在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?以下是我為大家搜集的優(yōu)質范文,僅供參考,一起來看看吧
因式分解法解一元二次方程教學反思篇一
學生已經學習了一元二次方程及其解法,對于方程的解及解方程并不陌生,實際問題的應用,有些抽象,雖然學生在七、八年級已經進行了有關的訓練,但還是有一定的難度。
本節(jié)內容針對的學生是才進入九年級的學生,他們已經具備了一定的抽象思維和建模能力,也具備一定的生活經驗和初步的解一元二次方程的經驗。
本節(jié)課的主要是發(fā)展學生抽象思維,強化學生的應用意識,使學生能通過抽象思維將一個應用題抽象成一元二次方程使問題得以解決,這也是方程教學的重要任務。但學生抽象意識和能力的發(fā)展不是自發(fā)的,需要通過大量的應用實例,在實際問題的解決中讓學生感受到其廣泛應用,并在具體應用中增強學生的應用能力。因此,本節(jié)教學中需要選用大量的實際問題,通過列方程解決問題,并且在問題解決過程中,促進學生分析問題、解決問題意識和能力的提高以及抽象思維的初步形成。顯然,這個任務并非某個教學活動所能達成的,而應在教學活動中創(chuàng)設大量的問題解決的情境,在具體情境中發(fā)展學生的有關能力。為此,本節(jié)課的教學目標是:
知識目標:
通過分析問題中的數(shù)量關系,抽象出方程解決問題,認識方程模型的重要性,并總結運用方程解決實際問題的一般過程。
能力目標:
1、經歷分析,抽象和建模的過程,進一步體會方程是刻畫現(xiàn)實世界中數(shù)量關系的一個有效的數(shù)學模型;
2、能夠抽象出一元二次方程解決有關實際問題,能根據(jù)具體問題的實際意義檢驗結果的合理性,進一步培養(yǎng)學生分析問題、解決問題的意識和能力;
情感態(tài)度價值觀:
在問題解決中,經歷一定的合作交流活動,進一步發(fā)展學生合作交流的意識和能力。
本課是學生學習完一元二次方程的解法后的應用課,雖然學生在七八年級已經進行了一定的訓練,但本課對學生而言還是有一定的難度。本課采用啟發(fā)式、問題串討論式、合作學習相結合的方式,引導學生從已有的知識和生活經驗出發(fā),以教材提供的素材為基礎,引導學生對對問題中的數(shù)量進行分析從而抽象出方程解決問題;學生之間的合作交流、互助學習,能更好地調動學生的學習積極性,更符合學生的認知規(guī)律。無論是例題的分析還是練習的分析,盡可能地鼓勵學生動腦、動手、動口,為學生提供展示自己聰明才智的機會,并且在此過程中發(fā)現(xiàn)學生分析問題、解決問題的獨到見解以及思維的誤區(qū),更好地進行學法指導。
本課時分為以下五個教學環(huán)節(jié):第一環(huán)節(jié):回憶鞏固,情境導入;第二環(huán)節(jié):做一做,探索新知;第三環(huán)節(jié):練一練,鞏固新知;第四環(huán)節(jié):收獲與感悟;第五環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié);情境導入
活動內容:提出問題:還記得梯子下滑的問題嗎?
在這個問題中,梯子頂端下滑1米時,梯子底端滑動的距離大于1米,那么梯子頂端下滑幾米時,梯子底端滑動的距離和它相等呢?如果梯子長度是13米,梯子頂端下滑的距離與梯子底端滑動的距離可能相等嗎?如果相等,那么這個距離是多少?
分組討論:
怎么設未知數(shù)?在這個問題中存在怎樣的等量關系?如何利用勾股定理抽象出方程?
活動目的:以學生所熟悉的梯子下滑問題為素材,以前面所學的勾股定理為切入點,用熟悉的情境激發(fā)學生解決問題的欲望,用學生已有的知識為支點抽象出一元二次方程使問題得以解決,進一步讓學生體會數(shù)形結合的思想。
活動的實際效果:大部分學生能夠聯(lián)系以前學過的勾股定理的三邊關系抽象出方程對上述問題進行思考,能夠在老師的引導下主動地探究問題,取得了比較理想的效果,而且也調動了學生的學習熱情,激發(fā)了學生的思維,為后面的探索奠定了良好的基礎。
第二環(huán)節(jié)探索新知
活動內容:見課本p53頁例1:
如圖:某海軍基地位于a處,在其正南方向200海里處有一重要目標b,在b的正東方向200海里處有一重要目標c,小島d位于ac的中點,島上有一補給碼頭。小島f位于bc中點。一艘軍艦從a出發(fā),經b到c勻速巡航,一艘補給船同時從d出發(fā),沿南偏西方向勻速直線航行,欲將一批物品送達軍艦。
已知軍艦的速度是補給船的2倍,軍艦在由b到c的途中與補給船相遇,那么相遇時補給船航行了多少海里?(結果精確到0.1海里)
在教學中要給學生充分的時間去審清題意,分析各量之間的關系,不能粗線條解決。在講解過程中可逐步分解難點:審清題意;找準各條有關線段的長度關系;通過抽象思維建立方程模型,之后求解。
實際應用問題比較抽象,因此教學中老師要給學生充分的時間去審清題意,讓學生自己反復審題,弄清各量之間的關系,分析題目中的已知條件和要求解的問題,并在這個前提下抽象出圖形中各條線段所表示的量,弄清它們之間的關系,從而抽象出方程模型解決問題。
在學生分析題意遇到困難時,教學中可設置問題串分解難點:
(1)要求de的長,需要如何設未知數(shù)?
