最新初二數(shù)學上冊第2章知識點 八年級數(shù)學上冊第二章知識點總結三篇(匯總)

格式:DOC 上傳日期:2023-03-29 11:39:35
最新初二數(shù)學上冊第2章知識點 八年級數(shù)學上冊第二章知識點總結三篇(匯總)
時間:2023-03-29 11:39:35     小編:zdfb

總結是寫給人看的,條理不清,人們就看不下去,即使看了也不知其所以然,這樣就達不到總結的目的。相信許多人會覺得總結很難寫?以下是小編為大家收集的總結范文,僅供參考,大家一起來看看吧。

初二數(shù)學上冊第2章知識點 八年級數(shù)學上冊第二章知識點總結篇一

1、如果一個圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。我們也說這個圖形關于這條直線[成軸]對稱。

2、把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱。這條直線叫做對稱軸,折疊后重合的點是對應點,叫做對應點。

3、經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線。軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。

4、有兩邊相等的三角形叫做等腰三角形。

5、三條邊都相等的三角形叫做等邊三角形。

二、重點

1、把成軸對稱的兩個圖形看成一個整體,它就是一個軸對稱圖形。

2、把一個軸對稱圖形沿對稱軸分成兩個圖形,這兩個圖形關于這條軸對稱。

3、垂直平分線的性質:線段垂直平分線上的點與這條線段兩個端點的距離相等。

4、垂直平分線的判定:與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

5、如何做對稱軸:如果兩個圖形成軸對稱,其對稱軸就是任何一對對應點所連線段的垂直平分線。因此,我們只要找到一對再對應點,作出連接它們的線段的垂直平分線就可以得到這個圖形的對稱軸。同樣,對于軸對稱圖形,只要找到任意一組對應點所連線段的垂直平分線,就得到此圖形的對稱軸。

6、軸對稱圖形的性質:對稱軸方向和位置發(fā)生變化時,得到的圖形的方向和位置也會發(fā)生變化。由個平面圖形可以得到它關于一條直線成軸對稱的圖形,這個圖形與原圖形的形狀,大小完全相等。新圖形上的'每一點,都是原圖形上的某一點關于直線的對稱點。連接任意一對對應點的線段被對稱軸垂直平分。

7、等腰三角形的性質:等腰三角形的兩個底角相等[等邊對等角]等腰三角形的頂角平分線,底邊上的中線,底邊上的高相互重合[三線合一][等腰三角形是軸對稱圖形,底邊上的中線(,底邊上的高,頂角平分線)所在直線就是它的對稱軸。

等腰三角形兩腰上的高或中線相等。

等腰三角形兩底角平分線相等。

等腰三角形底邊上高的點到兩腰的距離之和等于底角到一腰的距離。

等腰三角形頂角平分線,底邊上的高,底邊上的中線到兩腰的距離相等。]

8、等腰三角形的判定方法:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等[等角對等邊]。

[如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形。]

9、等邊三角形的性質:等邊三角形的三個內角都相等,并且每一個角都等于60°。

10、等邊三角形的判定:等邊三角形的三個內角都相等,并且每一個角都等于60°。三個角都相等的三角形是等邊三角形。有一個角是60°的等腰三角形是等邊三角形。

11、直角三角形的性質之一:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半。

12、在一個三角形中,如果兩條邊不等,那么它們所對的角也不等,大邊所對的角較大。

三、注意

1、(x,y)關于原點對稱(-x。-y)。關于x軸對稱(x,-y)。關于y軸對稱(-x,y)

2、用坐標表示軸對稱。

初二數(shù)學上冊第2章知識點 八年級數(shù)學上冊第二章知識點總結篇二

1、實數(shù)的概念及分類

①實數(shù)的分類

②無理數(shù)

無限不循環(huán)小數(shù)叫做無理數(shù)。

在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:

開方開不盡的數(shù),如 √7 ,3 √2等;

有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如π /?+8等;

有特定結構的數(shù),如0.1010010001…等;

某些三角函數(shù)值,如sin60°等

2、實數(shù)的倒數(shù)、相反數(shù)和絕對值

①相反數(shù)

