在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過(guò)文章可以把我們那些零零散散的思想,聚集在一塊。范文怎么寫(xiě)才能發(fā)揮它最大的作用呢?接下來(lái)小編就給大家介紹一下優(yōu)秀的范文該怎么寫(xiě),我們一起來(lái)看一看吧。
初三數(shù)學(xué)解題技巧和方法初數(shù)學(xué)解題方法與技巧篇一
馬克思主義哲學(xué)認(rèn)為,世間萬(wàn)物存在或者運(yùn)動(dòng)都是有規(guī)律可循的,考研數(shù)學(xué)解題如此思維定理,你知多少?。掌握了規(guī)律,認(rèn)識(shí)事物就會(huì)更加地簡(jiǎn)便和透徹。同樣,運(yùn)用到考研上,掌握出題者的規(guī)律就會(huì)了解各種題型,了解各種題型的解題思路,就會(huì)更快捷地獲得高分。那么,在考研數(shù)學(xué)的解題思路上有哪些更快捷的定理呢?我們一起來(lái)揭開(kāi)這層神秘面紗。
1.在題設(shè)條件中給出一個(gè)函數(shù)f(x)二階和二階以上可導(dǎo),把f(x)在指定點(diǎn)展成泰勒公式。
2.在題設(shè)條件或欲證結(jié)論中有定積分表達(dá)式時(shí),則先用積分中值定理對(duì)該積分式處理一下。
3.在題設(shè)條件中函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),且f(a)=0或f(b)=0或f(a)=f(b)=0,則先用拉格朗日中值定理處理。
4.對(duì)定限或變限積分,若被積函數(shù)或其主要部分為復(fù)合函數(shù),則先做變量替換使之成為簡(jiǎn)單形式f(u)。
1.題設(shè)條件與代數(shù)余子式aij或a*有關(guān),則立即聯(lián)想到用行列式按行(列)展開(kāi)定理以及aa*=a*a=|a|e 。
2.若涉及到a、b是否可交換,即ab=ba,則立即聯(lián)想到用逆矩陣的定義去分析。
3.若題設(shè)n階方陣a滿(mǎn)足f(a)=0,要證aa+be可逆,則先分解出因子aa+be再說(shuō)。
4.若要證明一組向量a1,a2,…,as線(xiàn)性無(wú)關(guān),先考慮用定義,考研數(shù)學(xué)《考研數(shù)學(xué)解題如此思維定理,你知多少?》。
5.若已知ab=0,則將b的每列作為ax=0的解來(lái)處理。
6.若由題設(shè)條件要求確定參數(shù)的取值,聯(lián)想到是否有某行列式為零。
7.若已知a的特征向量ζ0,則先用定義aζ0=λ0ζ0處理。
8.若要證明抽象n階實(shí)對(duì)稱(chēng)矩陣a為正定矩陣,則用定義處理。
1.如果要求的是若干事件中“至少”有一個(gè)發(fā)生的概率,則馬上聯(lián)想到概率加法公式;當(dāng)事件組相互獨(dú)立時(shí),用對(duì)立事件的概率公式 。
2.若給出的試驗(yàn)可分解成(0-1)的n重獨(dú)立重復(fù)試驗(yàn),則馬上聯(lián)想到bernoulli試驗(yàn),及其概率計(jì)算公式。
3.若某事件是伴隨著一個(gè)完備事件組的發(fā)生而發(fā)生,則馬上聯(lián)想到該事件的發(fā)生概率是用全概率公式計(jì)算。關(guān)鍵:尋找完備事件組。
4.若題設(shè)中給出隨機(jī)變量x ~ n 則馬上聯(lián)想到標(biāo)準(zhǔn)化 ~ n(0,1)來(lái)處理有關(guān)問(wèn)題。
5.求二維隨機(jī)變量(x,y)的邊緣分布密度 的問(wèn)題,應(yīng)該馬上聯(lián)想到先畫(huà)出使聯(lián)合分布密度 的區(qū)域,然后定出x的變化區(qū)間,再在該區(qū)間內(nèi)畫(huà)一條//y軸的直線(xiàn),先與區(qū)域邊界相交的為y的下限,后者為上限,而 的求法類(lèi)似。
6.欲求二維隨機(jī)變量(x,y)滿(mǎn)足條件y≥g(x)或(y≤g(x))的概率,應(yīng)該馬上聯(lián)想到二重積分 的計(jì)算,其積分域d是由聯(lián)合密度 的平面區(qū)域及滿(mǎn)足y≥g(x)或(y≤g(x))的區(qū)域的公共部分。
