每個人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。范文怎么寫才能發(fā)揮它最大的作用呢?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
數(shù)學(xué)知識點占比數(shù)學(xué)知識點歸納公式篇一
表示方根的代數(shù)式叫做根式。
含有關(guān)于字母開方運(yùn)算的代數(shù)式叫做無理式。
注意:①從外形上判斷;②區(qū)別: 、 是根式,但不是無理式(是無理數(shù))。
在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸或y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點o稱為直角坐標(biāo)系的原點。
通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應(yīng)點a,b分別叫做點c的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點c的坐標(biāo)。
一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。
希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解與整式乘法的關(guān)系:m(a+b+c)
一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
①確定公因式。②確定商式③公因式與商式寫成積的形式。
①不準(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結(jié)果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負(fù)號放括號外
⑦括號內(nèi)同類項合并。
數(shù)學(xué)知識點占比數(shù)學(xué)知識點歸納公式篇二
1、加法:(1)同號兩數(shù)相加,取原來的符號,并把它們的絕對值相加;(2)異號兩數(shù)相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值??墒褂眉臃ń粨Q律、結(jié)合律。
2、減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù)。
3、乘法:(1)兩數(shù)相乘,同號取正,異號取負(fù),并把絕對值相乘。(2)n個實數(shù)相乘,有一個因數(shù)為0,積就為0;若n個非0的實數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正;當(dāng)負(fù)因數(shù)為奇數(shù)個時,積為負(fù)。(3)乘法可使用乘法交換律、乘法結(jié)合律、乘法分配律。
4、除法:(1)兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。(2)除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。(3)0除以任何數(shù)都等于0,0不能做被除數(shù)。
5、乘方與開方:乘方與開方互為逆運(yùn)算。
6、實數(shù)的運(yùn)算順序:乘方、開方為三級運(yùn)算,乘、除為二級運(yùn)算,加、減是一級運(yùn)算,如果沒有括號,在同一級運(yùn)算中要從左到右依次運(yùn)算,不同級的運(yùn)算,先算高級的運(yùn)算再算低級的運(yùn)算,有括號的先算括號里的運(yùn)算。無論何種運(yùn)算,都要注意先定符號后運(yùn)算。
通過上面對數(shù)學(xué)中實數(shù)的運(yùn)算知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望同學(xué)們在考試中取得理想的成績哦。
數(shù)學(xué)知識點占比數(shù)學(xué)知識點歸納公式篇三
判定1:定義,有一個角為90°的三角形是直角三角形。
判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一個三角形30°內(nèi)角所對的邊是某一邊的一半,則這個三角形是以這條長邊為斜邊的直角三角形。
判定4:兩個銳角互為余角(兩角相加等于90°)的三角形是直角三角形。
判定6:若在一個三角形中一邊上的中線等于其所在邊的一半,那么這個三角形為直角三角形。
判定7:一個三角形30°角所對的邊等于這個三角形斜邊的一半,則這個三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)
三角形的外心定義:
外心:是三角形三條邊的垂直平分線的交點,即外接圓的圓心。
外心定理:三角形的三邊的垂直平分線交于一點。該點叫做三角形的外心。
三角形的外心的性質(zhì):
3.銳角三角形的外心在三角形內(nèi);
鈍角三角形的外心在三角形外;
直角三角形的外心與斜邊的中點重合。
在△abc中
=ob=oc=r
數(shù)學(xué)知識點占比數(shù)學(xué)知識點歸納公式篇四
1、相同數(shù)位對齊;
2、從個位加起;
3、個位滿10向十位進(jìn)1。
(二)筆算兩位數(shù)減法,要記三條
1、相同數(shù)位對齊;
2、從個位減起;
3、個位不夠減從十位退1,在個位加10再減。
(三)混合運(yùn)算計算法則
2、在沒有括號的算式里,有乘除法和加減法的,要先算乘除再算加減;
3、算式里有括號的要先算括號里面的。