實數(shù)與它的相反數(shù)是一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應的點關于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=-b,反之亦成立。

②絕對值

在數(shù)軸上,一個數(shù)所對應的點與原點的距離,叫做該數(shù)的絕對值。|a|≥0。0的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

③倒數(shù)

如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。0沒有倒數(shù)。

④數(shù)軸

規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。

解題時要真正掌握數(shù)形結合的思想,理解實數(shù)與數(shù)軸的點是一一對應的,并能靈活運用。

⑤估算

3、平方根、算數(shù)平方根和立方根

①算術平方根

一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x就叫做a的算術平方根。特別地,0的算術平方根是0。

性質:正數(shù)和零的`算術平方根都只有一個,0的算術平方根是0。

②平方根

一般地,如果一個數(shù)x的平方等于a,即x2=a,那么這個數(shù)x就叫做a的平方根(或二次方根)。

性質:一個正數(shù)有兩個平方根,它們互為相反數(shù);零的平方根是零;負數(shù)沒有平方根。

開平方求一個數(shù)a的平方根的運算,叫做開平方。注意 √a的雙重非負性:√a≥0 ; a≥0

③立方根

一般地,如果一個數(shù)x的立方等于a,即x3=a,那么這個數(shù)x就叫做a 的立方根(或三次方根)。

表示方法:記作 3 √a

性質:一個正數(shù)有一個正的立方根;一個負數(shù)有一個負的立方根;零的立方根是零。

注意:- 3 √a=3 √-a,這說明三次根號內的負號可以移到根號外面。

4、實數(shù)大小的比較

①實數(shù)比較大小

正數(shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù);

數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;

兩個負數(shù),絕對值大的反而小。

②實數(shù)大小比較的幾種常用方法

數(shù)軸比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。

求差比較:設a、b是實數(shù) a-b>0a>b; a-b=0a=b; a-b<0a<b p="" 。

<b p="" 。求商比較法:設a、b是兩正實數(shù),

<b p="" 。

絕對值比較法:設a、b是兩負實數(shù),則∣a∣>∣b∣a<b。< p="">

平方法:設a、b是兩負實數(shù),則 a2>b2a<b p="" 。

<b p="" 。

5、算術平方根有關計算(二次根式)

<b p="" 。

①含有二次根號“ √ ”;被開方數(shù)a必須是非負數(shù)。

②性質:

③運算結果若含有“ √ ”形式,必須滿足:

被開方數(shù)的因數(shù)是整數(shù),因式是整式

被開方數(shù)中不含能開得盡方的因數(shù)或因式

6、實數(shù)的運算

①六種運算:加、減、乘、除、乘方 、開方。

②實數(shù)的運算順序

先算乘方和開方,再算乘除,最后算加減,如果有括號,就先算括號里面的。

③運算律

加法交換律 a+b= b+a

加法結合律 (a+b)+c= a+( b+c )

乘法交換律 ab= ba

乘法結合律 (ab)c = a( bc )

乘法對加法的分配律 a( b+c )=ab+ac

初二數(shù)學上冊第2章知識點 八年級數(shù)學上冊第二章知識點總結篇三

一、實數(shù)的概念及分類

1、實數(shù)的分類

一是分類是:正數(shù)、負數(shù)、0;

另一種分類是:有理數(shù)、無理數(shù)

將兩種分類進行組合:負有理數(shù),負無理數(shù),0,正有理數(shù),正無理數(shù)

2、無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。

在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:

(1)開方開不盡的數(shù),如等;

(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;

(3)有特定結構的數(shù),如0.1010010001…等;

(4)某些三角函數(shù)值,如sin60o等

二、實數(shù)的倒數(shù)、相反數(shù)和絕對值

1、相反數(shù)

實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應的點關于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。

2、絕對值

在數(shù)軸上,一個數(shù)所對應的點與原點的`距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

3、倒數(shù)

如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

4、數(shù)軸

規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。

解題時要真正掌握數(shù)形結合的思想,理解實數(shù)與數(shù)軸的點是一一對應的,并能靈活運用。

【本文地址:http://mlvmservice.com/zuowen/1926948.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