(2)怎樣建立含de未知數(shù)的等量關系?從已知條件中能找到嗎?
(3)利用勾股定理建立等量關系,如何構造直角三角形?
(4)選定后,三條邊長都是已知的嗎?de,df,ef分別是多少?
學生在問題串的引導下,逐層分析,在分組討論后抽象出題目中的等量關系即:
速度等量:v軍艦=2×v補給船
時間等量:t軍艦=t補給船
三邊數(shù)量關系:
弄清圖形中線段長表示的量:已知ab=bc=200海里,de表示補給船的路程,ab+be表示軍艦的路程。
學生在此基礎上選準未知數(shù),用未知數(shù)表示出線段:de、ef的長,根據(jù)勾股定理抽象出方程求解,并判斷解的合理性。
鞏固練習:1、一個直角三角形的斜邊長為7cm,一條直角邊比另一條直角邊長1cm,那么這個直角三角的面積是多少?
文本框:8cm2、如圖:在rtacb中,∠c=90°,點p、q同時由a、b兩點出發(fā)分別沿ac、bc方向向點c勻速移動,它們的速度都是1m/s,幾秒后pcq的面積為rtacb面積的一半?
3、在寬為20m,長為32m的矩形耕地上,修筑同樣寬的三條道路(兩條縱向,一條橫向,橫向與縱向互相垂直),把耕地分成大小相等的六塊作試驗田,要使試驗田面積為570平方米,問道路應為多寬?
說明:三個題目的設計從簡單問題入手,第一題通過勾股定理抽象出一元二次方程解決直角三角形邊長問題;第2題構造了一個可變的直角三角形,抽象出方程解決面積問題;第三題也是面積問題,在這個問題中常設道路寬為x米,通過平移道路使六塊田地變成一塊田地,從而根據(jù)矩形面積公式抽象出方程解決問題。
活動目的:一元二次方程的應用題的類型較多,像數(shù)字問題、面積問題、平均增長(或降低)率問題、利潤問題等;本節(jié)課以教材上的引例作為出發(fā)點,作為素材來呈現(xiàn),可以將應用類型作適當?shù)耐卣?,在練習中將教材中的應用問題歸類呈現(xiàn)出來,便于學生理解和掌握。本課由數(shù)形結合問題拓展到面積問題,后面可以在練習中增加數(shù)字問題,為學生呈現(xiàn)更多的應用類型,讓學生在不同的情境中體會數(shù)學抽象和建模的重要性。
活動實際效果:應用問題設置都經過精心準備。通過問題串的設立,將比較復雜、難以理解的題目分成多個小的題目去理解,使學生在不知不覺中克服困難,體會到通過抽象出方程解應用題的三個重要環(huán)節(jié):整體系統(tǒng)的審清題意;尋找等量關系;正確求解并檢驗解的合理性。采取的是一講一練,從鞏固練習的準確程度上來看,學生掌握得比較好,能夠達到預期的效果。
第三環(huán)節(jié):練一練,鞏固新知
活動內容:1、在一塊正方形的鋼板上裁下寬為20cm的一個長條,剩下的長方形鋼板的面積為4800cm2。求原正方形鋼板的面積。
2、有這樣一道阿拉伯古算題:有兩筆錢,一多一少,其和等于20,積等于96,多的一筆錢被許諾賞給賽義德,那么賽義德得到多少錢?
3、《九章算術》“勾股”章有一題:甲、乙二人同時從同一地點出發(fā),甲的速度為7,乙的速度為3。乙一直向東走,甲先向南走了10步,后又斜向北偏東方向走了一段后與乙相遇。那么相遇時,甲、乙各走了多遠?
活動目的:通過三道問題的解決,查缺補漏,了解學生的掌握情況和靈活運用知識的程度。在教學過程中要以學生為主體,引導學生自主發(fā)現(xiàn)、合作交流?;顒訉嶋H效果:學生在前面活動中積累的經驗,可以幫助學生比較順利地分析上述問題,遇有疑難可以讓學生在合作交流中解決,學生在訓練過程中更加理解數(shù)學抽象和建模的重要性.大部分學生能夠獨立解決問題。
第四環(huán)節(jié):收獲與感悟
活動內容:提問:
1、列方程解應用題的關鍵;2、列方程解應用題的步驟;3、列方程應注意的一些問題。
學生在學習小組中回顧與反思,并進行組間交流發(fā)言。
活動目的:鼓勵學生回顧本節(jié)課知識方面有哪些收獲,解題技能方面有哪些提高,還有什么疑難問題希望得到解決;通過對三個問題的解決,加深學生通過抽象思維抽象出方程解決實際問題的意識和能力;并且通過學生間的合作學習幫助不同層次的孩子解決實際困難,增強孩子學好數(shù)學的信心。
活動實際效果:學生通過回顧本節(jié)課的學習過程,體會利用抽象思維抽象出一元二次方程解決實際問題的方法和技巧,進一步提高自己解決問題的能力。
第五環(huán)節(jié):布置作業(yè)
1、甲乙兩個小朋友的年齡相差4歲,兩個人的年齡相乘積等于45,你知道這兩個小朋友幾歲嗎?
