無論是身處學校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參考,一起來看看吧
高中數(shù)學隨機事件概率 高中隨機事件與概率篇一
排列p------和順序有關(guān)
組合c-------不牽涉到順序的問題
排列分順序,組合不分
例如把5本不同的書分給3個人,有幾種分法."排列"
把5本書分給3個人,有幾種分法"組合"
1.排列及計算公式
從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù),用符號p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規(guī)定0!=1).
2.組合及計算公式
從n個不同元素中,任取m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù).用符號
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!_m!);c(n,m)=c(n,n-m);
3.其他排列與組合公式
從n個元素中取出r個元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!.
n個元素被分成k類,每類的個數(shù)分別是n1,n2,...nk這n個元素的全排列數(shù)為n!/(n1!_n2!_..._nk!).
k類元素,每類的個數(shù)無限,從中取出m個元素的組合數(shù)為c(m+k-1,m).
排列(pnm(n為下標,m為上標))
pnm=n×(n-1)....(n-m+1);pnm=n!/(n-m)!(注:!是階乘符號);pnn(兩個n分別為上標和下標)=n!;0!=1;pn1(n為下標1為上標)=n
組合(cnm(n為下標,m為上標))
cnm=pnm/pmm;cnm=n!/m!(n-m)!;cnn(兩個n分別為上標和下標)=1;cn1(n為下標1為上標)=n;cnm=cnn-m
2008-07-0813:30
公式p是指排列,從n個元素取r個進行排列。公式c是指組合,從n個元素取r個,不進行排列。n-元素的總個數(shù)r參與選擇的元素個數(shù)!-階乘,如9!=9_8_7_6_5_4_3_2_1
從n倒數(shù)r個,表達式應該為n_(n-1)_(n-2)..(n-r+1);
因為從n到(n-r+1)個數(shù)為n-(n-r+1)=r
舉例:
q1:有從1到9共計9個號碼球,請問,可以組成多少個三位數(shù)?
a1:123和213是兩個不同的排列數(shù)。即對排列順序有要求的,既屬于“排列p”計算范疇。
上問題中,任何一個號碼只能用一次,顯然不會出現(xiàn)988,997之類的組合,我們可以這么看,百位數(shù)有9種可能,十位數(shù)則應該有9-1種可能,個位數(shù)則應該只有9-1-1種可能,最終共有9_8_7個三位數(shù)。計算公式=p(3,9)=9_8_7,(從9倒數(shù)3個的乘積)
q2:有從1到9共計9個號碼球,請問,如果三個一組,代表“三國聯(lián)盟”,可以組合成多少個“三國聯(lián)盟”?
a2:213組合和312組合,代表同一個組合,只要有三個號碼球在一起即可。即不要求順序的,屬于“組合c”計算范疇。
上問題中,將所有的包括排列數(shù)的個數(shù)去除掉屬于重復的個數(shù)即為最終組合數(shù)c(3,9)=9_8_7/3_2_1
排列、組合的概念和公式典型例題分析
例1設(shè)有3名學生和4個課外小組.(1)每名學生都只參加一個課外小組;(2)每名學生都只參加一個課外小組,而且每個小組至多有一名學生參加.各有多少種不同同方法?
解(1)由于每名學生都可以參加4個課外小組中的任何一個,而不限制每個課外小組的人數(shù),因此共有種不同方法.
(2)由于每名學生都只參加一個課外小組,而且每個小組至多有一名學生參加,因此共有種不同方法.
點評由于要讓3名學生逐個選擇課外小組,故兩問都用乘法原理進行計算.
例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少種?
解依題意,符合要求的排法可分為第一個排、、中的某一個,共3類,每一類中不同排法可采用畫“樹圖”的方式逐一排出:
∴符合題意的不同排法共有9種.
點評按照分“類”的思路,本題應用了加法原理.為把握不同排法的規(guī)律,“樹圖”是一種具有直觀形象的有效做法,也是解決計數(shù)問題的一種數(shù)學模型.
例3判斷下列問題是排列問題還是組合問題?并計算出結(jié)果.
(1)高三年級學生會有11人:①每兩人互通一封信,共通了多少封信?②每兩人互握了一次手,共握了多少次手?
(2)高二年級數(shù)學課外小組共10人:①從中選一名正組長和一名副組長,共有多少種不同的選法?②從中選2名參加省數(shù)學競賽,有多少種不同的選法?
(3)有2,3,5,7,11,13,17,19八個質(zhì)數(shù):①從中任取兩個數(shù)求它們的商可以有多少種不同的商?②從中任取兩個求它的積,可以得到多少個不同的積?
