最新分數與除法教學反思簡短優(yōu)質(十二篇)

格式:DOC 上傳日期:2023-04-01 09:34:36
最新分數與除法教學反思簡短優(yōu)質(十二篇)
時間:2023-04-01 09:34:36     小編:admin

人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經的人生經歷和感悟記錄下來,也便于保存一份美好的回憶。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?下面是小編幫大家整理的優(yōu)質范文,僅供參考,大家一起來看看吧。

分數與除法教學反思簡短篇一

從分餅的問題開始引入,讓學生在解決問題的過程中,感受當商不能用整數表示時,可以用分數來表示商。本課主要從兩個層面展開,一是借助學生原有的知識,用分數的意義來解決把1個餅平均分成若干份,商用分數來表示;二是借助實物操作,理解幾個餅平均分成若干份,也可以用分數來表示商。而這兩個層面展開,均從問題解決的角度來設計的。

當用分數表示整數除法的商時,用除數作分母,用被除數作分子。反過來,一個分數也可以看作兩個數相除??梢岳斫鉃榘选?”平均分成4份,表示這樣的3份;也可以理解為把“3”平均分成4份,表示這樣的1份。也就是說,分數與除法之間的關系的理解、建立過程,實質上是與分數的意義的拓展同步的。

反思這節(jié)課,在這一過程中,我在教學之前認為分數與除法的關系很簡單,而在實際教學時發(fā)現(xiàn)并不是一個簡單的問題。因此我把重點放在例2上:3÷4=()(塊)的探究上。學生在理解的時候,還真的很難得到3÷4=()(塊),開始都猜想是,然后通過動手小組去操作,經歷驗證猜想的過程中,學生匯報中出現(xiàn)了是1/4,因為他們認為是把3餅看作單位“1”平均分成4份。每人就得了1/4……說明學生在操作中在思考了,同時也暴露出了學生在分數意義的理解上出了問題,問題在哪里呢?出在把誰看作單位“1”上,問題在對分數意義的理解上,這是難點。學生認為簡單,實際上不簡單,因此我們的教學必須重視學生的說理和交流。把重點放在3÷4=()(塊)上,我借助的是學生的動手操作,采取讓學生之間的互相交流和辯論解決了學生認識上的難點。把重點放在3÷4=()(塊)上,需要注意的是:在指導過程中,不能講得太多,講得過多,學生會越來越不清楚。

從分數與除法的關系這個內容的教學我發(fā)現(xiàn):學生的例子太少,沒有說服力,為了學生今后學習中遇到問題上該如何解決,我們必須在常規(guī)的教學中去滲透數學思想方法,授人以 “漁”。于是教學中,在學生得到了3÷4=()(塊)后,不忙于理論的總結,因為在這里學生都只是停留在表面的感性認識。根據學生不同的認知情況,安排了適當的模仿練習,感性體驗數學活動,促進學生對結果的深層次的理解。

分數與除法教學反思簡短篇二

本節(jié)課是在學生已掌握分數除法的意義,分數乘法應用題以及用方程解已知一個數的幾分之幾是多少,求這個數的文字題的基礎上進行教學的,通過教學使學生理解已知一個數的幾分之幾是多少,求這個數的應用題是求一個數的幾分之幾是多少的應用題的逆解題,從而認識到乘、除法之間的內在聯(lián)系,也突出了分數除法的意義,本課教學的重點是數量關系的分析,判斷哪個量是單位“1”,難點是用解方程的方法解答分數除法應用題.

1、使學生認識分數除法應用題的特點,能根據應用題的特點理解解題思路和解題方法,學會解答已知一個數的幾分之幾是多少求這個數的應用題。

2、進一步培養(yǎng)學生自主探索問題解決的能力和分析、推理和判斷等思維能力,提高解答應用題的能力。

分數除法應用題的特點及解題思路和解題方法。

1. 師生交流

師:同學們,你們知道在我們體內含量最好多的物質是什么嗎?(水)

對,水是我們體內含量最多的物質,它對我們人體是至關重要的,是構成我們人體組織的主要成分。那么你們了解體內水分占體重的幾分之幾嗎?

師:老師查到了一些資料,我們一起來看一下。(課件出示)

2.復習舊知

師:現(xiàn)在你們知道了吧!同學們如果告訴你們,我的體重是50千克,你們能很快算出我體內水分的質量嗎?

學生回答后說明理由。

師:算一算你們自己體內水分的質量吧!

生答

師:一兒童的體重是35千克,你們能幫他算出他體內水分的質量嗎?你們都是怎么算出來的呢?

生回答后出示:兒童的體重× 5 (4 )=兒童體內水分的重量

35× 5 (4 )=28(千克)

師:誰還能根據另一個信息寫出等量關系式?

成人的體重× 3 (2 )=成人體內的水分的重量

2. 揭示課題

師:同學們以前的知識學得可真好,如果老師告訴你們小朋友們體內有28千克水分,你們能算出他的體重嗎?這就是我們今天要來研究的分數除法應用題。

1. 課件出示例題。

2. 合作探究

師:同桌互相商量一下,要解決這個問題,數量關系是怎樣的?用自己喜歡的方式把它表示出來并解答出來。

3. 學生匯報

生1:根據數量關系式:兒童的體重× 5 (4 )=兒童體內水分的重量,再根據關系式列出方程進行解答。(師隨著學生的發(fā)言隨機出示課件)

生2:直接用算術方法解決的,知道體重的 5 (4 )是28千克,就可以直接用除法來做。

28÷ 5 (4 )=35(千克)

4. 比較算法

比較算術做法與方程做法的優(yōu)缺點?

