每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。相信許多人會(huì)覺得范文很難寫?下面我給大家整理了一些優(yōu)秀范文,希望能夠幫助到大家,我們一起來看一看吧。
貴州高中數(shù)學(xué)必修一篇一
1、知識(shí)與技能
(1)理解對(duì)數(shù)的概念,了解對(duì)數(shù)與指數(shù)的關(guān)系;
(2)能夠進(jìn)行指數(shù)式與對(duì)數(shù)式的互化;
(3)理解對(duì)數(shù)的性質(zhì),掌握以上知識(shí)并培養(yǎng)類比、分析、歸納能力;
2、過程與方法
3、情感態(tài)度與價(jià)值觀
(1)通過本節(jié)的學(xué)習(xí)體驗(yàn)數(shù)學(xué)的嚴(yán)謹(jǐn)性,培養(yǎng)細(xì)心觀察、認(rèn)真分析
分析、嚴(yán)謹(jǐn)認(rèn)真的良好思維習(xí)慣和不斷探求新知識(shí)的精神;
(2)感知從具體到抽象、從特殊到一般、從感性到理性認(rèn)知過程;
(3)體驗(yàn)數(shù)學(xué)的科學(xué)功能、符號(hào)功能和工具功能,培養(yǎng)直覺觀察、
探索發(fā)現(xiàn)、科學(xué)論證的.良好的數(shù)學(xué)思維品質(zhì)、
教學(xué)重點(diǎn)
(1)對(duì)數(shù)的定義;
(2)指數(shù)式與對(duì)數(shù)式的互化;
教學(xué)難點(diǎn)
(1)對(duì)數(shù)概念的理解;
(2)對(duì)數(shù)性質(zhì)的理解;
1、對(duì)數(shù)的概念
一般地,如果函數(shù)ax=n(a0且a≠1)那么數(shù)x叫做以a為底n的對(duì)數(shù),記作x=logan,其中a叫做對(duì)數(shù)的底數(shù),n叫做真數(shù)。
2、對(duì)數(shù)與指數(shù)的互化
ab=n?logan=b
3、對(duì)數(shù)的基本性質(zhì)
課后練習(xí)1、2、3、4
貴州高中數(shù)學(xué)必修一篇二
1.教材內(nèi)容及地位
2.教學(xué)重點(diǎn)
函數(shù)單調(diào)性的概念,判斷和證明簡單函數(shù)的單調(diào)性.
3.教學(xué)難點(diǎn)
函數(shù)單調(diào)性概念的生成,證明單調(diào)性的代數(shù)推理論證.
1.教學(xué)有利因素
2.教學(xué)不利因素
1.理解函數(shù)單調(diào)性的相關(guān)概念.掌握證明簡單函數(shù)單調(diào)性的方法.
(一)創(chuàng)設(shè)情境,引入課題
問題1:觀察下列函數(shù)圖象,請你說說這些函數(shù)有什么變化趨勢?
設(shè)函數(shù)的定義域?yàn)?,區(qū)間.在區(qū)間上,若函數(shù)的圖象(從左向右)總是上升的,即隨的增大而增大,則稱函數(shù)在區(qū)間上是遞增的,區(qū)間稱為函數(shù)的單調(diào)增區(qū)間(學(xué)生類比定義“遞減”,接著推出下圖,讓學(xué)生準(zhǔn)確回答單調(diào)性.)
(二)引導(dǎo)探索,生成概念
(2)函數(shù)在區(qū)間上有何單調(diào)性?
預(yù)設(shè):學(xué)生會(huì)不置可否,或者憑感覺猜測,可追問判定依據(jù).
(2)已知,若有.能保證函數(shù)在區(qū)間上遞增嗎?
(3)已知,若有,能保證函數(shù)在區(qū)間上遞增嗎?
拖動(dòng)“拖動(dòng)點(diǎn)”,觀察函數(shù)在區(qū)間上的圖象變化.