2、一塊長方形草地的長和寬分別為20m和15m,在它四周外圍環(huán)繞著寬度相等的小路,已知小路的面積為246,求小路的寬度。
3、一個兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)比個位數(shù)小2,求這兩位數(shù)。
因式分解法解一元二次方程教學反思篇二
本節(jié)課在學生有了認識了配方法的作基礎,再討論如何用配方法解一元二次方程的一般形式ax2+bx+c=0(a≠0),就得到一元二次方程的.求根公式,于是有了直接利用公式的公式法,并引出用判別式確定一元二次方程的根的情況。利用求根公式解一元二次方程的一般步驟:
1、找出a,b,c的相應的數(shù)值
2、判別式是否大于等于0
3、當判別式的數(shù)值符合條件,可以利用公式求根。
學生第一次接觸求根公式,學生可以說非常陌生,由于過高估計學生的能力,結果出現(xiàn)錯誤較多。主要的有:
1、a,b,c的符號問題出錯,在方程中學生往往在找某個項的系數(shù)時總是丟掉前面的符號
2、求根公式本身就很難,形式復雜,代入數(shù)值后出錯很多。
通過本節(jié)課的教學,總體感覺調動了學生的積極性,能夠充分發(fā)揮學生的主體作用,激發(fā)了學生思維的火花,具體有以下幾個特點:
1、讓學生由淺入深,由易到難,也讓學生解決問題的能力提高,這是這節(jié)課中的一大亮點,在講完例題的基礎上,將更多的時間留給學生,這樣學生感覺到成功的機會增加,從而有一種積極的學習態(tài)度,同時學生在學習中相互交流,相互學習,共同提高。
2、課堂上多給學生展示的機會,讓學生走上講臺,向同學們展示自己的聰明才智。
3、總之通過各種激勵的教學手段,幫助學生形成積極的學習態(tài)度,課堂收效大。
需要改進的方面,由于怕完不成任務,教師講的還是多了些,以后應最大限度的發(fā)揮學生的主體作用?!豆椒ń庖辉畏匠痰慕虒W反思》/p><
因式分解法解一元二次方程教學反思篇三
一元二次方程是九年級數(shù)學一個非常重要的內容,是首次出現(xiàn)的高于一次的方程。其解法的策略就是將其“降次”轉化為一次方程。通過解比較簡單的一元二次方程,引導學生認識直接開平方法解方程,再通過對比一邊為完全平方形式的方程,使學生認識配方法的基本原理并掌握其具體方法,為后面的求根公式做準備。
1. 教學對象:本班學生58人,這個班的特點是兩頭力量少,中間力量多,基礎知識薄弱。但學習氣氛較濃,能調動學生學習數(shù)學的積極性和挑戰(zhàn)性
2. 學生的認知分析:學生雖然具備初步的解題思路,但缺乏融會貫通和應用的能力。應適當?shù)貏?chuàng)設一些難易、新舊相結合的問題,加強學生對知識的應用。在學習過程中培養(yǎng)學生自主探索與合作交流的緊密結合,促使學生在探究的過程中,更多地獲得成功的體驗。
1、知識與技能:學生會用直接開平方法解方程,x2=p,x2+2mx+m2=p(p≥0)建立一元二次方程模型解決簡單的實際問題,循序漸進的讓學生掌握直接開平方法的做法,通過對比學會配方法解數(shù)字系數(shù)的一元二次方程
2情感目標:滲透轉化思想,掌握一些轉化技能
重點:直接開平方法,簡單的配方法
難點:配方,把一元二次方程轉化為形如(x-a)2=b的過程
因式分解法解一元二次方程教學反思篇四
閃光之處:
以回顧上節(jié)所學的配方法解一元二次方程的步驟,自然而然的引入如何利用配方法解一元二次方程一般式,從而產生一元二次方程根的幾種情況,并在不同情況下求出相應的根。學生很容易投入到新課的探究中來,課堂整體非常流暢,絕大部分學生接受效果非常好!
本節(jié)公式法主要就是要掌握公式,所以在講解例題時,特別注重書寫格式,要求做每道題時都要把公式書寫一遍,用以加強對公式的記憶。實質上,公式熟練以后,完全可以直接將a,b,c的值代入公式,但是對初學者來說,公式還記不熟,而有些學生就會自己編公式,這樣就沒有達到教學的目的,所以應硬性要求學生每次在解題過程中都把公式寫一遍,以加強記憶,避免代入公式出錯。從課后作業(yè)和試卷中可以看到,在公式記憶上,的確起到了非常好的效果。
敗筆之處:練習時間短,學生做題速度慢,沒能將課后6道計算題都展現(xiàn)出來并講評改錯,只能在課后和后面的習題聯(lián)系中來補充提高了。
再教設計:在做練習時,控制好時間,先給學生一點時間獨立完成,在整體完成一多半的時候,再找個別同學板書展示自己的解題過程,這樣既避免有個別同學偷懶等別人答案的情況,又節(jié)省了不必要的時間,不要等大家都做完了再叫學生板書,這樣可以節(jié)約點時間,最后老師和學生給出評價,利于同學們改錯完善自己的過程,爭取課堂的有效環(huán)節(jié)!