(讓學生進行何去討論,通過比較使學生看到列方程解,思路統(tǒng)一,便于理解。)

5. 對比小結

和前面復習題進行比較一下,看看這題和復習題有什么異同?

(1) 看作單位“1”的數量相同,數量關系式相同。

(2) 復習題單位“1”的量已知,用乘法計算;

例1單位“1”的量未知, 可以用方程解答。

(3) 因為它們的數量關系式相同,所以這兩種題目的解題思路是一致的,都是先找出把哪個數量看作單位“1”,根據單位“1”是已知還是未知,再確定是用乘法解還是方程解。

6.試一試: 一條褲子的價格是75元,是一件上衣的 3 (2 )。一件上衣多少元?

問:這道題已知什么?求什么?誰和誰在比?哪個量是單位“1”?

單位“1”是已知還是未知的?

根據學生回答畫線段圖。

根據題中的數量關系找學生列出等量關系式。

學生根據等量關系式列方程解答(找學習板演,其它學生在練習本上做)。

師:這道題你還能用其它方法解答嗎?

(根據分數除法的意義,已知兩個因數的只與其中一個因數,求另一個因為用除法計算。)

1. (投影)看圖口頭列式,并用一句話概括題中的等量關系。

(1)

(2)

2.練一練:

(1)、小明體重24千克,是爸爸體重的3/8 ,爸爸體重是多少千克?

(2)、一個修路隊修一條路,第一天修了全長的 5 (2 ),正好是160米,這條路全長是多少米?

3.對比練習

(1)一條路50千米,修了 5 (2 ),修了多少千米?

(2) 一條路修了50千米,修了 5 (2 ),這條路全長是多少千米?

(3)一條路50千米,修了 5 (2 )千米,還剩多少千米?

四、全課小結暢談收獲

①今天這節(jié)課我們研究了什么問題?②解答分數除法應用題的關鍵是什么?③單位“1”是已知的用什么方法解答?單位“1”是未知的可以用什么方法解答。

教師強調:分析應用題數量關系比較復雜,因此在解答分數應用題時要注意借助線段圖來分析題中的數量關系,解答后要注意檢驗。

《國家數學課程標準》指出:“數學教學要從學生的生活經驗和已有的知識背景出發(fā),向他們提供充分的從事數學活動和交流的機會?!苯虒W一開始教師就改變由復習舊知引入新知的傳統(tǒng)做法,直接取材于學生的生活實際,用介紹該班的情況引發(fā)學生參與的積極性,使學生感到數學就在自已的身邊,在生活中學數學,讓學生學習有價值的數學。

教學中,為讓學生認識解答分數乘法應用題的關鍵是什么時,我故意不作任何說明,通過省略題中的一個已知條件,讓學生發(fā)現(xiàn)問題,親自感受應用題中數量之間的聯(lián)系,想方設法讓學生在學習過程中發(fā)現(xiàn)規(guī)律。從而讓學生真切地體會并歸納出:解答分數乘法應用題的關鍵是從題目的關鍵句找出數量之間的相等關系。

在教學中體現(xiàn)了“自主、合作、探究”的教學方式。以往分數除法應用題教學效率并不高,究其原因,主要是教師教學存在偏差。教師喜歡重關鍵詞語瑣碎地分析,喜歡用嚴密的語言進行嚴謹地邏輯推理,雖分析得頭頭是道,但容易走兩個極端,或者把學生本來已經理解的地方,仍做不必要的分析;或者把學生當作學者,對本來不可理解的,仍做深入的、細碎的剖析,這樣就浪費了寶貴的課堂時間。教學中我把分數除法應用題與引入的分數乘法應用題結合起來教學,讓學生通過討論交流對比,親自感受它們之間的異同,挖掘它們之間的內在聯(lián)系與區(qū)別,從而增強學生分析問題、解決問題的能力,省去了許多煩瑣的分析和講解。在教學中準確把握自己的地位。我想真正把自己當成了學生學習的幫助者、激勵者和課堂生活的導演,凸顯學生的主體地位,體現(xiàn)了生本主義教育思想。

在計算應用題的時候,我通過鼓勵學生對同一個問題積極尋求多種不同的解法,拓展學生思維,引導學生學會多角度分析問題,從而在解決問題的過程中培養(yǎng)學生的探究能力和創(chuàng)新精神。另外,改變以往只從例題中草草抽象概括數量關系,而讓學生死記硬背,如“是、占、比、相當于后面就是單位1”;“知1求幾用乘法,知幾求1用除法”等等的做法,充分讓學生親身實踐體驗,讓學生在探究中加深對這類應用題數量關系及解法的理解,提高能力,為學生進入更深層次的學習做好充分的準備。

教案還精心設計了練習題,通過看圖,找等量關系,鞏固了學生的分析思路;通過三類題的對比練習,使學生掌握了三類題的異同點,增強了學生的辨析能力,對于學生分析和解題起到了很好的'推動作用,使學生無論遇到什么題,都會做到:抓住特點,學而不亂。