(四)四位數(shù)的讀法
2、中間有一個0或兩個0只讀一個“零”;
3、末位不管有幾個0都不讀。
(五)四位數(shù)寫法
1、從高位起,按照順序?qū)懀?/p>
2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫“0”。
(六)四位數(shù)減法也要注意三條
1、相同數(shù)位對齊;
2、從個位減起;
3、哪一位數(shù)不夠減,從前位退1,在本位加10再減。
(七)一位數(shù)乘多位數(shù)乘法法則
1、從個位起,用一位數(shù)依次乘多位數(shù)中的每一位數(shù);
2、哪一位上乘得的積滿幾十就向前進(jìn)幾。
(八)除數(shù)是一位數(shù)的除法法則
2、除數(shù)除到哪一位,就把商寫在那一位上面;
3、每求出一位商,余下的數(shù)必須比除數(shù)小。
(九)一個因數(shù)是兩位數(shù)的乘法法則
3、然后把兩次乘得的數(shù)加起來。
(十)除數(shù)是兩位數(shù)的除法法則
1、從被除數(shù)高位起,先用除數(shù)試除被除數(shù)前兩位,如果它比除數(shù)小,
2、除到被除數(shù)的哪一位就在哪一位上面寫商;
3、每求出一位商,余下的數(shù)必須比除數(shù)小。
(十一)萬級數(shù)的讀法法則
1、先讀萬級,再讀個級;
2、萬級的數(shù)要按個級的讀法來讀,再在后面加上一個“萬”字;
3、每級末位不管有幾個0都不讀,其它數(shù)位有一個0或連續(xù)幾個零都只讀一個“零”。
(十二)多位數(shù)的讀法法則
1、從高位起,一級一級往下讀;
3、每級末尾的0都不讀,其它數(shù)位有一個0或連續(xù)幾個0都只讀一個零。
(十三)小數(shù)大小的比較
比較兩個小數(shù)的'大小,先看它們整數(shù)部分,整數(shù)部分大的那個數(shù)就大,整數(shù)部分相同的,十分位上的數(shù)大的那個數(shù)就大,十分位數(shù)也相同的,百分位上的數(shù)大的那個數(shù)就大,依次類推。
(十四)小數(shù)加減法計算法則
計算小數(shù)加減法,先把小數(shù)點對齊(也就是把相同的數(shù)位上的數(shù)對齊),再按照整數(shù)加減法則進(jìn)行計算,最后在得數(shù)里對齊橫線上的小數(shù)點位置,點上小數(shù)點。
(十五)小數(shù)乘法的計算法則
計算小數(shù)乘法,先按照乘法的法則算出積,再看因數(shù)中一共幾位小數(shù),就從積的右邊起數(shù)出幾位,點上小數(shù)點。
(十六)除數(shù)是整數(shù)除法的法則
除數(shù)是整數(shù)的小數(shù)除法,按照整數(shù)除法的法則去除,商的小數(shù)點要和被除數(shù)小數(shù)點對齊,如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添0再繼續(xù)除。
(十七)除數(shù)是小數(shù)的除法運(yùn)算法則
除數(shù)是小數(shù)的除法,先移動除數(shù)小數(shù)點,使它變成整數(shù);除數(shù)的小數(shù)點向右移幾位,被除數(shù)小數(shù)點也向右移幾位(位數(shù)不夠在被除數(shù)末尾用0補(bǔ)足)然后按照除數(shù)是整數(shù)的小數(shù)除法進(jìn)行計算。
(十八)解答應(yīng)用題步驟
2、確定每一步該怎樣算,列出算式,算出得數(shù);
3、進(jìn)行檢驗,寫出答案。
(十九)列方程解應(yīng)用題的一般步驟
1、弄清題意,找出未知數(shù),并用x表示;
2、找出應(yīng)用題中數(shù)量之間的相等關(guān)系,列方程;
3、解方程;
4、檢驗、寫出答案。
(二十)同分母分?jǐn)?shù)加減的法則
同分母分?jǐn)?shù)相加減,分母不變,只把分子相加減。
(二十一)同分母帶分?jǐn)?shù)加減的法則
帶分?jǐn)?shù)相加減,先把整數(shù)部分和分?jǐn)?shù)部分分別相加減,再把所得的數(shù)合并起來。
(二十二)異分母分?jǐn)?shù)加減的法則
異分母分?jǐn)?shù)相加減,先通分,然后按照同分母分?jǐn)?shù)加減的法則進(jìn)行計算。
(二十三)分?jǐn)?shù)乘以整數(shù)的計算法則
分?jǐn)?shù)乘以整數(shù),用分?jǐn)?shù)的分子和整數(shù)相乘的積作分子,分母不變。
(二十四)分?jǐn)?shù)乘以分?jǐn)?shù)的計算法則
分?jǐn)?shù)乘以分?jǐn)?shù),用分子相乘的積作分子,分母相乘的積作分母。
(二十五)一個數(shù)除以分?jǐn)?shù)的計算法則
一個數(shù)除以分?jǐn)?shù),等于這個數(shù)乘以除數(shù)的倒數(shù)。
(二十六)把小數(shù)化成百分?jǐn)?shù)和把百分?jǐn)?shù)化成小數(shù)的方法
把小數(shù)化成百分?jǐn)?shù),只要把小數(shù)點向右移動兩位,同時在后面添上百分號;
把百分?jǐn)?shù)化成小數(shù),把百分號去掉,同時小數(shù)點向左移動兩位。
(二十七)把分?jǐn)?shù)化成百分?jǐn)?shù)和把百分?jǐn)?shù)化成分?jǐn)?shù)的方法
把百分?jǐn)?shù)化成小數(shù),先把百分?jǐn)?shù)改寫成分母是100的分?jǐn)?shù),能約分的要約成最簡分?jǐn)?shù)。
1、什么是圖形的周長?
圍成一個圖形所有邊長的總和就是這個圖形的周長。
2、什么是面積?