(4)已知,若有
能保證函數(shù)在區(qū)間上遞增嗎?
問題4:如何用數(shù)學(xué)語言準(zhǔn)確刻畫函數(shù)在區(qū)間上遞增呢?
問題5:請你試著用數(shù)學(xué)語言定義函數(shù)在區(qū)間上是遞減的.
(三)學(xué)以致用,理解感悟
判斷題:你認(rèn)為下列說法是否正確,請說明理由.(舉例或者畫圖)
(1)設(shè)函數(shù)的定義域?yàn)?,若?duì)任意,都有,則在區(qū)間上遞增;
(2)設(shè)函數(shù)的定義域?yàn)閞,若對(duì)任意,且,都有,則是遞增的;
(3)反比例函數(shù)的單調(diào)遞減區(qū)間是.
例題:判斷并證明函數(shù)的單調(diào)性.
貴州高中數(shù)學(xué)必修一篇三
1、知識(shí)與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡單的求最值問題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;培養(yǎng)學(xué)生探究能力以及分析問題解決問題的能力。
2、過程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問題→剖析歸納證明→幾何解釋→應(yīng)用(最值的求法、實(shí)際問題的解決)的過程呈現(xiàn)。啟動(dòng)觀察、分析、歸納、總結(jié)、抽象概括等思維活動(dòng),培養(yǎng)學(xué)生的思維能力,體會(huì)數(shù)學(xué)概念的學(xué)習(xí)方法,通過運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動(dòng)探索基本不等式性質(zhì),體會(huì)學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗(yàn)成功的樂趣。
3、情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。
1、基本不等式成立時(shí)的三個(gè)限制條件(簡稱一正、二定、三相等);
2、利用基本不等式求解實(shí)際問題中的最大值和最小值。
一、創(chuàng)設(shè)情景,提出問題;
上圖是在北京召開的第24屆國際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國人民熱情好客。
[問]你能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?
本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式
在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。
三、理解升華:
1、文字語言敘述:
兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
2、聯(lián)想數(shù)列的知識(shí)理解基本不等式
兩個(gè)正數(shù)的等差中項(xiàng)不小于它們正的等比中項(xiàng)。
3、符號(hào)語言敘述:
4、探究基本不等式證明方法:
[問]如何證明基本不等式?
(意圖在于引領(lǐng)學(xué)生從感性認(rèn)識(shí)基本不等式到理性證明,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華,前面是從幾何圖形中的面積關(guān)系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導(dǎo)這個(gè)不等式。)
方法一:作差比較或由
展開證明。
方法二:分析法(完成課本填空)
動(dòng)手動(dòng)筆、仔細(xì)觀察、用心體會(huì)的好習(xí)慣,真正學(xué)會(huì)讀“數(shù)學(xué)書”。
5、探究基本不等式的幾何意義:
借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生
幾何解釋實(shí)質(zhì)可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的`高。
四、探究歸納
下列命題中正確的是
結(jié)論:
若兩正數(shù)的乘積為定值,則當(dāng)且僅當(dāng)兩數(shù)相等時(shí),它們的和有最小值;
若兩正數(shù)的和為定值,則當(dāng)且僅當(dāng)兩數(shù)相等時(shí),它們的乘積有最大值。
簡記為:“一正、二定、三相等”。
五、領(lǐng)悟練習(xí):
公式應(yīng)用之二:(最優(yōu)化問題)
六、反思總結(jié),整合新知:
通過本節(jié)課的學(xué)習(xí)你有什么收獲?取得了哪些經(jīng)驗(yàn)教訓(xùn)?還有哪些問題需要
請教?