分數與除法教學反思簡短篇三

教學分數與除法的關系時學生很是配合,仿佛早已掌握了所有知識點,對于我的提問對答如流,甚至當我給出例題÷4時,全班不假思索不屑一顧的脫口而出四分之三,而當我問出為什么時,他們甚至不愿意去思考,仿佛我問的這個"為什么"簡直就是廢話中的廢話。整個班級躁動不安,是清明假期臨的緣故吧。看著即將發(fā)怒的老師,孩子們安靜下一張張稚氣的臉望著我,眼神中帶有一絲絲驚恐。我突然想笑,這不就是兒時的自己嗎?我沉住氣笑著說:明天放假了,看大家很是興奮吧!孩子們長舒一口氣掩面而笑。我接著說:站好最后一班崗的戰(zhàn)士才是真正的好戰(zhàn)士。同學們心領會神的坐得端端正正。"授人以魚,不如授人以漁。"我接著說,"大家都知道除以4得四分之三,那除以4為什么等于四分之三呢?四分之三就相當于魚。而老師想讓你得到的是漁,你覺得呢?"果然還是聰明的孩子,輕輕一撥,大部分開始思考了,我和孩子們開始了我鋪好的探究之旅。

我叫學生拿出前準備好的三個圓,讓學生在小組內用自己喜歡的方式驗證對除以4這一結果的猜想。孩子們或靜下心仔細思考;或把自己手里的圓形折一折、剪一剪;或在本子上畫一畫、寫一寫;或同桌小聲交流自己的想法。我把想法不同的孩子叫上講臺,在黑板上畫出自己的思考過程。并讓他們一一介紹。通過學生的操作,得出兩種分法,方法(一):把三個圓一個一個分,每次得四分之一,分次,就得個四分之一,就是四分之三張餅。方法(二):把三個圓疊起,平均分成4份,得到張餅的四分之一,也是個四分之一,相當于一張餅的四分之三。不管怎樣分,都可以驗證÷4用分數四分之三表示結果。還有學生想出了方法(三):除以4得07,07化成分數也是四分之三。通過學生自主操作讓其充分理解其中的算理。

在學生初步感知分數與除法的關系時,我有意識地把例題改了一下,把塊餅平均分給個人,把4塊餅平均分給7個人,讓學生通過畫圖或說理,快速的算出它們的商。讓學生親身體會到計算兩個整數相除,除不盡或商里面有小數時就用分數表示他們的商,這樣既簡便又快捷,而且不容易出錯。

通過學生自主生成的三道算式,讓學生去發(fā)現(xiàn)除法與分數之間到底有怎樣的關系?并把自己的想法和同桌互相交流。最終學生小結出:除法中的被除數相當于分數的分子,除數相當于分數的分母,除號相當于分數線。并明確:除法是一種運算,而分數是一種數。

出示:

把三塊餅平均分給7個小朋友,每人分得這些餅的幾分之幾。

把三塊餅平均分給7個小朋友,每人分得幾分之幾塊。

讓學生觀察這兩道題目的區(qū)別,一道帶單位,一道不帶單位。第一道是根據分數的意義把單位"1"平均分成幾份,每份就是單位"1"的幾分之一,是份數與單位"1"的關系,在數學中我們稱為分率,分率不帶單位。第二題帶單位則表示的是一個具體的數量,則用總數量除以平均分的份數得到每份的具體數量,得數的單位跟被除數的單位一致。明確:分數有兩種含義,一種表示與單位1的關系即分率(不帶單位),一種則表示具體的數量(要帶單位),為以后學習分數和百分數應用題做好鋪墊。

在教學過程中,讓學生在自主參與,動手操作、觀察比較、交流匯報的基礎上去推理和概括,能達到事半功倍的效果。我一直崇尚讓學生自己去發(fā)現(xiàn),自己去總結,讓學生能學習探究問題的方法,而不是單純的教授一些解題技巧,因為我知道授生以"漁"永遠比授生以"魚"的重要的多!

分數與除法教學反思簡短篇四

今天的教學與分數意義的學習在孩子們頭腦中產生了強烈的矛盾沖突。前幾天的分數都表示誰占誰的幾分之幾(即分率),可今天求的卻是具體數量。特別是例2,雖然運用學具讓所有學生參與到知識的探索過程中,但仍舊感覺推進艱難。學生困惑點主要在以下兩方面:

1、為什么把3塊月餅看作單位“1”,平均分成4份,取其中1份不是1/4?

2、通過操作,結果明明是將單位“1”平均分成12塊,取出其中的3塊,為什么不能用3/12塊表示呢?