因式分解法解一元二次方程教學反思篇五
通過本節(jié)課的教學,使我真正認識到了自己課堂教學的成功與失敗。對我今后課堂教學有了一定引領方向有了很大的幫助。下面我就談談自己對這節(jié)課的反思。
本節(jié)課的重點主要有以下3點:
1、找出a,b,c的相應的數(shù)值
2、驗判別式是否大于等于0
3、當判別式的數(shù)值符合條件,可以利用公式求根。
在講解過程中,我沒讓學生進行(1)(2)步就直接用公式求根,第一次接觸求根公式,學生可以說非常陌生,由于過高估計學生的能力,結果出現(xiàn)錯誤較多。主要問題有:
1、a,b,c的符號問題出錯,在方程中學生往往在找某個項的系數(shù)時總是丟掉前面的符號。
2、求根公式本身就很難,形式復雜,代入數(shù)值后出錯很多。
3、板書不太理想。板書可以說在課堂教學也起關鍵作用,它可以幫學生溫習本課的內容,而我許多本該板書的內容全部反映在大屏幕上,在繼續(xù)講一下個內容時,這些內容也就不會再出現(xiàn),只給學生瞬間的停留,這樣做也欠妥當。
4、本節(jié)課沒有激情,學習的積極性調動不起來,對學生的鼓勵性語言過少,可以說幾乎沒有。
通過以上的反思,在以后的教學中對自己存在的優(yōu)點我會繼續(xù)保持,針對不足我將會不斷地改進,使自己的課堂教學逐步走上一個新的臺階
因式分解法解一元二次方程教學反思篇六
終于是第二次拿著自己準備的課件再次走上了期許已久的三尺講臺。周二的第五節(jié)課雖然只有短短是35分鐘,但是這卻是自我感覺最好的一堂課——《配方法講一元二次方程》。這是一元二次方程解法的第二課時,其實總的內容并不是很多,而且對于初中課堂來說課堂的重點是老師的講解和學生的練習要相互結合,最好能讓學生在完成自學檢測的過程中總結出方法,熟練用配方法解一元二次方程的一般步驟。盡可能讓同學在經歷配方法的探索中培養(yǎng)學生的動手解決問題的能力,理解解方程中的程序化,體會化歸思想。 在整節(jié)課的實際和進行的過程中,我比較滿意的是以下幾個方面:
一、這節(jié)課基本是按“1:1有效教學模式”來進行的;在時間方面,這節(jié)課保證了學生有足夠的時間進行練習。自從我觀摩了西南大學附屬中學的翻轉課堂以來,從這里面得到了一個道理:只有放心徹底把時間還給學生,學生的自主能動性才能得到充分的發(fā)展。因為學習始終是學生自主的行為,如果學生的自主性得不到發(fā)展,學生一直是被動地學習,他們不積極,老師在課堂上很累。但在這節(jié)課中重點是學生練習,總結方法和規(guī)律;很多東西雖然掌握的層次不同,但都是他們真正掌握的知識。
二、課時內容中對用配方法解一元二次方程的一般步驟總結的比較到位,學生在解題時,ppt上的例題解題過程都會保留在屏幕上,所以可以很好地對照,使他們感覺解決這樣的問題是很容易的。從二次項系數(shù)是1的類型過度到二次項系數(shù)是2的方程求解,運用矛盾激發(fā)學生思考遇到二次項系數(shù)是2的方程要先將二次項系數(shù)化1 。
但是通過這節(jié)課,我也發(fā)現(xiàn)了我在課堂教學中的一切不足,例如,面對學生,我的教學語言中存在很多問題,題目設計不但要精,還要具有針對性,讓學生不做無用功,而又要把所有的知識點通過題目深刻理解。
一節(jié)課或幾節(jié)課或許對我的教學沒有多大的幫助,但是只要我能夠在教學中不斷的摸索,不斷地尋找不足,改進不足,我相信一切都會不斷變好的。感恩!