物體的表面或圍成的平面圖形的大小叫做他們的面積。
3、加法各部分的關(guān)系:
一個加數(shù)=和—另一個加數(shù)
4、減法各部分的關(guān)系:
減數(shù)=被減數(shù)—差被減數(shù)=減數(shù)+差
5、乘法各部分之間的關(guān)系:
一個因數(shù)=積÷另一個因數(shù)
6、除法各部分之間的關(guān)系:
除數(shù)=被除數(shù)÷商被除數(shù)=商×除數(shù)
7、角
(1)什么是角?
從一點引出兩條射線所組成的圖形叫做角。
(2)什么是角的頂點?
圍成角的端點叫頂點。
(3)什么是角的邊?
圍成角的射線叫角的邊。
(4)什么是直角?
度數(shù)為90°的角是直角。
(5)什么是平角?
角的兩條邊成一條直線,這樣的角叫平角。
(6)什么是銳角?
小于90°的角是銳角。
(7)什么是鈍角?
大于90°而小于180°的角是鈍角。
(8)什么是周角?
一條射線繞它的端點旋轉(zhuǎn)一周所成的角叫周角,一個周角等于360°。
8、(1)什么是互相垂直?什么是垂線?什么是垂足?
兩條直線相交成直角時,這兩條線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
(2)什么是點到直線的距離?
從直線外一點向一條直線引垂線,點和垂足之間的距離叫做這點到直線的距離。
9、三角形
(1)什么是三角形?
有三條線段圍成的圖形叫三角形。
(2)什么是三角形的邊?
圍成三角形的每條線段叫三角形的邊。
(3)什么是三角形的頂點?
(4)什么是銳角三角形?
三個角都是銳角的三角形叫銳角三角形。
(5)什么是直角三角形?
有一個角是直角的三角形叫直角三角形。
(6)什么是鈍角三角形?
有一個角是鈍角的三角形叫鈍角三角形。
(7)什么是等腰三角形?
兩條邊相等的三角形叫等腰三角形。
(8)什么是等腰三角形的腰?
有等腰三角形里,相等的兩個邊叫做等腰三角形的腰。
(9)什么是等腰三角形的頂點?
兩腰的交點叫做等腰三角形的頂點。
(10)什么是等腰三角形的底?
在等腰三角形中,與其它兩邊不相等的邊叫做等腰三角形的底。
(11)什么是等腰三角形的底角?
底邊上兩個相等的角叫等腰三角形的底角。
(12)什么是等邊三角形?
三條邊都相等的三角形叫等邊三角形,也叫正三角形。
(13)什么是三角形的高?什么叫三角形的底?
從三角形的一個頂點向它的對邊引一條垂線,頂點和垂足之間的線段叫做三角形的高,這個頂點的對邊叫三角形的底。
(14)三角形的內(nèi)角和是多少度?
三角形內(nèi)角和是180°。
10、四邊形
(1)什么是四邊形?
有四條線段圍成的圖形叫四邊形。
(2)什么是平等四邊形?
兩組對邊分別平行的四邊形叫做平行四邊形。
(3)什么是平行四邊形的高?
從平行四邊形一條邊上的一點到對邊引一條垂線,這個點和垂足之間的線段叫做四邊形的高。
(4)什么是梯形?
只有一組對邊平行的四邊形叫做梯形。
(5)什么是梯形的底?
在梯形里互相平等的一組邊叫梯形的底(通常較短的底叫上底,較長的底叫下底)。
(6)什么是梯形的腰?
在梯形里,不平等的一組對邊叫梯形的腰。
(7)什么是梯形的高?
從上底的一點往下底引一條垂線,這個點和垂足之間的線段叫做梯形的高。
(8)什么是等腰梯形?
兩腰相等的梯形叫做等腰梯形。
11、什么是自然數(shù)?
用來表示物體個數(shù)的0、1、2、3、4、5、6、7、8、9、10……是自然數(shù)(自然數(shù)都是整數(shù))。
12、什么是四舍五入法?
求一個數(shù)的近似數(shù)時,看被省略的尾數(shù)位上的數(shù)是幾,如果是4或者比4小,就把尾數(shù)舍去,如果是5或者比5大,去掉尾數(shù)后,要在它的前一位加1。這種求近似數(shù)的方法,叫做四舍五入法。
13、加法意義和運(yùn)算定律
(1)什么是加法?
把兩個數(shù)合并成一個數(shù)的運(yùn)算叫加法。
(2)什么是加數(shù)?
相加的兩個數(shù)叫加數(shù)。
(3)什么是和?
加數(shù)相加的結(jié)果叫和。
(4)什么是加法交換律?
兩個數(shù)相加,交換加數(shù)的位置后,它的和不變,這叫做加法交換律。
14、什么是減法?
已知兩個數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運(yùn)算叫做減法。
15、什么是被減數(shù)?什么是減數(shù)?什么叫差?