老師根據(jù)情況完善如下:
兩種思想:數(shù)形結(jié)合思想、歸納類比思想。
三個(gè)注意:基本不等式求函數(shù)的最大(小)值是注意:“一正二定三相等”
貴州高中數(shù)學(xué)必修一篇四
1.教材所處的地位和作用
本章是在統(tǒng)計(jì)的基礎(chǔ)上展開對(duì)概率的研究,而本節(jié)又是從頻率的角度來解釋概率,其核心內(nèi)容是介紹實(shí)驗(yàn)概率的意義,即當(dāng)試驗(yàn)次數(shù)較大時(shí),頻率漸趨穩(wěn)定的那個(gè)常數(shù)就叫概率。本節(jié)課的學(xué)習(xí),將為后面學(xué)習(xí)理論概率的意義和用列舉法求概率打下基礎(chǔ)。
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):對(duì)概率意義的正確理解和它在實(shí)際生活中的應(yīng)用
1.知識(shí)與技能目標(biāo)
1)理解概率的含義并能通過大量重復(fù)試驗(yàn)確定概率。
2)能用概率知識(shí)正確理解和解釋現(xiàn)實(shí)生活中與概率相關(guān)的問題。
2、過程與方法:
1)經(jīng)歷用試驗(yàn)的方法獲得概率的過程,培養(yǎng)學(xué)生的合作交流意識(shí)和動(dòng)手能力。
2)在由“試驗(yàn)形成概率的定義”的過程中培養(yǎng)學(xué)生分析問題能力和抽象思維能力。
3、情感態(tài)度與價(jià)值觀:
1)利用生活素材和數(shù)學(xué)史上著名例子,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和興趣。
2)結(jié)合隨機(jī)試驗(yàn)的隨機(jī)性和規(guī)律性,讓學(xué)生了解偶然性寓于必然性之中的辯證唯物主義思想。
1、教學(xué)方法:本節(jié)課我主要采用實(shí)驗(yàn)探究式的教學(xué)方法,引導(dǎo)學(xué)生對(duì)身邊的事件加以注意、分析,指導(dǎo)學(xué)生做簡單易行的實(shí)驗(yàn)。
2.教學(xué)手段:(教案 ) 利用多媒體等設(shè)備輔助教學(xué)
1)學(xué)生初學(xué)概率,面對(duì)概率意義的描述,他們會(huì)感到困惑:概率是什么,是否就是頻率?因此辯證理解頻率和概率的`關(guān)系是教學(xué)中的一大難點(diǎn)。
2)由于本節(jié)課內(nèi)容非常貼近生活,因此豐富的問題情境會(huì)激發(fā)學(xué)生濃厚的興趣,但學(xué)生過去的生活經(jīng)驗(yàn)會(huì)對(duì)這節(jié)課的學(xué)習(xí)帶來障礙,因此正確理解每次試驗(yàn)結(jié)果的隨機(jī)性與大量隨機(jī)試驗(yàn)結(jié)果的規(guī)律性是教學(xué)中的又一大難點(diǎn)。
1、復(fù)習(xí)鞏固、引入新知
多媒體展示以下問題:
問題2:下面兩個(gè)隨機(jī)事件發(fā)生的可能性一樣嗎?
問題3:在一定條件下,這些隨機(jī)事件發(fā)生的可能性到底有多大呢?
(對(duì)于問題1和問題2,學(xué)生能夠很快回答出來,但對(duì)于問題3這個(gè)問題的答案不是很明確,順勢引入到今天教學(xué)的重心――隨機(jī)事件發(fā)生的可能性大小,也就是概率的探究上來.)