因式分解法解一元二次方程教學反思篇七
通過本節(jié)課的教學,我發(fā)現(xiàn):配方法不僅是解一元二次方程的方法之一,而且它還可作為其它許多數(shù)學問題的一種研究思想,其發(fā)揮的作用和意義十分重要。從學生的學習情況來看,效果普遍良好,且已基本掌握了這種數(shù)學方法,從本節(jié)課的具體教學過程來分析,我有以下幾點體會和認識。
1、學生對這塊知識的理解很好,在講解時,我通過引例總結了配方法的具體步驟,即:
①化二次項系數(shù)為1;②移常數(shù)項到方程右邊;③方程兩邊同時加上一次項系數(shù)一半的平方;④化方程左邊為完全平方式;⑤(若方程右邊為非負數(shù))利用直接開平方法解得方程的根。如上讓學生來掌握配方法,理解起來也很容易,然后再加以練習鞏固。
2、在講解過程中,我提示學生,配方法是不是可以解決“任何一個”一元二次方程呢?若不能,如何來確定它的“適用范圍”?多數(shù)學生迅速開動腦筋并發(fā)現(xiàn)“配方法”能簡便解決一部分“特殊方程”,而例如x2+2x=0,4x2+4x+1=0,2y2-3y+1=0這些方程用“配方法”的話就相當麻煩,不如用“求根公式”或“因式分解”來解簡單,由此,我抓住這個契機向學生引申:解決一個問題的途徑可能有多種思路,但為了提高學習效率,我們盡量選擇一個簡便易行的方案,這也是解決數(shù)學問題的一種必備思想。(這種說法也提示學生注意解一元二次方程每種方法的特點和適用環(huán)境)。
3、當然在這一塊知識的教學過程中,學生也出現(xiàn)了個別錯誤,表現(xiàn)在:①二次項系數(shù)沒有化為1就盲目配方;②不能給方程“兩邊”同時配方;③配方之后,右邊是0,結果方程根書寫成x=的形式(應為x1=x2=);④所給方程的未知字母有時不是x,而是y、z、a、m等,但個別粗心甚至細心的同學在結果寫方程根時字母都變成了x,對于以上錯誤,我在最后的知識小結中,又重點強調了配方法的一般步驟,并說明其中關鍵的一步是第③步,必須依據(jù)等式的基本性質給方程兩邊同時加常數(shù)。
4、對于基礎較差的少數(shù)學生我只要求認真理解并鞏固“配方法”;對于基礎較好的同學根據(jù)他們的課堂反應,我還在知識拓寬方面加以提示:因為完全平方式的值定是非負數(shù),故若在說明某一多項式是否為非負數(shù)時,可采用配方法來證,這樣對有些善于鉆研思考的同學來說,在有關配方法的應用和探究方面,為之起到“拋磚引玉”的作用,也為后期部分知識的教學作了一定的鋪墊。
5、在我本節(jié)課的教學當中,也有如下不妥之處:①對不同層次的學生要求程度不適當;②在提示和啟發(fā)上有些過度;③為學生提供的思考問題時間較少,導致部分學生對本節(jié)知識“囫圇吞棗”,而最終“消化不良”,在以后的課堂教學中,我會力爭克服以上不足。
因式分解法解一元二次方程教學反思篇八
1、知識與能力:理解配方法,會利用配方法以一元二次式進行配方。通過對比、轉化,總結得出配方法的一般過程,提高分析能力。通過對一元二次方程二次項系數(shù)是否為1的分類處理,鍛煉學生的抽象概括能力。
2、過程與方法:會用配方法解簡單的數(shù)學系數(shù)的一元二次方程。發(fā)現(xiàn)不同方程的轉化方式,運用已有知識解決新問題。
3、情感態(tài)度價值觀:通過配方法的探究活動,培養(yǎng)學生勇于探索的良好學習習慣。感覺數(shù)學的嚴謹性以及數(shù)學結論的確定性。
1、重點---會利用配方法熟練解一元二次方程。
2、難點---對于二次項系數(shù)不為1的一元二次方程通過系數(shù)化1進行適當變形后再利用配方法求解。
(一)活動1:提出問題
要使一塊長方形場地的長比寬多6m,并且面積為16m2,場地的長和寬各是多少?設計意圖:讓學生在解決實際問題中學習一元二次方程的解法。
師生行為:教師引導學生回顧列方程解決實際問題的基本思路,學生討論分析。
(二)活動2:溫故知新
1.填上適當?shù)臄?shù),使下列各式成立,并總結其中的規(guī)律。(1)x+ 6x+ =(x +3 ) (2) x+8x+ =(x+ )(3)x2-12x+ =(x- )2 (4) x2- 5x+ =(x- )2 (5)a2+2ab+ =(a+ )2 (6)a2-2ab+ =(a- )2 2.用直接開平方法解方程:x2+6x+9=2設計意圖:第一題為口答題,復習完全平方公式,旨在引出配方法,培養(yǎng)學生探究的興趣。
1
222
用心
愛心
專心(三)活動2:自主學習
自學課本p31---p32思考下列問題:
1.仔細觀察教材問題2,所列出的方程x2+6x-16=0利用直接開平方法能解嗎?2.怎樣解方程x2+6x-16=0?看教材框圖,能理解框圖中的每一步嗎?(同學之間可以交流、師生間也可交流。)
3.討論:在框圖中第二步為什么方程兩邊加9?加其它數(shù)行嗎?4.什么叫配方法?配方法的目的是什么?5.配方的關鍵是什么?交流與點撥:
重點在第2個問題,可以互相交流框圖中的每一步,實際上也是第3個問題的討論,教師這時對框圖中重點步驟作講解,特別是兩邊加9是配方的關鍵,使之配成完全平方式。利用a2±2ab+b2=(a±b)2。
注意:9=(),而6是方程一次項系數(shù)。所以得出配方的關鍵是方程兩邊加上一次項系數(shù)一半的平方,從而配成完全平方式。
設計意圖:學生通過自學經歷思考、討論、分析的過程,最終形成把一個一元二次方程配成完全平方式形式來解方程的思想
(四)活動4:例題學習
例(教材p33例1)解下列方程:(1)x-8x+1=0 (2)2x+1=-3x (3)3x2-6x+4=0教師要選擇例題書寫解題過程,通過例題的學習讓學生仔細體會用配方法解方程的一般步驟。
交流與點撥:用配方法解一元二次方程的一般步驟:
(1)將方程化成一般形式并把二次項系數(shù)化成1;(方程兩邊都除以二次項系數(shù))(2)移項,使方程左邊只含有二次項和一次項,右邊為常數(shù)項。(3)配方,方程兩邊都加上一次項系數(shù)一半的平方。(4)原方程變?yōu)? mx+n)2=p的形式。
(5)如果右邊是非負數(shù),就可用直接開平方法求取方程的解。設計意圖:牢牢把握通過配方將原方程變?yōu)?mx+n)2=p的形式方法。
(五)課堂練習:
1.教材p34練習1(做在課本上,學生口答)2.教材p34練習2師生行為:對于第二題根據(jù)時間可以分兩組完成,學生板演,教師點評。設計意圖:通過練習加深學生用配方法解一元二次方程的方法。
1.理解配方法解方程的含義。
2.要熟練配方法的技巧,來解一元二次方程,
3.掌握配方法解一元二次方程的一般步驟,并注意每一步的易錯點。 4.配方法解一元二次方程的解題思想:“降次”由二次降為一次。
教材p42習題22.2第3題
---教后反思
通過本節(jié)課的學習,我發(fā)現(xiàn):配方法不僅是解一元二次方程的方法之一,而且它還可作為其它許多數(shù)學問題的一種研究思想,其發(fā)揮的作用和意義十分重要。從學生的學習情況來看,效果普遍良好,且已基本掌握了這種數(shù)學方法,從本節(jié)課的具體教學過程來分析,我有以下幾點體會和認識。
1:學生對這塊知識的理解很好,學生自己總結了配方法的具體步驟,即:①化二次項系數(shù)為1;②移常數(shù)項到方程右邊;③方程兩邊同時配上一次項系數(shù)一半的平方;④化方程左邊為完全平方式;⑤(若方程右邊為非負數(shù))利用直接開平方法解得方程的根。理解起來也很容易,然后再加以練習鞏固
2:教學方法上的幾點體會:①需要創(chuàng)造性地使用教材,可以根據(jù)學生的實際情況對教材內容進行適當調整。②相信學生要為學生提供充分展示自己的機會本節(jié)課多次組織學生合作交流,通過小組合作,為學生提供展示自己聰明才智的機會,并且在此過程中教師發(fā)現(xiàn)了學生在分析問題和解決問題時出現(xiàn)的獨到見解,以及思維的誤區(qū),這樣使得老師可以更好地指導今后的教學。 3:當然在這一塊知識的教學過程中,學生也出現(xiàn)了個別錯誤,表現(xiàn)在:①二次項系數(shù)沒有化為1就盲目配方;②不能給方程“兩邊”同時配方;③配方之后,右邊是0,結果方程根書寫成x=﹡的形式(應為x1=x2=﹡);④所給方程的未知字母有時不是x,而是y、z、a、m等,但個別粗心甚至細心的同學在結果寫方程根時字母都變成了x。對于以上錯誤,我在最后的知識小結中,又重點強調了配方法的一般步驟,并說明其中關鍵的一步是第③步,必須依據(jù)等式的基本性質給方程兩邊同時加常數(shù)。
4、對于基礎較差的少數(shù)學生我只要求認真理解并鞏固“配方法”;對于基礎較好的同學根據(jù)他們的課堂反應,我還在知識拓寬方面加以提示:因為完全平方式的值定是非負數(shù),故若在說明某一多項式是否為非負數(shù)時,可采用配方法來證,這樣對有些善于鉆研思考的同學來說,在有關配方法的應用和探究方面,為之起到“拋磚引玉”的作用,也為后期部分知識的教學作了一定的鋪墊。
5、在我本節(jié)課的教學當中,也有如下不妥之處:①對不同層次的學生要求程度不適當;②在提示和啟發(fā)上有些過度;③為學生提供的思考問題時間較少,導致部分學生對本節(jié)知識“囫圇吞棗”,而最終“消化不良”,在以后的課堂教學中,我會力爭克服以上不足。
因式分解法解一元二次方程教學反思篇九
利用求根公式解一元二次方程的一般步驟:
1、找出a,b,c的相應的數(shù)值
2、驗判別式是否大于等于0
3、當判別式的數(shù)值符合條件,可以利用公式求根。
在講解過程中,我讓學生直接用公式求根,第一次接觸求根公式,學生可以說非常陌生,由于過高估計學生的能力,結果出現(xiàn)錯誤較多:
1、a,b,c的符號問題出錯,在方程中學生往往在找某個項的系數(shù)時總是丟掉前面的符號
2、求根公式本身就很難,形式復雜,代入數(shù)值后出錯很多、其實在做題過程中檢驗一下判別式著一步單獨挑出來做并不麻煩,直接用公式求值也要進行,提前做著一步在到求根公式時可以把數(shù)值直接代入。在今后的教學中注意詳略得當,不該省的地方一定不能省,力求收到更好的教學效果。
