)列,下面我們看這樣一些例子)

(1)、在過去的三百多年里,人們分別在下列時間里觀測到了哈雷慧星:

1682,1758,1834,1910,1986,( )

你能預(yù)測出下次觀測到哈雷慧星的大致時間嗎?判斷的依據(jù)是什么呢?

(2)、通常情況下,從地面到11km的高空,氣溫隨高度的變化而變化符合一定的規(guī)律,請你根據(jù)下表估計一下珠穆朗瑪峰峰頂?shù)臏囟取?/p>

(3) 1,4,7,10,( ),16,…

(4) 2,0,-2,-4,-6,( ),…

它們共同的規(guī)律是?

從第二項起,每一項與前一項的差等于同一個常數(shù)。

我們把有這一特點的數(shù)列叫做等差數(shù)列。

二、新課探究

(一)等差數(shù)列的定義

1、等差數(shù)列的定義

如果一個數(shù)列從第二項起,每一項與前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列。這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。

(1)定義中的關(guān)健詞有哪些?

(2)公差d是哪兩個數(shù)的差?

2、等差數(shù)列定義的數(shù)學(xué)表達(dá)式:

試一試:它們是等差數(shù)列嗎?

(1) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10…

(2) 5,5,5,5,5,5,…

(3) -1,-3,-5,-7,-9,…

(4) 數(shù)列{an},若an+1-an=3

3、等差中頂定義

在如下的兩個數(shù)之間,插入一個什么數(shù)后這三個數(shù)就會成為一個等差數(shù)列:

(1)、2 ,( ) ,4 (2)、-12,( ) ,0 ( 3 ) a ,( ),b

如果在a與b中間插入一個數(shù)a,使a,a,b成等差數(shù)列,那么a叫做a與b的等差中項。(二)等差數(shù)列的通項公式

探究1:等差數(shù)列的通項公式(求法一)

如果等差數(shù)列 首項是 ,公差是 ,那么這個等差數(shù)列 如何表示? 呢?

根據(jù)等差數(shù)列的定義可得:

, , ,…。

所以: ,

,

,

……

由此得 ,

因此等差數(shù)列的通項公式就是: ,

探究2:等差數(shù)列的通項公式(求法二)

根據(jù)等差數(shù)列的定義可得:

……

將以上 -1個式子相加得等差數(shù)列的通項公式就是: ,

三、應(yīng)用與探索

例1、(1) 求等差數(shù)列8,5,2,…,的第20項。

(2) 等差數(shù)列 -5,-9,-13,…,的第幾項是 –401?

(2)、分析:要判斷-401是不是數(shù)列的項,關(guān)鍵是求出通項公式,并判斷是否存在正整數(shù)n,使得 成立,實質(zhì)上是要求方程 的正整數(shù)解。

例2、在等差數(shù)列中,已知 =10, =31,求首項 與公差d.

解:由 ,得 。

在應(yīng)用等差數(shù)列的通項公式an=a1+(n-1)d過程中,對an,a1,n,d這四個變量,知道其中三個量就可以求余下的一個量,這是一種方程的思想。

鞏固練習(xí)

1. 等差數(shù)列{an}的前三項依次為 a-6,-3a-5,-10a-1,則a =( )。

a. 1 b. -1 c. -2 d. 22.一張?zhí)葑幼罡咭患墝?3cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。求公差d。四、小結(jié)

1.等差數(shù)列的通項公式:

公差 ;

2. 等差數(shù)列的計算問題,通常知道其中三個量就可以利用通項公式an=a1+(n-1)d,求余下的一個量;

3. 判斷一個數(shù)列是否為等差數(shù)列只需看 是否為常數(shù)即可;

4. 利用從特殊到一般的思維去發(fā)現(xiàn)數(shù)學(xué)系規(guī)律或解決數(shù)學(xué)問題.

五、作業(yè):

1、必做題:課本第40頁 習(xí)題2.2 第1,3,5題

2、選做題:如何以最快的速度求:1+2+3++100=

高斯說:“請同學(xué)們預(yù)習(xí)下一節(jié):等差數(shù)列的前n項和?!?/p>s("content_relate");

【等差數(shù)列優(yōu)質(zhì)課教案】相關(guān)文章:

《鄉(xiāng)愁》優(yōu)質(zhì)課教案05-03

化石吟優(yōu)質(zhì)課教案10-11

幼兒園優(yōu)質(zhì)課教案12-20

長恨歌優(yōu)質(zhì)課教案06-30

河中石獸優(yōu)質(zhì)課教案05-17

河中石獸優(yōu)質(zhì)課教案06-01

雨霖鈴柳永優(yōu)質(zhì)課教案12-14

望岳優(yōu)質(zhì)課教案設(shè)計08-10

錢塘湖春行優(yōu)質(zhì)課教案11-08

鄉(xiāng)愁余光中優(yōu)質(zhì)課教案06-06

【本文地址:http://mlvmservice.com/zuowen/2837603.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