判斷;復(fù)習(xí)隨機(jī)事件的概念。問題2的設(shè)計(jì)在于讓學(xué)生感受不同的隨機(jī)事件發(fā)生的可能性不一樣,從而引出本節(jié)課的中心問題。問題3起到承上啟下的作用,自然地將學(xué)生引入到隨機(jī)事件的概率的探究過程中來。
2、創(chuàng)設(shè)情境、實(shí)驗(yàn)探究
(1)創(chuàng)設(shè)情境
猜想:公平。
(師生活動(dòng):教師先提問,對(duì)足球感興趣的學(xué)生自然能夠回答出來,激起學(xué)生的興趣,問題的設(shè)置是為了引導(dǎo)學(xué)生來共同完成拋擲硬幣的試驗(yàn),驗(yàn)證猜想。硬幣只有兩個(gè)面,學(xué)生會(huì)直覺的認(rèn)為擲得“正面向上”和“反面向上”的可能性是相同的,所以學(xué)生直覺判斷:“公平”,但為什么呢?學(xué)生一時(shí)答不上來,可能也說不清楚,教師便可順勢提問學(xué)生:“能否用試驗(yàn)的方法來驗(yàn)證?”引導(dǎo)學(xué)生來共同完成拋擲硬幣的試驗(yàn).)
(2)動(dòng)手試驗(yàn)
第一步:分組試驗(yàn)
將全班分十組,要求每組擲一枚硬幣60次,并把試驗(yàn)數(shù)據(jù)記錄在表格中。
分析試驗(yàn)結(jié)果:
提問①:各小組正面朝上的頻率一樣嗎?是否為0.5?
提問②:如果把全班十組結(jié)果進(jìn)行累計(jì),正面朝上的頻率會(huì)有什么規(guī)律?
「設(shè)計(jì)意圖」通過提問1:引導(dǎo)學(xué)生認(rèn)識(shí)到隨機(jī)事件的發(fā)生具有偶然性。
通過提問2:引導(dǎo)學(xué)生發(fā)現(xiàn)在次數(shù)逐漸增大的情況下,頻率數(shù)值漸趨穩(wěn)定。
第二步:模擬實(shí)驗(yàn)
提問:隨著試驗(yàn)次數(shù)的增長,“正面向上”的頻率的變化趨勢有什么規(guī)律?
第三步:觀察數(shù)學(xué)家的試驗(yàn)
問題3:通過以上的三個(gè)試驗(yàn),你能得到什么結(jié)論?
(師生活動(dòng):有了前面的分組試驗(yàn)和模擬試驗(yàn),學(xué)生對(duì)試驗(yàn)的結(jié)果已經(jīng)探究出規(guī)律,在觀察數(shù)學(xué)家的試驗(yàn)結(jié)果后能夠很快的得出結(jié)論.)
3、形成概念、深化認(rèn)識(shí)
(屏幕顯示概念,接著提出三個(gè)問題)
一般地,在大量重復(fù)試驗(yàn)中,如果事件a發(fā)生的頻率會(huì)穩(wěn)定在某個(gè)常數(shù)p附近,那么這個(gè)常數(shù)p叫做事件a的概率,記作p(a)=p。其中m是事件a發(fā)生的頻數(shù),n是試驗(yàn)次數(shù)。
問題1:事件a發(fā)生的概率p(a)有取值范圍嗎?
問題3:頻率和概率有區(qū)別嗎?
4、變式訓(xùn)練、拓展提高
「屏幕顯示」兩段情境對(duì)話,分組討論對(duì)錯(cuò)并說明理由:
(情境1):甲――我知道擲硬幣時(shí),“正面向上”的概率是0.5。
乙――噢,那我連擲硬幣10次,一定會(huì)有5次正面向上。
(情境2):甲――天氣預(yù)報(bào)說明天降水概率為90%。
乙――我知道了,明天肯定會(huì)下雨,要不然就是天氣預(yù)報(bào)不準(zhǔn)。
對(duì)這兩個(gè)情境,判斷對(duì)與錯(cuò)并不難,難就難在如何準(zhǔn)確的用概率知識(shí)理解。學(xué)生討論時(shí),教師深入各組,及時(shí)點(diǎn)撥,澄清學(xué)生可能存在的錯(cuò)誤認(rèn)識(shí)。
「設(shè)計(jì)意圖」情境1強(qiáng)調(diào)概率是針對(duì)大量試驗(yàn)而言的,大量試驗(yàn)反映的規(guī)律并非在每次試驗(yàn)中一定存在。情境2突出概率從數(shù)量上刻畫了一個(gè)隨機(jī)事件發(fā)生的可能性大小。用這兩個(gè)情境使學(xué)生正確理解大量隨機(jī)試驗(yàn)結(jié)果的規(guī)律性和每次試驗(yàn)結(jié)果的隨機(jī)性。
5.小結(jié)歸納
提問:結(jié)合具體實(shí)例,請你說說什么是概率?