因式分解法解一元二次方程教學反思篇十
新課程改革的核心目標是全面推進以培養(yǎng)創(chuàng)新精神和實踐能力為重點的素質教育,培養(yǎng)21世紀所需的創(chuàng)新人才,這就要求在教學過程中既重視基礎知識、基本技能的教育,又要重視創(chuàng)新精神和實踐能力以及良好道德情操的培養(yǎng)。因此教學結構采用“以學生為主體—以教師為主導”的教學結構。通過對教學內容、學習活動等的設計,使學生在學習過程中既有很大的自主權,又能保證其學習不會發(fā)生質的偏離,能在適當?shù)臅r候得到教師或伙伴的指導。學生處于這種開放式的學習環(huán)境是有程度限制的,這節(jié)課的教學過程中雖然在每一個小的學習環(huán)節(jié)都是采取的學生自主學習的方式。
但從整來教學的主導性太強,學習一直被老師牽著鼻子走。對一些思維速度的學習是可行的,而對于一些反應速度慢的學生來說跟著吃力,很快就失去學習的積極性。因此教師還要再放一把,給學生更廣闊的思維空間。尤其是在環(huán)節(jié)的銜接過程,由學生思考下一步要做什么。學生是完全能夠做到的,因為在復習時已把解決實際問題的一般過程復習了。
在教學過程中雖然以學生為主體,以自學為主。但是其積極主動性在某些同學來說還是不高的。對知識的獲得的成就感也沒有表現(xiàn)得那么明顯。對于知識的廣度和深度也沒有舉一反三的效果展示,更何況創(chuàng)新思維的培養(yǎng)。例如應在例題完成時,根據(jù)老師提出可以用設速度的方法為例,同學們還有什么方法?這樣就起到了點睛的作用,為學生思維的開發(fā)提供了一個空間。只是重視了知識的鞏固和運用,和解決問題的訓練。雖說在總結時進行了思想教育,也沒有見其明顯的反饋。培養(yǎng)學生合作的小組學習不免有些形式化。因為在小組協(xié)作時都屬于自我陳述,無合作解題的意向。
教師在教學過程中處于主導地位應關注學生分析,解決解決能力的培養(yǎng);應關注學生交流協(xié)作表達能力的培養(yǎng),應關注學生創(chuàng)新意識、能力的培養(yǎng)。從這些方面本節(jié)課教學過程中都表現(xiàn)的不足。還應提高在這方面的設計。還應提高駕馭課堂能力。
教學方法單一。幾乎都是教師提問學生回答的形式。使整個課堂的也十分音調。學生的自主學習,探究學習,協(xié)作學習效果也不是很好。
教師的語言,在教學過程中教師的語言的地位是非常重要的,直接影響教學效果的成敗。每一次出公開課都是一個鍛煉學習的機會,從中能找到自己的一些缺點和不足。如在教學過程中由于語速過快而出現(xiàn)吐字不清的現(xiàn)象,口誤出現(xiàn)頻率也很高。語言表達能力還需要不斷的鍛煉。
培養(yǎng)學生的分析和解決問題能力,雖然不是一朝一夕的事情,但是必須重視每一次機會。特別提出的是王亮這名同學。這是一個比較特殊的學生,他的計算能力非常之強,速度非常之快,全班第一。記憶力也如此。而分析能力和解決問題能力就反過來了。舉個例子,三角形的兩個直角邊是9厘米,三角形的面積是10平方厘米。如果設其中一個為x,那么另一個直角邊可以表示為什么?這樣的分析題都不能完成。他這種情況主要是沒有掌握分析方法。因此每到一些簡單的分析題時都要求他獨立完成。在這節(jié)課上又出現(xiàn)了所問非所答的情況問“跳水運動員跳到最高點時的速度是多少?”而他回答的卻是平均速度。顯然他平時不認真分析老師說的話或應用題的題意。只有從平時,從基礎抓起。不放過一次機會。
還有一點值得提出的是教學過程中一定及時糾正學生的錯誤。在這堂中有多處學生的錯誤沒有得到老師的糾正。如:在計算過程中,最大數(shù)加上最小數(shù)的和除以2或可以說(最大數(shù)+最小數(shù))/2。學生沒有加括號,也沒有說“的和”都是錯誤的,要及時加以糾正。
基本完成了基本知識和基本技能的學習目標,也對學生進行了情感教育,但是創(chuàng)新思維的培養(yǎng)沒有體現(xiàn)出來。從始至終,學生都是有理有據(jù)的回答老師的提問。在總結分析時,教師只提到了有多種做法,學生可能是一頭霧水。很可惜的失去了一次對學生創(chuàng)新思維培養(yǎng)的機會。
教學的主動權牢牢的抓在教師的手里。更要重視教學環(huán)節(jié)的靈活性。這樣才有可能抓住學生的思維的火花,深入探究。推動學生思考的深度和廣度,培養(yǎng)學生的創(chuàng)新能力。
教學中一定從學生的實際出發(fā),學生特征涉及到智力因素和非智力因素。根據(jù)不同的情況在一節(jié)課學完之后,每一個同學都有其不同的收獲。這一點做得很不好,很明顯只有三個學生能積極的主動學習,不斷解答老師的提問,而另三個同學雖然有特殊原因,但在教學過程中
因式分解法解一元二次方程教學反思篇十一