8.凡求解各概率分布已知的若干個(gè)獨(dú)立隨機(jī)變量組成的系統(tǒng)滿(mǎn)足某種關(guān)系的概率(或已知概率求隨機(jī)變量個(gè)數(shù))的問(wèn)題,馬上聯(lián)想到用中心極限定理處理。
9.若 為總體x的一組簡(jiǎn)單隨機(jī)樣本,則凡是涉及到統(tǒng)計(jì)量的分布問(wèn)題,一般聯(lián)想到用 分布,t分布和f分布的定義進(jìn)行討論。
初三數(shù)學(xué)解題技巧和方法初數(shù)學(xué)解題方法與技巧篇二
因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式,是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
通過(guò)把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式解決數(shù)學(xué)問(wèn)題的方法,叫配方法。配方法用的最多的是配成完全平方式,它是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱(chēng)為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。
換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。通常把未知數(shù)或變數(shù)稱(chēng)為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。
在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱(chēng)為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來(lái)證明或計(jì)算平面幾何題的方法,稱(chēng)為面積方法,它是幾何中的一種常用方法。用歸納法或分析法證明平面幾何題,其困難在添置輔助線(xiàn)。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線(xiàn),即使需要添置輔助線(xiàn),也很容易考慮到。
一元二次方程ax2bxc=0(a、b、c屬于r,a≠0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱(chēng)函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱(chēng)方程組,以及解一些有關(guān)二次曲線(xiàn)的問(wèn)題等,都有非常廣泛的應(yīng)用。
反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(?。┯?不大(?。┯冢欢际?不都是;至少有一個(gè)/一個(gè)也沒(méi)有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
在數(shù)學(xué)問(wèn)題的研究中,常常運(yùn)用變換法,把復(fù)雜性問(wèn)題轉(zhuǎn)化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀(guān)點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱(chēng)。
初三數(shù)學(xué)解題技巧和方法初數(shù)學(xué)解題方法與技巧篇三
一要審題。
很多學(xué)生在把一個(gè)題目讀完后,還沒(méi)有弄清楚題目講的是什么意思,題目讓你求證的是什么都不知道,這非常不可取。我們應(yīng)該逐個(gè)條件的讀,給的條件有什么用,在腦海中打個(gè)問(wèn)號(hào),再對(duì)應(yīng)圖形來(lái)對(duì)號(hào)入座,結(jié)論從什么地方入手去尋找,也在圖中找到位置。
二要記。
這里的記有兩層意思。第一層意思是要標(biāo)記,在讀題的時(shí)候每個(gè)條件,你要在所給的圖形中標(biāo)記出來(lái)。如給出對(duì)邊相等,就用邊相等的符號(hào)來(lái)表示。第二層意思是要牢記,題目給出的`條件不僅要標(biāo)記,還要記在腦海中,做到不看題,就可以把題目復(fù)述出來(lái)。