針對上述兩個問題,我在教學中主要采取了以下一些策略:

1、復習環(huán)節(jié)巧鋪墊。

在復習導入中增加一道用分數表示陰影部分的練習。其中一幅圖是圓的3/4,另一幅圖是圓的3/12。這樣,當學生困惑于例題3/4塊和3/12塊結果時,就能通過直觀圖,前后呼應,使學生豁然開朗。

2、審題過程藏玄機。

在教學例2請學生讀題后,首先請學生思考“3塊月餅4人平均分,每人能得到一整塊月餅嗎?”然后用語言暗示“每人分不到一塊月餅,那到底能分得一塊月餅的幾分之幾呢?請同學們用圓形紙片代替月餅,實際動手分一分,看看分得多少塊?”有了每人分不到一塊月餅的提示,又有了“到底能分得一塊月餅的幾分之幾”的暗示,學生探索的落腳點定位到了以一塊月餅為單位“1”,且初步理解了問題是求數量“塊”而非部分與整體之間的關系。

通過上述改進措施,學生理解3/4相對容易一些。

分數與除法教學反思簡短篇五

“數學教學要從學生的生活經驗和已有的知識背景出發(fā),使學生感到數學就在自已的身邊,在生活中學數學。使學生認識學習數學的重要性,提高學習數學的興趣”.分數與除法,對于小學生來說,是一個比較抽象的內容。而在小學階段數學知識之所以能被學生理解和掌握,絕不僅僅是知識演繹的結果,而是具體的模型、圖形、情景等知識相互作用的結果。所以我在設計《分數與除法》這一課時,從以下兩方面考慮:

1.以解決問題入手,感受分數的價值。

從分餅的問題開始引入,讓學生在解決問題的過程中,感受當商不能用整數表示時,可以用分數來表示商。本課主要從兩個層面展開,一是借助學生原有的知識,用分數的意義來解決把1個餅平均分成若干份,商用分數來表示;二是借助實物操作,理解幾個餅平均分成若干份,也可以用分數來表示商。而這兩個層面展開,均從問題解決的角度來設計的。

2.分數意義的拓展與除法之間關系的理解同步。

當用分數表示整數除法的商時,用除數作分母,用被除數作分子。反過來,一個分數也可以看作兩個數相除??梢岳斫鉃榘选?”平均分成4份,表示這樣的3份;也可以理解為把“3”平均分成4份,表示這樣的1份。也就是說,分數與除法之間的關系的理解、建立過程,實質上是與分數的意義的拓展同步的。

教學之后,再來反思自己的教學,發(fā)現(xiàn)就小學階段的數學知識存儲于學生腦海里的狀態(tài)而言,除了抽象性的之外,應當是抽象與具體可以轉換的數學知識。整節(jié)課教學有以下特點:

1.提供豐富的素材,經歷“數學化”過程。

分數與除法關系的理解,是以具體可感的實物、圖片為媒介,用動手操作為方式,在豐富的表象的支撐下生成數學知識,是一個不斷豐富感性積累,并逐步抽象、建模的過程。在這個過程中,關注了以下幾個方面:一是提供豐富數學學習材料,二是在充分使用這些材料的基礎上,學生逐步完善自己發(fā)現(xiàn)的結論,從文字表達、到文字表示的等式再到用字母表示,經歷從復雜到簡潔,從生活語言到數學語言的過程,也是經歷了一個具體到抽象的過程。

2.問題寓于方法,內容承載思想。

數學學習是一個問題解決的過程,方法自然就寓于其中;學習內容則承載著數學思想。也就是說,數學知識本身僅僅是我們學習數學的一方面,更為重要的是以知識為載體滲透數學思想方法。

就分數與除法而言,筆者以為如果僅僅為得出一個關系式而進行教學,僅僅是抓住了冰山一角而已。實際上,借助于這個知識載體,我們還要關注蘊藏其中的歸納、比較等思想方法,以及如何運用已有知識解決問題的方法,從而提高學生的數學素養(yǎng)。

分數與除法教學反思簡短篇六

本節(jié)課重點是理解分數與除法的關系、帶分數與假分數互化。難點還是理解除法與分數的關系,雖然在復習舊知,如:把6米的繩子平均分成兩段,每段長多少米?簡簡單單的復習為探索新知做鋪墊,可課件呈現(xiàn)課件呈現(xiàn)把一塊蛋糕平均分給2個小朋友,每人能得到幾塊蛋糕?學生把剛才復習的除法計算的知識進行遷移,很容易能用算式1÷2來計算,有的學生會直接用二分之一表示,我引導:既然都是正確,就說明可以用等于號了。

接著從課本的例子:如果有7塊蛋糕,要分給3個小朋友,每個小朋友又能得到多少呢?學生很快就能列式表示,并用分數表示結果。然后讓學生觀察兩個式子,看看分數與除法有什么關系?先讓學生同組交流討論,再全班反饋交流,學生能說出分數和除法有關系,就是說不出所以然,我只好問:這個分子和除法的什么好像相當?總算是把這些關系理清,可學生提出疑問:“能不能說分子等于被除數?”我說不行,只能用“相當”更恰當。

對于假分數化帶分數,我從上次作業(yè)的一個圖形引導,二又八分之六等于八分之二十二,完整一個單位“1”有八份,那么2個單位就是十六加上不完整的6就是22,看來分子除以分母后的商是整數部分,余數是新的分子,反過來是帶分數化假分數,可以引導學生從被除數=除數×商+余數,這樣學生就很明朗。

