人教版八年級下冊數(shù)學教案免費(3篇)

格式:DOC 上傳日期:2023-04-05 11:36:04
人教版八年級下冊數(shù)學教案免費(3篇)
時間:2023-04-05 11:36:04     小編:zxfb

作為一名老師,常常要根據(jù)教學需要編寫教案,教案是教學活動的依據(jù),有著重要的地位。怎樣寫教案才更能起到其作用呢?教案應該怎么制定呢?以下我給大家整理了一些優(yōu)質的教案范文,希望對大家能夠有所幫助。

人教版八年級下冊數(shù)學教案免費篇一

⑴ 學習特殊的平行四邊形—正方形,它的特殊的性質和判定。

⑵前面學習了平行四邊形、矩形菱形,類比他們的性質與判斷,有利于對正方形的研究。

⑶ 對本節(jié)的學習,繼續(xù)培養(yǎng)學生分類研究的思想,并且建立新舊知識的聯(lián)系,類比的基礎上進行歸納,梳理知識,進一步發(fā)展學生的推理能力。

學生分析:

⑴學生在小學初步認識了正方形,并且本節(jié)課之前,學生又學習了幾種平行四邊形,已經具備了觀察研究平行四邊形的經驗與知識基礎。

⑵學生在上幾節(jié)已有了推理的經歷,但是對于證明,學生的思維能力還不成熟,有待于提高。

教學目標:

⑴知識與技能:了解正方形是特殊的平行四邊形,掌握它的性質和判定,會利用性質與判定進行簡單的說理。

⑵過程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質與判定。通過運用提高學生的推理能力。

⑶情感態(tài)度與價值觀:在學習中體會正方形的完美性,通過活動獲得成功的喜悅與自信。

重點:

掌握正方形的性質與判定,并進行簡單的推理。

難點:

探索正方形的判定,發(fā)展學生的推理能

教學方法:

類比與探究

教具準備:

可以活動的四邊形模型。

教學過程:

一:復習鞏固,建立聯(lián)系。

【教師活動】

問題設置:①平行四邊形、矩形,菱形各有哪些性質?

②( ) 的四邊形是平行四邊形。( )的平行四邊形是矩形。( )的平行四邊形是菱形。( )的四邊形是矩形。( )的四邊形是菱形。

【學生活動】

學生回憶,并舉手回答,對于填空題,讓更多的學生參與,說出更多的答案。

【教師活動】

評析學生的結果,給予表揚。

總結性質從邊角對角線考慮,在填空時也考慮這幾方面之外,還應該考慮三者之間的聯(lián)系與區(qū)別。

演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。

二:動手操作,探索發(fā)現(xiàn)。

活動一:拿出一張矩形紙片,拉起一角,使其寬ab落在長ad邊上,如下圖所示,沿著b′e剪下,能得到什么圖形?

【學生活動】

學生拿出自備矩形紙片,動手操作,不難發(fā)現(xiàn)它是正方形。

設置問題:①什么是正方形?

觀察發(fā)現(xiàn),從活動中體會。

【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。

【學生活動】認真觀察變化過程,思考之間的聯(lián)系,舉手回答設置問題。

設置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?

【學生活動】

小組討論,分組回答。

【教師活動】

總結板書:

㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。

設置問題③正方形有那些性質?

【學生活動】

小組討論,舉手搶答。

【教師活動】

表揚學生發(fā)言,板書學生發(fā)現(xiàn),㈡正方形 每一條對角線平分一組對角

活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?

學生活動

折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質。正方形是軸對稱圖形。

教師活動

演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內容,出示一下問題:你還可以怎樣填空?

( )的菱形是正方形,( )的矩形是正方形,( )的平行四邊形是正方形,( )的四邊形是正方形。

學生活動

小組充分交流,表達不同的意見。

教師活動

評析活動,總結發(fā)現(xiàn):

一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;

有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;

有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;

四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。

以上是正方形的`判定方法。

正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?

學生交流,感受正方形

三,應用體驗,推理證明。

出示例一:正方形abcd的兩條對角線ac,bd交與o,ab長4cm,求ac,ao長,及 的度數(shù)。

方法一解:∵四邊形abcd是正方形

∴∠abc=90°(正方形的四個角是直角)。

bc=ab=4cm(正方形的四條邊相等)

∴ =45°(等腰直角三角形的底角是45°)

∴利用勾股定理可知,ac= = =4 cm

∵ao= ac(正方形的對角線互相平分)

∴ao= ×4 =2 cm

方法二:證明△aob是等腰直角三角形,即可得證。

學生活動

獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。

教師活動

總結解題方法,從正方形的性質全面考慮,準確利用條件,減少麻煩。評析解題步驟,表揚突出學生。

出示例二:在正方形abcd中,e、f、g、h 分別在它的四條邊上,且ae=bf=cg=dh,四邊形efgh是什么特殊的四邊形,你是如何判斷的?

學生活動

小組交流,分析題意,整理思路,指名口答。

教師活動

說明思路,從已知出發(fā)或者從已有的判定加以選擇。

四,歸納新知,梳理知識。

這一節(jié)課你有什么收獲?