在減法中已知的和叫被減數(shù),減去的已知數(shù)叫減數(shù),所求的未知數(shù)叫差。
16、加法各部分間的關(guān)系:
和=加數(shù)+加數(shù)加數(shù)=和—另一加數(shù)
17、減法各部分間的關(guān)系:
差=被減數(shù)—減數(shù)減數(shù)=被減數(shù)—差被減數(shù)=減數(shù)+差
18、乘法
(1)什么是乘法?
求幾個相同加數(shù)的和的簡便運(yùn)算叫乘法。
(2)什么是因數(shù)?
相乘的兩個數(shù)叫因數(shù)。
(3)什么是積?
因數(shù)相乘所得的數(shù)叫積。
(4)什么是乘法交換律?
兩個因數(shù)相乘,交換因數(shù)的位置,它們的積不變,這叫乘法交換律。
(5)什么是乘法結(jié)合律?
三個數(shù)相乘,先把前兩個數(shù)相乘,再同第三個數(shù)相乘,或者先把后兩個數(shù)相乘,再同第一個數(shù)相乘,它們的積不變,這叫乘法結(jié)合律。
19、除法
(1)什么是除法?
已知兩個因數(shù)的積與其中的一個因數(shù),求另一個因數(shù)的運(yùn)算叫除法。
(2)什么是被除數(shù)?
在除法中,已知的積叫被除數(shù)。
(3)什么是除數(shù)?
在除法中,已知的一個因數(shù)叫除數(shù)。
(4)什么是商?
在除法中,求出的未知因數(shù)叫商。
20、乘法各部分的關(guān)系:
積=因數(shù)×因數(shù)一個因數(shù)=積÷另一個因數(shù)
21、(1)除法各部分間的關(guān)系:
商=被除數(shù)÷除數(shù)除數(shù)=被除數(shù)÷商
(2)有余數(shù)的除法各部分間的關(guān)系:
被除數(shù)=商×除數(shù)+余數(shù)
22、什么是名數(shù)?
通常量得的數(shù)和單位名稱合起來的數(shù)叫名數(shù)。
23、什么是單名數(shù)?
只帶有一個單位名稱的數(shù)叫單名數(shù)。
24、什么是復(fù)名數(shù)?
有兩個或兩個以上單位名稱的數(shù)叫復(fù)名數(shù)。
25、什么是小數(shù)?
仿照整數(shù)的寫法,寫在整數(shù)個位的右面,用圓點隔開,用來表示十分之幾、百分之幾、千分之幾……的數(shù)叫小數(shù)。
26、什么是小數(shù)的基本性質(zhì)?
小數(shù)的末尾添上零或者去掉零,小數(shù)大小不變,這叫小數(shù)的基本性質(zhì)。
27、什么是有限小數(shù)?
小數(shù)部分的位數(shù)是有限的小數(shù)叫有限小數(shù)。
28、什么是無限小數(shù)?
小數(shù)部分的位數(shù)是無限的小數(shù)叫無限小數(shù)。
29、什么是循環(huán)節(jié)?
一個循環(huán)小數(shù)的部分依次不斷重復(fù)出現(xiàn)的數(shù)叫做這個數(shù)的循環(huán)節(jié)。
30、什么是純循環(huán)小數(shù)?
循環(huán)節(jié)從小數(shù)第一位開始的叫純循環(huán)小數(shù)。
31、什么是混循環(huán)小數(shù)?
循環(huán)節(jié)不是從小數(shù)部分第一位開始的叫做混循環(huán)小數(shù)。
32、什么是四則運(yùn)算?
我們把學(xué)過的加、減、乘、除四種運(yùn)算統(tǒng)稱四則運(yùn)算。
33、什么是方程?
含有未知數(shù)的等式叫方程。
34、什么是解方程?
求方程解的過程叫解方程。
35、什么是倍數(shù)?什么叫約數(shù)?
如果a能被b整除,a就是b的倍數(shù),b就叫a的約數(shù)(或a的因數(shù))。
36、什么樣的數(shù)能被2整除?
個位上是0、2、4、6、8的數(shù)都能被2整除。
37、什么是偶數(shù)?
能被2整除的數(shù)叫偶數(shù)。
38、什么是奇數(shù)?
不能被2整除的數(shù)叫奇數(shù)。
39、什么樣的數(shù)能被5整除?
個位上是0或5的數(shù)能被5整除。
40、什么樣的數(shù)能被3整除?
一個數(shù)的各位上的和能被3整除,這個數(shù)就能被3整除。
41、什么是質(zhì)數(shù)(或素數(shù))?
一個數(shù)如果只有1和它本身兩個約數(shù),這樣的數(shù)叫質(zhì)數(shù)。
42、什么是合數(shù)?
一個數(shù)除了1和它本身還有別的約數(shù),這樣的數(shù)叫合數(shù)。
43、什么是質(zhì)因數(shù)?
每個合數(shù)都可以寫成幾個質(zhì)數(shù)相乘的形式。其中每個質(zhì)數(shù)都是這個合數(shù)的因數(shù),叫做這個合數(shù)的質(zhì)因數(shù)。
44、什么是分解質(zhì)因數(shù)?