(4)有8盆花:①從中選出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?②從中選出2盆放在教室有多少種不同的選法?
分析(1)①由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關(guān)是排列;②由于每兩人互握一次手,甲與乙握手,乙與甲握手是同一次握手,與順序無關(guān),所以是組合問題.其他類似分析.
(1)①是排列問題,共用了封信;②是組合問題,共需握手(次).
(2)①是排列問題,共有(種)不同的選法;②是組合問題,共有種不同的選法.
(3)①是排列問題,共有種不同的商;②是組合問題,共有種不同的積.
(4)①是排列問題,共有種不同的選法;②是組合問題,共有種不同的選法.
例4證明.
證明左式
右式.
∴等式成立.
點評這是一個排列數(shù)等式的證明問題,選用階乘之商的形式,并利用階乘的性質(zhì),可使變形過程得以簡化.
例5化簡.
解法一原式
解法二原式
點評解法一選用了組合數(shù)公式的階乘形式,并利用階乘的性質(zhì);解法二選用了組合數(shù)的兩個性質(zhì),都使變形過程得以簡化.
例6解方程:(1);(2).
解(1)原方程
解得.
(2)原方程可變?yōu)?/p>
∵,,
∴原方程可化為.
即,解得
第六章排列組合、二項式定理
一、考綱要求
1.掌握加法原理及乘法原理,并能用這兩個原理分析解決一些簡單的問題.
2.理解排列、組合的意義,掌握排列數(shù)、組合數(shù)的計算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的問題.
3.掌握二項式定理和二項式系數(shù)的性質(zhì),并能用它們計算和論證一些簡單問題.
二、知識結(jié)構(gòu)
三、知識點、能力點提示
(一)加法原理乘法原理
說明加法原理、乘法原理是學習排列組合的基礎(chǔ),掌握此兩原理為處理排列、組合中有關(guān)問題提供了理論根據(jù).
高中數(shù)學隨機事件概率 高中隨機事件與概率篇二
導數(shù): 導數(shù)的意義-導數(shù)公式-導數(shù)應用(極值最值問題、曲線切線問題)
1、導數(shù)的定義: 在點 處的導數(shù)記作 .
2. 導數(shù)的幾何物理意義:曲線 在點 處切線的斜率
①k=f/(x0)表示過曲線y=f(x)上p(x0,f(x0))切線斜率。v=s/(t) 表示即時速度。a=v/(t) 表示加速度。
3.常見函數(shù)的導數(shù)公式: ① ;② ;③ ;
⑤ ;⑥ ;⑦ ;⑧ 。
4.導數(shù)的四則運算法則:
5.導數(shù)的應用:
(1)利用導數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù) 在某個區(qū)間內(nèi)可導,如果 ,那么 為增函數(shù);如果 ,那么為減函數(shù);
注意:如果已知 為減函數(shù)求字母取值范圍,那么不等式 恒成立。
(2)求極值的步驟:
①求導數(shù) ;
②求方程 的根;
③列表:檢驗 在方程 根的左右的符號,如果左正右負,那么函數(shù) 在這個根處取得極大值;如果左負右正,那么函數(shù) 在這個根處取得極小值;
(3)求可導函數(shù)最大值與最小值的步驟:
ⅰ求 的根; ⅱ把根與區(qū)間端點函數(shù)值比較,最大的為最大值,最小的是最小值。
高中數(shù)學隨機事件概率 高中隨機事件與概率篇三
一、事件
1.在條件ss的必然事件.
2.在條件s下,一定不會發(fā)生的事件,叫做相對于條件s的不可能事件.
3.在條件ss的隨機事件.
二、概率和頻率
1.用概率度量隨機事件發(fā)生的可能性大小能為我們決策提供關(guān)鍵性依據(jù).
2.在相同條件s下重復n次試驗,觀察某一事件a是否出現(xiàn),稱n次試驗中事件a出現(xiàn)的次數(shù)na
na為事件a出現(xiàn)的頻數(shù),稱事件a出現(xiàn)的比例fn(a)=為事件a出現(xiàn)的頻率.
3.對于給定的隨機事件a,由于事件a發(fā)生的頻率fn(a)p(a),p(a).
三、事件的關(guān)系與運算
四、概率的幾個基本性質(zhì)
1.概率的取值范圍:
2.必然事件的概率p(e)=3.不可能事件的概率p(f)=
4.概率的加法公式:
如果事件a與事件b互斥,則p(ab)=p(a)+p(b).
5.對立事件的概率:
若事件a與事件b互為對立事件,則ab為必然事件.p(ab)=1,p(a)=1-p(b).
【本文地址:http://mlvmservice.com/zuowen/2326571.html】