學生舉手談論自己的收獲。

請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的abcdc處,說明它們的關系。

發(fā)表評論

人教版八年級下冊數(shù)學教案免費篇二

1、教材分析

(1)知識結構

(2)重點、難點分析

本節(jié)內容的重點是線段垂直平分線定理及其逆定理。定理反映了線段垂直平分線的性質,是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據(jù)。

本節(jié)內容的難點是定理及逆定理的關系。垂直平分線定理和其逆定理,題設與結論正好相反。學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區(qū)別,這是本節(jié)的難點。

2、 教法建議

本節(jié)課教學模式主要采用“學生主體性學習”的教學模式。提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規(guī)律讓學生歸納。教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結規(guī)律,充分發(fā)揮學生的主體作用,讓學生真正成為教學活動的主人。具體說明如下:

(1)參與探索發(fā)現(xiàn),領略知識形成過程

學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點p,它到線段兩端的距離有何關系?學生會很容易得出“相等”。然后學生完成證明,找一名學生的證明過程,進行投影總結。最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理。這樣讓學生親自動手實踐,積極參與發(fā)現(xiàn),激發(fā)了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會。

(2)采用“類比”的學習方法,獲取逆定理

線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節(jié)的難點仍然的定理及逆定理的關系,為了很好的突破這一難點,教學時采用與角的平分線的性質定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區(qū)別和聯(lián)系。

(3) 通過問題的解決,讓學生學會從不同角度分析問題、解決問題;讓學生學會引申、變更問題,以培養(yǎng)學生發(fā)現(xiàn)問題、提出問題的創(chuàng)造性能力。

人教版八年級下冊數(shù)學教案免費篇三

八年級下數(shù)學教案-變量與函數(shù)(2)

一、教學目的

1.使學生理解自變量的取值范圍和函數(shù)值的意義。

2.使學生理解求自變量的取值范圍的兩個依據(jù)。

3.使學生掌握關于解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并會求其函數(shù)值。

4.通過求函數(shù)中自變量的取值范圍使學生進一步理解函數(shù)概念。

二、教學重點、難點

重點:函數(shù)自變量取值的求法。

難點:函靈敏處變量取值的確定。

三、教學過程

復習提問

1.函數(shù)的定義是什么?函數(shù)概念包含哪三個方面的內容?

2.什么叫分式?當x取什么數(shù)時,分式x+2/2x+3有意義?

(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)

3.什么叫二次根式?使二次根式成立的條件是什么?

(答:根指數(shù)是2的根式叫二次根式,使二次根式成立的條件是被開方數(shù)≥0。)

4.舉出一個函數(shù)的實例,并指出式中的變量與常量、自變量與函數(shù)。

新課

1.結合同學舉出的實例說明解析法的意義:用教學式子表示函數(shù)方法叫解析法。并指出,函數(shù)表示法除了解析法外,還有圖象法和列表法。

2.結合同學舉出的實例,說明函數(shù)的自變量取值范圍有時要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個依據(jù)是:

(1)自變量取值范圍是使函數(shù)解析式(即是函數(shù)表達式)有意義。

(2)自變量取值范圍要使實際問題有意義。

3.講解p93中例2。并指出例2四個小題代表三類題型:(1),(2)題給出的是只含有一個自變量的整式;(3)題給出的是只含有一個自變量的分式;(4)題給出的是只含有一個自變量的二次根式。

推廣與聯(lián)想:請同學按上述三類題型自編3個題,并寫出解答,同桌互對答案,老師評講。

4.講解p93中例3。結合例3引出函數(shù)值的意義。并指出兩點:

(1)例3中的4個小題歸納起來仍是三類題型。

(2)求函數(shù)值的問題實際是求代數(shù)式值的問題。

補充例題

求下列函數(shù)當x=3時的函數(shù)值:

(1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。

(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

小結

1.解析法的意義:用數(shù)學式子表示函數(shù)的方法叫解析法。

2.求函數(shù)自變量取值范圍的兩個方法(依據(jù)):

(1)要使函數(shù)的解析式有意義。

①函數(shù)的解析式是整式時,自變量可取全體實數(shù);

②函數(shù)的解析式是分式時,自變量的取值應使分母≠0;

③函數(shù)的解析式是二次根式時,自變量的取值應使被開方數(shù)≥0。

(2)對于反映實際問題的函數(shù)關系,應使實際問題有意義。

3.求函數(shù)值的方法:把所給出的自變量的值代入函數(shù)解析式中,即可求出相慶原函數(shù)值。

練習:p94中1,2,3。

作業(yè):p95~p96中a組3,4,5,6,7。b組1,2。

四、教學注意問題

1.注意滲透與訓練學生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對于例2、例3這兩道例題,雖然要求各異,但題目結構仍是三類題型:整式、分式、二次根式。

2.注意訓練與培養(yǎng)學生的優(yōu)質聯(lián)想能力。要求學生仿照例題自編題目是有效手段。

3.注意培養(yǎng)學生對于“具體問題要具體分析”的良好學習方法。比如對于有實際意義來確定,由于實際問題千差萬別,所以我們就要具體分析,靈活處置。

【本文地址:http://mlvmservice.com/zuowen/2307614.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