把一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來叫做分解質(zhì)因數(shù)。
45、什么是公約數(shù)?什么叫公約數(shù)?
幾個數(shù)公有的約數(shù)叫公約數(shù)。其中的一個叫公約數(shù)。
46、什么是互質(zhì)數(shù)?
公約數(shù)只有1的兩個數(shù)叫互質(zhì)數(shù)。
47、什么是公倍數(shù)?什么是最小公倍數(shù)?
幾個數(shù)公有的倍數(shù)叫這幾個數(shù)的公倍數(shù)。其中最小的一個叫這幾個數(shù)的最小公倍數(shù)。
48、分?jǐn)?shù)
(1)什么是分?jǐn)?shù)?
把單位1平均分成若干份,表示這樣的一份或者幾份的數(shù)叫分?jǐn)?shù)。
(2)什么是分?jǐn)?shù)線?
在分?jǐn)?shù)里中間的橫線叫分?jǐn)?shù)線。
(3)什么是分母?
分?jǐn)?shù)線下面的部分叫分母。
(4)什么是分子?
分?jǐn)?shù)線上面的部分叫分子。
(5)什么是分?jǐn)?shù)單位?
把單位“1”平均分成若干份,表示其中的一份叫分?jǐn)?shù)單位。
49、怎么比較分?jǐn)?shù)大?。?/p>
(1)分母相同的兩個分?jǐn)?shù),分子大的分?jǐn)?shù)比較大。
(2)分子相同的兩個分?jǐn)?shù),分母小的分子比較大。
(3)什么是真分?jǐn)?shù)?
分子比分母小的分?jǐn)?shù)叫真分?jǐn)?shù)。
(4)什么是假分?jǐn)?shù)?
分子比分母大或者分子和分母相等的分?jǐn)?shù)叫假分?jǐn)?shù)。
(5)什么是帶分?jǐn)?shù)?
由整分?jǐn)?shù)和真分?jǐn)?shù)合成的數(shù)通常叫帶分?jǐn)?shù)。
(6)什么是分?jǐn)?shù)的基本性質(zhì)?
分?jǐn)?shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分?jǐn)?shù)大小不變,這就是分?jǐn)?shù)的基本性質(zhì)。
(7)什么是約分?
把一個分?jǐn)?shù)化成同它相等,但分子、分母都比較小的數(shù)叫做約分。
(8)什么是最簡分?jǐn)?shù)?
分子、分母是互質(zhì)數(shù)的分?jǐn)?shù)叫最簡分?jǐn)?shù)。
50、比
(1)什么是比?
兩個數(shù)相除又叫兩個數(shù)的比。
(2)什么是比的前項?
比號前面的數(shù)叫比的前項。
(3)什么是比的后項?
比號后面的數(shù)叫比的后項。
(4)什么是比值?
比的前項除以后項所得的商叫比值。
(5)什么是比的基本性質(zhì)?
比的前項和后項同時乘以或者同時除以相同的數(shù)(0除外)比值不變,這叫比的基本性質(zhì)。
51、長方體和正方體
(1)什么是棱?
兩個面相交的邊叫棱。
(2)什么是頂點?
三條棱相交的點叫頂點。
(3)什么是長方體的長、寬、高?
相交于一個頂點的三條棱的長度分別叫長方體的長、寬、高。
(4)什么是正方體(立方體)?
長寬高都相等的長方體叫正方體(或立方體)。
(5)什么是長方體的表面積?
長方體個面的總面積叫長方體的表面積。
(6)什么是物體體積?
物體所占空間的大小叫做物體的體積。
52、圓
(1)什么是圓心?
圓中心的點叫圓心。
(2)什么是半徑?
連接圓心和圓上任意一點的線段叫半徑。
(3)什么是直徑?
通過圓心、并且兩端都在圓上的線段叫直徑。
(4)什么是圓的周長?
圍成圓的曲線叫圓的周長。
(5)什么是圓周率?
我們把圓的周長和直徑的比值叫圓周率。
(6)什么是圓的面積?
圓所圍平面的大小叫圓的面積。
(7)什么是扇形?
一條弧和經(jīng)過這條弧兩端的兩條半徑所圍成的圖形叫扇形。
(8)什么是?。?/p>
在圓上兩點之間的部分叫弧。
(9)什么是圓心角?
頂點在圓心上的角叫圓心角。
(10)什么是對稱圖形?
