在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參考,一起來看看吧
初中數(shù)學解題方法與技巧篇一
(一)課前準備要有預見性
預防錯誤的發(fā)生,是減少初中學生解題錯誤的主要方法。講課之前,如果能預見到學生學習本課內(nèi)容可能產(chǎn)生的錯誤,就能夠在課內(nèi)講解時有意識地指出并加以強調(diào),從而有效地控制錯誤的發(fā)生。
例如,學習方程x/0.7-(0.17-0.2x)/0.03=1之前,要預見到本題要用分式的基本性質(zhì)與等式的性質(zhì),兩者有可能混淆,因而要在復習時準備一些分數(shù)的基本性質(zhì)與等式的性質(zhì)的練習,弄清兩者的不同,避免產(chǎn)生混亂與錯誤。因此學習時,要仔細研究正文中的防錯文字、例題后的注意、小結(jié)與復習中的應(yīng)該注意的幾個問題等,能夠預先明了容易出錯之處,防患于未然。如果出現(xiàn)問題而未查覺,錯誤沒有得到及時的糾正,則遺患無窮,不僅影響當時的學習,還會影響以后的學習。因此,預見錯誤并有效防范能夠為揭示錯誤、消滅錯誤打下基礎(chǔ)。
(二)課內(nèi)學習要有針對性
在課內(nèi)學習時,要對可能出現(xiàn)的問題進行針對性的學習。對于容易混淆的概念,要用對比的方法,弄清它們的區(qū)別和聯(lián)系。對于規(guī)律,應(yīng)搞清它們的來源,分清它們的條件和結(jié)論,了解它們的用途和適用范圍,以及應(yīng)用時應(yīng)注意的問題。展示揭示錯誤、排除錯誤的手段,會識別錯誤、改正錯誤。對錯誤回答,要分析其原因,進行針對性講解,利用反面知識鞏固正面知識。課堂練習是發(fā)現(xiàn)錯誤的另一條途徑,出現(xiàn)問題,及時解決。總之,要通過課堂教學,不僅教會學生知識,而且要學會識別對錯,知錯能改。
(三)課后學習要有總結(jié)性
要認真分析作業(yè)中的問題,總結(jié)出典型錯誤,加以評述。通過講評,進行適當?shù)膹土暸c總結(jié),也要再經(jīng)歷一次調(diào)試與修正的過程,增強識別、改正錯誤的能力。
初中數(shù)學解題方法與技巧篇二選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學生的基礎(chǔ)知識和基本技能,從而增大了試卷的.容量和知識覆蓋面。
填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進行推理或運算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設(shè)找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。(5)圖解法:借助于符合題設(shè)條件的圖形或圖像的性質(zhì)、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,稱為分析法。
初中數(shù)學解題方法與技巧篇三
1、配方法
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬于r,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解數(shù)學問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。
【本文地址:http://mlvmservice.com/zuowen/2203678.html】