(在回答這個(gè)問題時(shí)要注意引導(dǎo)學(xué)生從實(shí)際例子出發(fā)來深刻認(rèn)識(shí)概率的意義.學(xué)生先談,教師進(jìn)行歸納總結(jié).)
「設(shè)計(jì)意圖」問題的設(shè)置目的在于回顧概率的定義,在具體情境中了解概率的意義是本節(jié)內(nèi)容的核心目標(biāo),通過本堂課的學(xué)習(xí)要讓學(xué)生逐步理解概率的內(nèi)涵。
6、布置作業(yè)
課本練習(xí)1、3
「設(shè)計(jì)意圖」課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對(duì)本節(jié)課內(nèi)容的理解和運(yùn)用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。
貴州高中數(shù)學(xué)必修一篇五
1.復(fù)習(xí)。
反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。
求出函數(shù)y=x3的反函數(shù)。
2.新課。
教師在畫出上述圖象的學(xué)生中選定生1,將他的屏幕內(nèi)容通過教學(xué)系統(tǒng)放到其他同學(xué)的屏幕上,很快有學(xué)生作出反應(yīng)。
生2:這是y=x3的反函數(shù)y=的圖象。
師:對(duì),但是怎么會(huì)得到這個(gè)圖象,請大家討論。
(學(xué)生展開討論,但找不出原因。)
師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>
(生1將他的制作過程重新重復(fù)了一次。)
生3:問題出在他選擇的次序不對(duì)。
師:哪個(gè)次序?
生3:作點(diǎn)b前,選擇xa和xa3為b的坐標(biāo)時(shí),他先選擇xa3,后選擇xa,作出來的點(diǎn)的坐標(biāo)為(xa3,xa),而不是(xa,xa3)。
師:是這樣嗎?我們請生1再做一次。
(這次生1在做的過程當(dāng)中,按xa、xa3的次序選擇,果然得到函數(shù)y=x3的圖象。)
(學(xué)生再次陷入思考,一會(huì)兒有學(xué)生舉手。)
師:我們請生4來告訴大家。
生4:因?yàn)樗@樣做,正好是將y=x3上的點(diǎn)b(x,y)的橫坐標(biāo)x與縱坐標(biāo)y交換,而y=x3的反函數(shù)也正好是將x與y交換。
(多數(shù)學(xué)生回答可由y=x3的圖象得到y(tǒng)=的.圖象,于是教師進(jìn)一步追問。)
師:怎么由y=x3的圖象得到y(tǒng)=的圖象?
生5:將y=x3的圖象上點(diǎn)的橫坐標(biāo)與縱坐標(biāo)交換,可得到y(tǒng)=的圖象。
師:將橫坐標(biāo)與縱坐標(biāo)互換?怎么換?
(學(xué)生一時(shí)未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進(jìn)一步明確。)
(學(xué)生重新開始觀察這兩個(gè)函數(shù)的圖象,一會(huì)兒有學(xué)生舉手。)
生6:我發(fā)現(xiàn)這兩個(gè)圖象應(yīng)是關(guān)于某條直線對(duì)稱。
師:能說說是關(guān)于哪條直線對(duì)稱嗎?