如果一個圖形沿著一條直線對折,兩側(cè)圖形能夠完全重合,這樣的圖形就是對稱圖形。
數(shù)學(xué)知識點占比數(shù)學(xué)知識點歸納公式篇五
(2)兩個平面的位置關(guān)系:
兩個平面平行——沒有公共點;兩個平面相交——有一條公共直線。
a、平行
兩個平面平行的判定定理:如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,那么這兩個平面平行。
兩個平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。
b、相交
(1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
兩個平面垂直的性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于交線的直線垂直于另一個平面。
二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系)
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐。
棱錐的性質(zhì):
(1)側(cè)棱交于一點。側(cè)面都是三角形
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個特殊的直角三角形
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
1、分散的人或事物聚集到一起;使聚集:緊急~。
2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。
3、口號等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論??低校╟antor,g、f、p、,1845年—1918年,德國數(shù)學(xué)家先驅(qū),是集合論的創(chuàng)始者,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。
集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。
集合與集合之間的關(guān)系
某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做φ??占侨魏渭系淖蛹?,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。
數(shù)學(xué)知識點占比數(shù)學(xué)知識點歸納公式篇六
易錯點1:有理數(shù)、無理數(shù)以及實數(shù)的有關(guān)概念理解錯誤,相反數(shù)、倒數(shù)、絕對值的意義概念混淆。以及絕對值與數(shù)的分類。每年選擇必考。
易錯點2:實數(shù)的運(yùn)算要掌握好與實數(shù)有關(guān)的概念、性質(zhì),靈活地運(yùn)用各種運(yùn)算律,關(guān)鍵是把好符號關(guān);在較復(fù)雜的運(yùn)算中,不注意運(yùn)算順序或者不合理使用運(yùn)算律,從而使運(yùn)算出現(xiàn)錯誤。
易錯點3:平方根、算術(shù)平方根、立方根的區(qū)別。填空題必考。
易錯點4:求分式值為零時學(xué)生易忽略分母不能為零。
易錯點5:分式運(yùn)算時要注意運(yùn)算法則和符號的變化。當(dāng)分式的分子分母是多項式時要先因式分解,因式分解要分解到不能再分解為止,注意計算方法,不能去分母,把分式化為最簡分式。填空題必考。
易錯點6:非負(fù)數(shù)的性質(zhì):幾個非負(fù)數(shù)的和為0,每個式子都為0;整體代入法;完全平方式。
易錯點7:計算第一題必考。五個基本數(shù)的計算:0指數(shù),三角函數(shù),絕對值,負(fù)指數(shù),二次根式的化簡。
易錯點8:科學(xué)記數(shù)法。精確度,有效數(shù)字。這個上海還沒有考過,知道就好!
易錯點9:代入求值要使式子有意義。各種數(shù)式的計算方法要掌握,一定要注意計算順序。
易錯點1:各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。
易錯點2:運(yùn)用等式性質(zhì)時,兩邊同除以一個數(shù)必須要注意不能為0的情況,還要關(guān)注解方程與方程組的基本思想。(消元降次)主要陷阱是消除了一個帶x公因式要回頭檢驗!
易錯點3:運(yùn)用不等式的性質(zhì)3時,容易忘記改不改變符號的方向而導(dǎo)致結(jié)果出錯。
易錯點4:關(guān)于一元二次方程的取值范圍的題目易忽視二次項系數(shù)不為0導(dǎo)致出錯。
易錯點5:關(guān)于一元一次不等式組有解無解的條件易忽視相等的情況。
易錯點6:解分式方程時首要步驟去分母,分?jǐn)?shù)相相當(dāng)于括號,易忘記根檢驗,導(dǎo)致運(yùn)算結(jié)果出錯。
易錯點7:不等式(組)的解得問題要先確定解集,確定解集的方法運(yùn)用數(shù)軸。
易錯點8:利用函數(shù)圖象求不等式的解集和方程的解
易錯點6:與坐標(biāo)軸交點坐標(biāo)一定要會求。面積最大值的求解方法,距離之和的最小值的求解方法,距離之差最大值的求解方法。
易錯點7:數(shù)形結(jié)合思想方法的運(yùn)用,還應(yīng)注意結(jié)合圖像性質(zhì)解題。函數(shù)圖象與圖形結(jié)合學(xué)會從復(fù)雜圖形分解為簡單圖形的方法,圖形為圖像提供數(shù)據(jù)或者圖像為圖形提供數(shù)據(jù)。
易錯點8:自變量的取值范圍有:二次根式的被開方數(shù)是非負(fù)數(shù),分式的分母不為0,0指數(shù)底數(shù)不為0,其它都是全體實數(shù)。
易錯點1:三角形的概念以及三角形的角平分線,中線,高線的特征與區(qū)別。
易錯點2:三角形三邊之間的不等關(guān)系,注意其中的“任何兩邊”。最短距離的方法。