特別強調的是:在帶分數和假分數互化時,一定要演算,培養(yǎng)演算的習慣是學生學習中不可缺少的。

本節(jié)課遺憾的是講得太多,學生思考的時間少了,雖然學生認真聽講,但不利于學生的探究能力,值得注意。

分數與除法教學反思簡短篇七

在本次校舉行的公開課活動中,我聽了高年級劉老師的一節(jié)數學課,聽過這節(jié)課后。

一、能夠借助直觀形象的實物圖,通過動手操作、演示說明等方法,讓學生理解分數的意義;

二、小組參與的力度大,充分調動了學生學習的積極性,使學生的“手、眼、口”都得到了鍛煉。

在教學環(huán)節(jié)的設計上,學生動手操作的內容過多,使整堂課顯得羅嗦,練習的時間相對縮短了,本節(jié)課的重點內容是讓學生理解:一個餅的四分之三也就是三個餅的四分之一,這個環(huán)節(jié)結束后自然而然地就引出了“分數與除法的關系”,因前面耽誤的時間過長,致使本節(jié)課的內容沒有講完,學生沒有理解透徹,教師就急于進入下一個環(huán)節(jié)的教學。從劉老師的這節(jié)課上,我也看到了自己在教學中的不足,作為數學教師,怎樣上好一節(jié)課,怎樣讓學生切實理解所學內容?

一、有沒有把課堂還給學生?

課改風風火火進行了這么多年,而且一直提倡把課堂還給學生,讓學生做課堂的主人,教師只做引導者,可是實際的課堂教學中,教師講的多,學生說的少,完全還是過去老的教學方法,造成這種情況的原因是:1、教師恐怕學生學不會,低估了學生的能力就;2、耽誤教學進度;3、教師還沒有形成意識……

二、如何“還”?

很大一部分教師,也想把課堂還給學生,可是如何“還”?完全放手行嗎?學生不是理想化的學生,因為學生之間畢竟存在著很大的差異,不要指望他們什么都會,如果“收、還”不當,還會適得其反,只有“收、還”得當,才會事半功倍。

說起容易做起難,要做到以上兩點絕非易事,不僅需要提高教師自身的業(yè)務水平,更要深入地了解學生、鉆研教材。

分數與除法教學反思簡短篇八

:分數與除法,教材第65、66頁例1和例2

:1.使學生理解兩個整數相除的商可以用分數來表示。

2.使學生掌握分數與除法的關系。

:1.理解、歸納分數與除法的關系。

2.用除法的意義理解分數的意義。

:圓片、多媒體課件。

(一)復習

把6塊餅平均分給2個同學,每人幾塊?板書:6÷2=3(塊)

(二)導入

(2)把1塊餅平均分給2個同學,每人幾塊?板書:1÷2=0.5(塊)

(三)教學實施

1.學習教材第65 頁的例1 。

(1)如果把1塊餅平均分給3個同學,每人又該得到幾塊呢?1÷3=0.3(塊)

(2)1除以3除不盡,結果除了用循環(huán)小數,還可以用什么表示?

通過練習,激活了學生原有的知識經驗,(即兩個數相除的商有可能是整數)也有可能是小數。進而提出當1÷3得不到一個有限的小數時,又該如何表示?這一問題激發(fā)了學生探索的積極性,創(chuàng)設解決問題的情境,研究分數與除法的關系。

( 3)指名讓學生把思路告訴大家。

就是把1塊餅看成單位“1”,把單位“1”平均分成三份,表示這樣一份的數,可以用分數來表示,這一份就是塊。

老師根據學生回答。(板書:1 ÷ 3 =塊)

(4)如果取了其中的兩份,就是拿了多少塊?(塊)怎樣看出來的?

通過這樣的練習,為下面的操作打下基礎。

2.觀察上面三道算式結果得出:兩數相除,結果不僅可以用整數、小數來表示,還可以用分數來表示。引出課題:分數與除法

3.學習例2 。

( 1 )如果把3 塊餅平均分給4個同學,每人分得多少塊?(板書:3 ÷ 4)( 2 )3 ÷ 4 的計算結果用分數表示是多少?請同學們用圓片分一分。

老師:根據題意,我們可以把什么看作單位“1 " ? (把3 塊餅看作單位“1”。)把它平均分成4 份,每份是多少,你想怎樣分?請同學到投影前演示分的過程。

通過演示發(fā)現(xiàn)學生有兩種分法。

方法一:可以1個1個地分,先把1 塊餅平均分成4 份,得到4 個,3 個餅共得到12個, 平均分給4 個學生。每個學生分得3個,合在一起是塊餅。

方法二:可以把3 塊餅疊在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到塊餅,所以每人分得塊。

討論這兩種分法哪種比較簡單?(相比較而言,方法二比較簡單。)

兩種分法都強調分得了多少塊餅,讓學生初步體會了分數的另一種含義,即表示具體的數量。借助學具,深化研究。

( 3 )加深理解。(課件演示)

老師:塊餅表示什么意思:

①把3塊餅一塊一塊的分,每人每次分得塊,分了3次,共分得了3個塊,就是塊。

②把3塊餅疊在一塊分,分了一次,每人分得3塊,就是塊。

現(xiàn)在不看單位名稱,再來說說表示什么意思?( 表示把單位“1 “平均分成4 份,表示這樣3 份的數;還可以表示把3 平均分成4份,表示這樣一份的數。)

( 4 )鞏固理解

① 如果把2塊餅平均分給3個人,每人應該分得多少塊? 2÷3=(塊)

②剛才大家都是拿學具親自操作的,如果不借助學具,你能想像出5塊餅平均分給8個人,每人分多少塊嗎?(生說數理)

③從剛才的研究分析,你能直接計算7÷9的結果嗎?()

借助學具分餅、想象分的過程、拋開情境給出除法算式三個環(huán)節(jié)的呈現(xiàn)層次清楚,邏輯性強,為學生概括分數與除法的關系提供了足夠的操作經驗。

4.歸納分數與除法的關系。

( l )觀察討論。

請學生觀察1÷3 = (塊)3÷4 =(塊)討論除法和分數有怎樣的關系?