通過本節(jié)課的教學發(fā)現(xiàn)也存在著一些問題:其一,完全平方式寫錯。把兩數(shù)差的平方寫成了兩數(shù)和得平方。其二,非負數(shù)的平方根求錯,或二次根式未化成最簡二次根式。其三,一項未變號。其四,少數(shù)同學配方時左邊加了一次項系數(shù)一半的平方,但右邊忘記加。針對上面各種情況教師利用課余時間對存在問題的學生逐個講解。
教師方面也存在著要加強的地方:
1、教師普通話有待提高;
2、講授有時語速過快,聲音較大;
3、有的知識重復次數(shù)太多;
4、學生自己動手練習時間偏少。
因式分解法解一元二次方程教學反思篇十二
在日常生活中,許多問題都可以通過建立一元二次方程這個模型進行求解,然后回到實踐問題中進行解釋和檢驗,從而體會數(shù)學建模的思想方法,解決這類問題的關鍵是弄清實際問題中所包含的數(shù)量關系。
本節(jié)內容教材提供了與生活密切相關,且有一定思考和探究性的問題,所以在教學中我讓學生綜合已有的知識,經過自主探索和合作交流嘗試解決,提高學生的思維品質和進行探究學習的能力。主要有以下幾個成功之處:
在出示了例7后,我提示學生解決此類問題可以自己畫出草圖,分析題目中的等量關系,學生根據(jù)題意很快可以畫出圖形,然后,我讓他們找出題目中可以寫等量關系的條件,根據(jù)條件寫出文字的等量關系。在這個環(huán)節(jié)有的學生遇到了困難,于是,我就讓他們互相討論,通過討論,大部分學生可以寫出等量關系,我再讓會的學生說出理由。在這個教學過程中,學生互相學習,互相促進,輕松地學會了知識。
例7的解答還有一種更簡單的方法,我讓學生觀察圖形,在圖形上做文章,還是讓他們自主探索,討論,很快有一部分學生想到了把圖形中的道路平移到一邊的方法,這樣就把種植面積集中起來,方程就好列了。這時,我就讓學生上來講述方法。學生用自己的語言講述,這樣其他人接受起來更快一些。并且,學生還總結此類問題的解決方法——將圖形平移,在以下練習的幾道題中都能得心應手的解答了。由此可見,通過自己思考學到的知識能夠靈活應用,且掌握的好。
在這節(jié)課的教學中也存在一些不足之處,教材中在例題之前設計了一個應用,在解決這個問題上耽誤了時間,延誤了下面的教學,導致設計的練習題沒有做完,所以在下次教學時,這個應用問題只讓學生列出方程即可,不必在解答上花費時間。另外,練習設計過于單一,只涉及到了例題這種類型的練習,變式練習題少,所以,在下次教學時,要設計兩道不同題型的題目。
由這節(jié)課的教學我領悟到,數(shù)學學習是學生自己建構數(shù)學知識的活動,學生應該主動探索知識的建構者,而不是模仿者,教學應促進學生主體的主動建構,離開了學生積極主動的學習,教師講得再好,也會經常出現(xiàn)“教師講完了,學生仍不會”的現(xiàn)象。所以,在以后的教學中,我要更有意識的多給學生自主探索、合作交流的機會,更加激發(fā)學生的學習積極性,使學生在他們的最近發(fā)展區(qū)發(fā)展。
因式分解法解一元二次方程教學反思篇十三
本節(jié)共分3課時,第一課時引導學生通過轉化得到解一元二次方程的配方法,第二課時利用配方法解數(shù)字系數(shù)的一般一元二次方程,第3課時通過實際問題的解決,培養(yǎng)學生數(shù)學應用的意識和能力,同時又進一步訓練用配方法解題的技能。
在教學中最關鍵的是讓學生掌握配方,配方的對象是含有未知數(shù)的二次三項式,其理論依據(jù)是完全平方式,配方的方法是通過添項:加上一次項系數(shù)一半的平方構成完全平方式,對學生來說,要理解和掌握它,確實感到困難,因此在教學過程中及課后批改中發(fā)現(xiàn)學生出現(xiàn)以下幾個問題:
1、在利用添項來使等式左邊配成一個完全平方公式時,等式的右邊忘了加。
2、在開平方這一步驟中,學生要么只有正、沒有負的,要么右邊忘了開方。
3、當一元二次方程有二次項的系數(shù)不為1時,在添項這一步驟時,沒有將系數(shù)化為1,就直接加上一次項系數(shù)一半的平方。
因此,要糾正以上錯誤,必須讓學生多做練習、上臺表演、當場講評,才能熟練掌握。
因式分解法解一元二次方程教學反思篇十四
不足的是:1、對于字母系數(shù)的方程,因為比較抽象,學生在用配方法解比較陌生,需要過多的時間,使得本節(jié)課未能完全按計劃完成任務。
2、學生在用公式法解題時主要存在如下問題: (1)a,b,c的符號問題出錯,在方程中學生往往在找某個項的系數(shù)時總是丟掉前面的符號 。
(2)當b的值是負數(shù)時,在代入公式時,往往漏掉公式中b前面的“-”號。
(3)部分學生在實際運用中,沒有先計算b
a,b,c的相應的數(shù)值代入公式求根。
其實在做題過程中提醒學生先確認a,b,c的相應的數(shù)值準確后,再檢驗一下判別式,這是很關鍵的兩步,不要過于著急待入求值,在教學中,這一點還是需要進一步強調的。在今后的教學中注意詳略得當,不該省的地方一定不能省,力求收到更好的教學效果
回想本課的教學,雖然存在一些問題,但整節(jié)課的實施過程還算順利,學生對本課的知識掌握程度還不錯,基本上達到本課的教學目的。
【本文地址:http://mlvmservice.com/zuowen/2077825.html】