易錯點3:三角形的內(nèi)角和,三角形的分類與三角形內(nèi)外角性質(zhì),特別關(guān)注外角性質(zhì)中的“不相鄰”。
易錯點4:全等形,全等三角形及其性質(zhì),三角形全等判定。著重學(xué)會論證三角形全等,三角形相似與全等的綜合運(yùn)用以及線段相等是全等的特征,線段的倍分是相似的特征以及相似與三角函數(shù)的結(jié)合。邊邊角兩個三角形不一定全等。
易錯點5:兩個角相等和平行經(jīng)常是相似的基本構(gòu)成要素,以及相似三角形對應(yīng)高之比等于相似比,對應(yīng)線段成比例,面積之比等于相似比的平方。
易錯點6:等腰(等邊)三角形的定義以及等腰(等邊)三角形的判定與性質(zhì),運(yùn)用等腰(等邊)三角形的判定與性質(zhì)解決有關(guān)計算與證明問題,這里需注意分類討論思想的滲入。
易錯點7:運(yùn)用勾股定理及其逆定理計算線段的長,證明線段的數(shù)量關(guān)系,解決與面積有關(guān)的問題以及簡單的實際問題。
易錯點8:將直角三角形,平面直角坐標(biāo)系,函數(shù),開放性問題,探索性問題結(jié)合在一起綜合運(yùn)用探究各種解題方法。
易錯點9:中點,中線,中位線,一半定理的歸納以及各自的性質(zhì)。
易錯點10:直角三角形判定方法:三角形面積的確定與底上的高(特別是鈍角三角形)。
易錯點11:三角函數(shù)的定義中對應(yīng)線段的比經(jīng)常出錯以及特殊角的三角函數(shù)值。
數(shù)學(xué)知識點占比數(shù)學(xué)知識點歸納公式篇七
1、數(shù)軸:規(guī)定了原點、正方向、單位長度的直線稱為數(shù)軸。
原點、正方向、單位長度是數(shù)軸的三要素。
2、數(shù)軸上的點和實數(shù)的對應(yīng)關(guān)系:數(shù)軸上的每一個點都表示一個實數(shù),而每一個實數(shù)都可以用數(shù)軸上的唯一的點來表示。
實數(shù)和數(shù)軸上的點是一一對應(yīng)的關(guān)系。
相信上面對數(shù)學(xué)中實數(shù)與數(shù)軸知識點的內(nèi)容總結(jié)學(xué)習(xí),可以很好的幫助同學(xué)們對此知識點的鞏固學(xué)習(xí)吧,希望同學(xué)們會學(xué)習(xí)的更好。
下面是對數(shù)學(xué)的學(xué)習(xí)中,關(guān)于實數(shù)大小的比較知識學(xué)習(xí),希望同學(xué)們很好的掌握。
1、在數(shù)軸上表示兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。
2、正數(shù)大于0;負(fù)數(shù)小于0;正數(shù)大于一切負(fù)數(shù);兩個負(fù)數(shù)絕對值大的反而小。
相信上面對數(shù)學(xué)中實數(shù)大小的比較知識點的講解學(xué)習(xí)之后,同學(xué)們對上面的知識已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
關(guān)于數(shù)學(xué)中隊友實數(shù)中的幾個概念知識,我們做下面的講解學(xué)習(xí),相信可以很好的幫助同學(xué)們的學(xué)習(xí)。
3、絕對值:(1)一個數(shù)a 的絕對值有以下三種情況: (2)實數(shù)的絕對值是一個非負(fù)數(shù),從數(shù)軸上看,一個實數(shù)的絕對值,就是數(shù)軸上表示這個數(shù)的點到原點的距離。(3)去掉絕對值符號(化簡)必須要對絕對值符號里面的實數(shù)進(jìn)行數(shù)性(正、負(fù))確認(rèn),再去掉絕對值符號。
4、n次方根(1)平方根,算術(shù)平方根:設(shè)a≥0,稱 叫a的平方根, 叫a的算術(shù)平方根。(2)正數(shù)的平方根有兩個,它們互為相反數(shù);0的平方根是0;負(fù)數(shù)沒有平方根。(3)立方根: 叫實數(shù)a的立方根。(4)一個正數(shù)有一個正的立方根;0的立方根是0;一個負(fù)數(shù)有一個負(fù)的立方根。
通過上面對實數(shù)中的幾個概念知識點的內(nèi)容總結(jié)學(xué)習(xí),希望同學(xué)們都能很好的掌握上面的知識點,相信同學(xué)們會從中學(xué)習(xí)的更好的。
下面是對數(shù)學(xué)中實數(shù)的分類知識點的內(nèi)容講解學(xué)習(xí),希望同學(xué)們對下面的知識點都能很好的掌握。
1、有理數(shù):任何一個有理數(shù)總可以寫成 的形式,其中p、q是互質(zhì)的整數(shù),這是有理數(shù)的重要特征。
2、無理數(shù):初中遇到的無理數(shù)有三種:開不盡的方根,如 、 ;特定結(jié)構(gòu)的不限環(huán)無限小數(shù),如1.101001000100001……;特定意義的數(shù),如π、 °等。
3、判斷一個實數(shù)的數(shù)性不能僅憑表面上的感覺,往往要經(jīng)過整理化簡后才下結(jié)論。
以上對數(shù)學(xué)中實數(shù)的分類知識點的內(nèi)容總結(jié)學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們考試成功。
初中數(shù)學(xué)三角形內(nèi)角定理知識點講解
以下是對數(shù)學(xué)中三角形內(nèi)角定理知識的內(nèi)容講解學(xué)習(xí),相信可以很好的幫助同學(xué)們對此知識點的`鞏固學(xué)習(xí)吧。
定理:三角形兩邊的和大于第三邊
推論:三角形兩邊的差小于第三邊
三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°
推論1:直角三角形的兩個銳角互余
推論2:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
推論3:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