生6:我還沒找出來。
(接下來,教師引導(dǎo)學(xué)生利用幾何畫板找出兩函數(shù)圖象的對(duì)稱軸,畫出如下圖形,如圖2所示:)
學(xué)生通過移動(dòng)點(diǎn)a(點(diǎn)b、c隨之移動(dòng))后發(fā)現(xiàn),bc的中點(diǎn)m在同一條直線上,這條直線就是兩函數(shù)圖象的對(duì)稱軸,在追蹤m點(diǎn)后,發(fā)現(xiàn)中點(diǎn)的軌跡是直線y=x。
生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對(duì)稱。
師:這個(gè)結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對(duì)稱關(guān)系嗎?請同學(xué)們用其他函數(shù)來試一試。
(學(xué)生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進(jìn)行驗(yàn)證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對(duì)稱。)
還是有部分學(xué)生舉手,因?yàn)樗麄儺嫵隽巳缦聢D象(圖3):
教師巡視全班時(shí)已經(jīng)發(fā)現(xiàn)這個(gè)問題,將這個(gè)圖象傳給全班學(xué)生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈r)沒有反函數(shù),②也不是函數(shù)的圖象。
最后教師與學(xué)生一起總結(jié):
點(diǎn)(x,y)與點(diǎn)(y,x)關(guān)于直線y=x對(duì)稱;
函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對(duì)稱。
1.在開學(xué)初,我就教學(xué)幾何畫板4。0的用法,在教函數(shù)圖象畫法的過程當(dāng)中,發(fā)現(xiàn)學(xué)生根據(jù)選定坐標(biāo)作點(diǎn)時(shí),不太注意選擇橫坐標(biāo)與縱坐標(biāo)的順序,本課設(shè)計(jì)起源于此。雖然幾何畫板4。04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對(duì)稱的本質(zhì),所以本節(jié)課教學(xué)中,我有意選擇了幾何畫板4。0進(jìn)行教學(xué)。
2.荷蘭數(shù)學(xué)教育家弗賴登塔爾認(rèn)為,數(shù)學(xué)學(xué)習(xí)過程當(dāng)中,可借助于生動(dòng)直觀的形象來引導(dǎo)人們的思想過程,但常常由于圖形或想象的錯(cuò)誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會(huì)影響學(xué)生正確理解比較抽象的概念。
計(jì)算機(jī)作為一種現(xiàn)代信息技術(shù)工具,在直觀化方面有很強(qiáng)的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計(jì)算機(jī)都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計(jì)算機(jī),但不能達(dá)到更好地理解抽象概念,促進(jìn)學(xué)生思維的目的的話,這樣的教學(xué)中,計(jì)算機(jī)最多只是一種普通的直觀工具而已。
在本節(jié)課的教學(xué)中,計(jì)算機(jī)更多的是作為學(xué)生探索發(fā)現(xiàn)的工具,學(xué)生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對(duì)稱關(guān)系,而且在更深層次上理解了反函數(shù)的概念,對(duì)反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。
當(dāng)前計(jì)算機(jī)用于中學(xué)數(shù)學(xué)的主要形式還是以輔助為主,更多的是把計(jì)算機(jī)作為一種直觀工具,有時(shí)甚至只是作為電子黑板使用,今后的發(fā)展方向應(yīng)是:將計(jì)算機(jī)作為學(xué)生的認(rèn)知工具,讓學(xué)生通過計(jì)算機(jī)發(fā)現(xiàn)探索,甚至利用計(jì)算機(jī)來做數(shù)學(xué),在此過程當(dāng)中更好地理解數(shù)學(xué)概念,促進(jìn)數(shù)學(xué)思維,發(fā)展數(shù)學(xué)創(chuàng)新能力。
3.在引出兩個(gè)函數(shù)圖象對(duì)稱關(guān)系的時(shí)候,問題設(shè)計(jì)不甚妥當(dāng),本來是想要學(xué)生回答兩個(gè)函數(shù)圖象對(duì)稱的關(guān)系,但學(xué)生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學(xué)生引入歧途。這樣的問題在今后的教學(xué)中是必須力求避免的。
【本文地址:http://mlvmservice.com/zuowen/2420057.html】