三要引申。
難度大一點(diǎn)的題目往往把一些條件隱藏起來(lái),所以我們要會(huì)引申,那么這里的引申就需要平時(shí)的積累,平時(shí)在課堂上學(xué)的基本知識(shí)點(diǎn)掌握牢固,平時(shí)訓(xùn)練的一些特殊圖形要熟記,在審題與記的時(shí)候要想到由這些條件你還可以得到哪些結(jié)論,然后在圖形旁邊標(biāo)注,雖然有些條件在證明時(shí)可能用不上,但是這樣長(zhǎng)期的積累,便于以后難題的學(xué)習(xí)。
四要分析綜合法。
分析綜合法也就是要逆向推理,從題目要你證明的結(jié)論出發(fā)往回推理??纯唇Y(jié)論是要證明角相等,還是邊相等,等等,如證明角相等的方法有(1.對(duì)頂角相等2.平行線(xiàn)里同位角相等、內(nèi)錯(cuò)角相等3.余角、補(bǔ)角定理4.角平分線(xiàn)定義5.等腰三角形6.全等三角形的對(duì)應(yīng)角等等方法。)結(jié)合題意選出其中的一種方法,然后再考慮用這種方法證明還缺少哪些條件,把題目轉(zhuǎn)換成證明其他的結(jié)論,通常缺少的條件會(huì)在第三步引申出的條件和題目中出現(xiàn),這時(shí)再把這些條件綜合在一起,很條理的寫(xiě)出證明過(guò)程。
五要?dú)w納總結(jié)。
很多同學(xué)把一個(gè)題做出來(lái),長(zhǎng)長(zhǎng)的松了一口氣,接下來(lái)去做其他的,這個(gè)也是不可取的,應(yīng)該花上幾分鐘的時(shí)間,回過(guò)頭來(lái)找找所用的定理、公理、定義,重新審視這個(gè)題,總結(jié)這個(gè)題的解題思路,往后出現(xiàn)同樣類(lèi)型的題該怎樣入手。
初三數(shù)學(xué)解題技巧和方法初數(shù)學(xué)解題方法與技巧篇四
“有所不為才能有所為,大膽取舍,才能確保中考數(shù)學(xué)相對(duì)高分?!贬槍?duì)中考數(shù)學(xué)如何備考,著名數(shù)學(xué)特級(jí)老師說(shuō),這幾個(gè)月的備考一定要有選擇。
某外國(guó)語(yǔ)學(xué)校資深中考數(shù)學(xué)老師建議考生在中考數(shù)學(xué)的備考中強(qiáng)化知識(shí)網(wǎng)絡(luò)的梳理,并熟練掌握中考考綱要求的知識(shí)點(diǎn)。
廣州中考研究中心老師表示,距離中考越來(lái)越近,一方面需按照學(xué)校的復(fù)習(xí)進(jìn)度正常學(xué)習(xí),另一方面由于每個(gè)人學(xué)習(xí)情況不一樣,自己還需進(jìn)行知識(shí)點(diǎn)和丟分題型的雙重查漏補(bǔ)缺,找準(zhǔn)短板,準(zhǔn)確修復(fù)。
壓軸題堅(jiān)持每天一道,并及時(shí)總結(jié)方法,錯(cuò)題本就發(fā)揮作用了。最后每周練習(xí)一套中考模擬卷,及時(shí)總結(jié)考試問(wèn)題。我們做題的原則是先搞懂搞透錯(cuò)題,再做新題。如果沒(méi)有時(shí)間做新題,多花時(shí)間思考、沉淀錯(cuò)題是更有效的學(xué)習(xí)方法。
中考是一場(chǎng)選拔性的考試,緊張是難免的,只要不過(guò)度緊張,適度緊張也是必要的,而且緊張的不是你一個(gè)人,大家都緊張。最后要明白決定中考成敗的不是壓軸題而是簡(jiǎn)單題,千萬(wàn)不要在難題上不舍得,做到會(huì)做的題不丟分就好,這就需要你平時(shí)做題專(zhuān)注用心。
練兵千日,用在一時(shí),關(guān)于中考應(yīng)考技巧有幾點(diǎn)做法:解題習(xí)慣要端正,由于是電腦閱卷,所以平時(shí)答題時(shí)就養(yǎng)成左對(duì)齊按列寫(xiě)的答題習(xí)慣;閱題習(xí)慣的養(yǎng)成,中考都會(huì)提前發(fā)卷,考生可利用這段時(shí)間,將試卷瀏覽一遍,大致了解題量、題型,了解試題的難易度,做到心中有數(shù),通覽全卷,把握全局。答題習(xí)慣上,先易后難,合理支配答題時(shí)間。進(jìn)入考場(chǎng)后考生特別緊張,可輕拍幾下額頭,做幾個(gè)深呼吸,緊張的情緒就會(huì)得到緩解。
【本文地址:http://mlvmservice.com/zuowen/2417905.html】