通過上面對數(shù)學(xué)中三角形內(nèi)角定理知識點的講解學(xué)習(xí),相信可以很好的幫助同學(xué)們對此知識的學(xué)習(xí)了吧,希望同學(xué)們都能考試成功。
如果一組等距的平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。
平行定理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行
推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行
證明兩直線平行定理:
同位角相等,兩直線平行
內(nèi)錯角相等,兩直線平行
同旁內(nèi)角互補(bǔ),兩直線平行
兩直線平行推論:
兩直線平行,同位角相等
數(shù)學(xué)知識點占比數(shù)學(xué)知識點歸納公式篇八
一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實數(shù),函數(shù)的取值范圍也是一切非零實數(shù)。
2、反比例函數(shù)的圖像
反比例函數(shù)的圖像是雙曲線,它有兩個分支,這兩個分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點對稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。
3、反比例函數(shù)的性質(zhì)
y的取值范圍是y0;
②當(dāng)k0時,函數(shù)圖像的兩個分支分別
在第一、三象限。在每個象限內(nèi),y
隨x 的增大而減小。
①x的取值范圍是x0,
y的取值范圍是y0;
②當(dāng)k0時,函數(shù)圖像的兩個分支分別
在第二、四象限。在每個象限內(nèi),y
隨x 的增大而增大。
4、反比例函數(shù)解析式的確定
確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個待定系數(shù),因此只需要一對對應(yīng)值或圖像上的一個點的坐標(biāo),即可求出k的值,從而確定其解析式。
5、反比例函數(shù)的幾何意義
設(shè)是反比例函數(shù)圖象上任一點,過點p作軸、軸的垂線,垂足為a,則
(1)△opa的面積.
(2)矩形oapb的面積。這就是系數(shù)的幾何意義.并且無論p怎樣移動,△opa的面積和矩形oapb的面積都保持不變。
矩形pcef面積=,平行四邊形pdea面積=
數(shù)學(xué)知識點占比數(shù)學(xué)知識點歸納公式篇九
1.整除:整數(shù)a除以整數(shù)b(b≠0),除得的商正好是整數(shù)而且沒有余數(shù),我們就說a能被b整除,或者說b能整除a。
2.約數(shù)、倍數(shù):如果數(shù)a能被數(shù)b整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)。
3.一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
一個數(shù)約數(shù)的個數(shù)是有限的,最小的約數(shù)是1,最大的約數(shù)是它本身。
4.按能否被2整除,非0的自然數(shù)分成偶數(shù)和奇數(shù)兩類,能被2整除的數(shù)叫做偶數(shù),不能被2整除的數(shù)叫做奇數(shù)。
5.按一個數(shù)約數(shù)的個數(shù),非0自然數(shù)可分為1、質(zhì)數(shù)、合數(shù)三類。
質(zhì)數(shù):一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質(zhì)數(shù)。質(zhì)數(shù)都有2個約數(shù)。
合數(shù):一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)。合數(shù)至少有3個約數(shù)。
最小的質(zhì)數(shù)是2,最小的合數(shù)是4
1~20以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19
6.能被2整除的數(shù)的特征:個位上是0、2、4、6、8的數(shù),都能被2整除。
能被5整除的數(shù)的特征:個位上是0或者5的數(shù),都能被5整除。
能被3整除的數(shù)的特征:一個數(shù)的各位上 數(shù)的和能被3整除,這個數(shù)就能被3整除。
7.質(zhì)因數(shù):如果一個自然數(shù)的因數(shù)是質(zhì)數(shù),這個因數(shù)就叫做這個自然數(shù)的質(zhì)因數(shù)。
8.分解質(zhì)因數(shù):把一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。
9.公約數(shù)、公倍數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù);其中最大的一個,叫做這幾個數(shù)的最大公約數(shù)。
幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù);其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù)。
10.一般關(guān)系的兩個數(shù)的最大公約數(shù)、最小公倍數(shù)用短除法來求;互質(zhì)關(guān)系的兩個數(shù)最大公約數(shù)是1,最小公倍數(shù)是兩數(shù)之積;倍數(shù)關(guān)系的兩個數(shù)的最大公約數(shù)是小數(shù),最小公倍數(shù)是大數(shù)。
11.互質(zhì)數(shù):公約數(shù)只有1的兩個數(shù)叫做互質(zhì)數(shù)。
12.兩數(shù)之積等于最小公倍數(shù)和最大公約數(shù)的積。
【本文地址:http://mlvmservice.com/zuowen/2577998.html】