學生充分討論后,老師引導學生歸納出:可以用分數表示整數除法的商,用除數作分母,被除數作分子,除號相當于分數中的分數線。(課件出示表格)

用文字表示是:被除數÷除數=

老師講述:分數是一種數,除法是一種運算,所以確切地說,分數的分子相當于除法的被除數,分數的分母相當于除法的除數。

( 2 )思考。

在被除數÷除數=這個算式中,要注意什么問題?(除數不能是零,分數的分母也不能是零。)

( 3 )用字母表示分數與除法的關系。

老師:如果用字母a 、b 分別表示被除數和除數,那么除數與分數之間的關系怎樣表示呢?

老師依據學生的總結板書:a÷b = (b≠0)

明確:兩個整數相除,商可以用分數表示,反過來,分數能不能看作兩個整數相除?(可以,分數的分子相當于除法中的被除法,分母相當于除數。)

5.鞏固練習:

(1)口答:

①7÷13= =( )÷( ) ( )÷24= 9÷9= 0.5÷3= n÷m=(m≠0)

②1米的等于3米的( )

③把2米的繩子平均分3段,每段占全長的 ( ),每段長( )米。

解釋0.5÷3= 是可以用分數形式表示出來的,但這種分數形式平時并不常見,隨著今后的學習,大家就能把它轉化成常見的分數。

(2)明辨是非

①一堆蘋果分成10份,每份是這堆蘋果的 ( )

②1米的與3米的一樣長。( )

③一根木料平均鋸成3段,平均每鋸一次的時間是所用的總時間的。( )

④把45個作業(yè)本平均分給15個同學,每個同學分得45本的 。()(3)動腦筋想一想

①把一個4平方米的圓形花壇分成大小相同的5塊,每一塊是多少平方米?

(用分數表示)

②小明用45分鐘走了3千米,平均每分鐘走了多少千米?每千米需要多少時間?

:本節(jié)課是在學生學習了分數的產生和意義的基礎上教學的,教學分數的產生時,平均分的過程往往不能得到整數的結果,要用分數來表示,已初步涉及到分數與除法的關系;教學分數的意義時,把一個物體或一個整體平均分成若干份,也蘊涵著分數與除法的關系,但是都沒有明確提出來,在學生理解了分數的意義之后,教學分數與除法的關系,使學生初步知道兩個整數相除,不論被除數小于、等于、大于除數,都可以用分數來表示商。這樣可以加深和擴展學生對分數意義的理解,同時也為講假分數與分數的基本性質打下基礎。

1.直觀演示是學生理解分數與除法的關系的前提:由于學生在學習分數的意義時已經對把一個物體平均分比較熟悉,所以本節(jié)課教學把一張餅平均分給3個人時并沒有讓學生操作,而是計算機演示分的過程,讓學生理解1張餅的就是張。3張餅平均分給4個人,每人分多少張餅,是本節(jié)課教學的重點,也是難點。教師提供學具讓學生充分操作,體驗兩種分法的含義,重點在如何理解3張餅的就是張。把2張餅平均分給3個人,每人應該分得多少張?繼續(xù)讓學生操作,豐富對2張餅的就是張餅的理解。學生操作經驗的積累有效地突破了本節(jié)課的難點。

2.培養(yǎng)學生提出問題的意識與能力是培養(yǎng)學生創(chuàng)新精神:本節(jié)課圍繞兩種分法精心設計了具有思考性的、合乎邏輯的問題串,“逼”學生進行有序的思考,從而進一步提出有價值的問題。

3.注重了知識的系統(tǒng)性:數學知識不是孤立的,而是密切聯(lián)系的,只有把知識放在一個完整的系統(tǒng)中,學生的研究才是有意義的。比如學生在應用分數與除法的關系練習時對0.5÷3=,部分學生會覺著的=表示方法是不行的,教師解釋:這種分數形式平時并不常見,隨著今后的學習,大家就能把它轉化成常見的分數形式。

分數與除法教學反思簡短篇九

《分數與除法》是在學生學習了分數的意義基礎上進行教學的,通過這節(jié)課的教學,目的是讓學生在理解了分數的意義基礎上,從除法的角度去理解分數的意義,掌握分數與除法的關系,會用分數表示兩個數相除的商。

在講這節(jié)課之前,本來以為是很簡單的一節(jié)課,學生在理解分數與除法的關系時也一定會很容易,唯一的難點是用除法的意義理解分數的意義,我想只要借助實物圓形紙片給學生演示一下,學生就會理解了,但當我講完這節(jié)課后,才發(fā)現(xiàn)我的想法太簡單了,我把學生想象成理想化的學生了,這部分知識雖然有一部分學生理解了,但仍有一部分學生在用除法的意義理解分數還很困難。在這節(jié)課的教學中,我覺得有以下幾方面值得我去思考:

一,在學生用除法的意義理解分數的意義時, 能夠借助直觀形象的實物圖,通過動手操作、演示說明等方法,讓學生理解分數的意義,這對于小學生來說,理解起來比較容易。但由于我在教學時,疏忽了個別理解能力較差的學生,在演示說明的時候,叫的學生少,如果能多叫幾名同學演示說明,再加上教師的及時點撥,我想這部分學生在理解這一難點時,就會比較容易了。

二、學生不是理想化的學生,不要指望他們什么都會,因為學生之間畢竟存在著很大的差異。在教學“把3張餅平均分給4個同學,每個同學應分多少張餅?”時,我讓學生借助圓形紙片在小組內合作進行分割,在學生動手操作時,我才發(fā)現(xiàn)有的同學竟然不知道該怎么分,圓紙片拿在手上束手無策,只是眼巴巴地看著其他的同學分;小組的同學分完后,演示匯報時,有很多同學都知道怎么分,但說的不是很明白。在以后的備課過程中,要充分考慮學生的已有知識水平和心理認知特點。

三、小組的全員參與不夠。在小組合作進行把3張餅平均分給4個人時,有的小組合作的效果較好,但有的小組有個別同學孤立,不能很好的與人合作,我想,學生在動手操作之前,教師如果能讓小組長布置好明確的任務分工,讓每個人都有事可做,小組合作的效果就會更好了。

四、在教學設計環(huán)節(jié)上,學生動手操作的內容過多,使整堂課顯得很羅嗦,練習的時間就相對縮短了。在操作這一環(huán)節(jié)上,我設計了兩次動手操作,都是分餅問題,分餅的目的是讓學生用除法的意義理解分數的意義,學生分了兩次,但還是有的同學理解的不是很透徹,如果只讓學生分一次,把這一次的操作活動時間延長一些,匯報演示時讓每個類型的學生都有參與展示的機會,我想這樣教師就會有充足的時間在學生匯報展示的時候給予指導,使學生真正理解分數的意義。

分數與除法教學反思簡短篇十

教學分數與除法的關系時學生很是配合,仿佛早已掌握了所有知識點,對于我的提問對答如流,甚至當我給出例題3÷4時,全班不假思索不屑一顧的脫口而出四分之三,而當我問出為什么時,他們甚至不愿意去思考,仿佛我問的這個"為什么"簡直就是廢話中的廢話。整個班級躁動不安,是清明假期來臨的緣故吧??粗磳l(fā)怒的老師,孩子們安靜下來一張張稚氣的臉望著我,眼神中帶有一絲絲驚恐。我突然想笑,這不就是兒時的自己嗎?我沉住氣笑著說:明天放假了,看來大家很是興奮吧!孩子們長舒一口氣掩面而笑。我接著說:站好最后一班崗的戰(zhàn)士才是真正的好戰(zhàn)士。同學們心領會神的坐得端端正正。"授人以魚,不如授人以漁。"我接著說,"大家都知道3除以4得四分之三,那3除以4為什么等于四分之三呢?四分之三就相當于魚。而老師想讓你得到的是漁,你覺得呢?"果然還是聰明的孩子,輕輕一撥,大部分開始思考了,我和孩子們開始了我鋪好的探究之旅。

我叫學生拿出課前準備好的三個圓,讓學生在小組內用自己喜歡的方式來驗證對3除以4這一結果的猜想。孩子們或靜下心來仔細思考;或把自己手里的圓形折一折、剪一剪;或在本子上畫一畫、寫一寫;或同桌小聲交流自己的想法。我把想法不同的孩子叫上講臺,在黑板上畫出自己的思考過程。并讓他們一一介紹。通過學生的操作,得出兩種分法,方法

(一):把三個圓一個一個分,每次得四分之一,分3次,就得3個四分之一,就是四分之三張餅。方法

(二):把三個圓疊起來,平均分成4份,得到3張餅的四分之一,也是3個四分之一,相當于一張餅的四分之三。不管怎樣分,都可以驗證3÷4用分數四分之三來表示結果。還有學生想出了方法

(三):3除以4得0.75,0.75化成分數也是四分之三。通過學生自主操作讓其充分理解其中的算理。

在學生初步感知分數與除法的關系時,我有意識地把例題改了一下,把3塊餅平均分給5個人,把4塊餅平均分給7個人,讓學生通過畫圖或說理,快速的算出它們的商。讓學生親身體會到計算兩個整數相除,除不盡或商里面有小數時就用分數表示他們的商,這樣既簡便又快捷,而且不容易出錯。

通過學生自主生成的三道算式,讓學生去發(fā)現(xiàn)除法與分數之間到底有怎樣的關系?并把自己的想法和同桌互相交流。最終學生小結出:除法中的被除數相當于分數的分子,除數相當于分數的分母,除號相當于分數線。并明確:除法是一種運算,而分數是一種數。

出示:

把三塊餅平均分給7個小朋友,每人分得這些餅的幾分之幾。

把三塊餅平均分給7個小朋友,每人分得幾分之幾塊。

讓學生觀察這兩道題目的區(qū)別,一道帶單位,一道不帶單位。第一道是根據分數的意義把單位"1"平均分成幾份,每份就是單位"1"的幾分之一,是份數與單位"1"的關系,在數學中我們稱為分率,分率不帶單位。第二題帶單位則表示的是一個具體的數量,則用總數量除以平均分的份數得到每份的具體數量,得數的單位跟被除數的單位一致。明確:分數有兩種含義,一種表示與單位1 的關系即分率(不帶單位),一種則表示具體的數量(要帶單位),為以后學習分數和百分數應用題做好鋪墊。

在教學過程中,讓學生在自主參與,動手操作、觀察比較、交流匯報的基礎上去推理和概括,能達到事半功倍的效果。我一直崇尚讓學生自己去發(fā)現(xiàn),自己去總結,讓學生能學習探究問題的方法,而不是單純的教授一些解題技巧,因為我知道授生以"漁"永遠比授生以"魚"來的重要的多!

作者簡介

劉璐,中國共產黨黨員,大學本科學歷,艷梅名師工作室研修員。20xx年參加工作至今,一直擔任小學數學教學工作。多次參加教學比武,分獲市特等獎,縣特等獎,縣一等獎。數次被評為鄉(xiāng)優(yōu)秀教師,獲縣嘉獎。20xx年一師一優(yōu)課獲部級優(yōu)課。堅持用"愛"和"知識"去呵護每一位學生,期待每個課堂都能充滿"童真".

分數與除法教學反思簡短篇十一

在講分數的產生時,曾提到計算時往往不能正好得到整數的結果,常用分數來表示,這實際上已經初步涉及分數與除法的關系。教學分數的意義時,講到把一個物體或一些物體組成的一個整體平均分成若干份,也蘊涵著分數與除法的關系,但是都沒有明確的點出來,現(xiàn)在學生知道了分數的意義,再來學習分數與除法的關系,使學生初步知道兩個整數相除,只要除數不為0,不論被除數小于、等于、大于除數,也不論能否除盡,都可以用分數來表示商。這樣可以加深和擴展學生對分數意義的理解,同時也為講解假分數以及把假分數化為整數或帶分數做好了準備。

1.讀懂教材編寫意圖,準確把握每個例題的安排。在例1的教學中是根據整數除法的意義列出算式,根據分數的意義計算結果,使除法計算與分數聯(lián)系起來。在例2教學中,列式比較容易,但是計算結果相對有些難度,但是對于部分孩子來說,可以得出計算結果,但是為什么學生說不清楚,因此通過學生的動手操作,實際分一分,學生知道了其中的結果,能根據分的結果說出所表示的意義。

2.留給學生充分時間,讓學生能夠通過不同的方法在合作交流中探索出計算的結果。在操作中出現(xiàn)了以下三種方法:

(1)先把每個圓剪成4個四分之一塊,再把12個四分之一平均分給4個人,每個人得到3個四分之一塊,也就是分得四分之三塊。

(2)把三個圓摞在一起,平均分成四份剪開,得到四分之三塊。

(3)先把2個圓摞在一起,平均分成2份,剪成4個二分之一塊,分給四個人,每人得到二分之一塊,再把1個圓平均分成4份,每人得到四分之一塊,最后把二分之一和四分之一合起來,就是每人分得四分之三塊。

(4)1塊月餅平均分給4個人,每人分得四分之一塊,3塊月餅平均分給4個人,每人分得3個四分之一塊,是四分之三塊。

對于除法算式的兩層含義,個別學生還是有些混淆。

讓學生正確區(qū)分分率和實際數量的區(qū)別,以便更好的理解分數的意義。

分數與除法教學反思簡短篇十二

這節(jié)課的重點是理解分數與除法的關系,難點是用除法意義理解分數意義。讓學生通過本節(jié)課的學習,初步知道兩個整數相除,不論是被除數小于、等于、或大于除數,都可以用分數來表示商。能運用分數與除法的關系,解決一些簡單的問題。

這節(jié)課的內容還是比較簡單的。如果單純的教學它們的關系:一個分數的分子相當于除法中的被除數,分母相當于除數。學生一定學得很扎實,但是這樣一來3÷4=的算理往往被忽視。因此我把重點放在例題2,3÷4=()(塊)的探究上。

在教學中我引導學生用3張圓形紙片動手分一分,并讓學生思考把3塊餅平均分給4個小朋友可以有幾種分法。

生1: 我們先把1塊餅看作單位“1”,平均分成4份,每人先拿其中的一份,有3個圓,那就是每人有3個1/4塊是3/4塊。

生2: 把3塊餅重疊的放在一起,然后再平均分成4份,每人拿其中的一份,里面也有3個1/4是3/4塊。

讓學生通過動手操作,得出兩種不同的分法,引申出兩種含義,即1塊餅的3/4,3塊餅的1/4,通過這一過程,學生充分理解了3÷4=的算理。

在整節(jié)課中我注重讓學生主動參與學習過程,學生的主體地位得到了充分體現(xiàn),在學習活動中,發(fā)展了個性,培養(yǎng)了能力。

【本文地址:http://mlvmservice.com/zuowen/2076932.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