教案需要考慮學(xué)生的前期知識和能力水平,合理安排學(xué)習(xí)任務(wù)。教案的編寫需要注重知識的滲透和融會貫通。教案是指教師在備課過程中為了指導(dǎo)教學(xué)而編寫的一種詳細記錄,它可以幫助教師合理安排教學(xué)活動,確保課堂教學(xué)的高效進行。編寫教案需要考慮學(xué)生的實際情況和教材要求,注重培養(yǎng)學(xué)生的思考能力和實踐能力。那么我們該如何寫一份較為完美的教案呢?以下是小編為大家收集的教案范例,僅供參考,大家一起來看看吧。
高一數(shù)學(xué)教案數(shù)列篇一
3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的興趣.
教學(xué)重點是通項公式的認識;教學(xué)難點是對公式的靈活運用.。
用具。
方法。
研探式.
一.復(fù)習(xí)提問。
等差數(shù)列的概念是從相鄰兩項的關(guān)系加以定義的,這個關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應(yīng)用.
二.主體設(shè)計。
通項公式反映了項與項數(shù)之間的函數(shù)關(guān)系,當?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項,公差,求.”這是通項公式的簡單應(yīng)用,由學(xué)生解答后,要求每個學(xué)生出一些運用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.
1.方程思想的運用。
(1)已知等差數(shù)列中,首項,公差,則-397是該數(shù)列的第______項.
(2)已知等差數(shù)列中,首項,則公差。
(3)已知等差數(shù)列中,公差,則首項。
這一類問題先由學(xué)生解決,之后教師點評,四個量,在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.
2.基本量方法的使用。
(1)已知等差數(shù)列中,,求的值.
若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(最好請出題者、解題者概括):因為已知條件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.
教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個條件可得到關(guān)于和的二元方程,這是一個和的制約關(guān)系,從這個關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).
類似的還有。
(4)已知等差數(shù)列中,求的值.
以上屬于對數(shù)列的項進行定量的研究,有無定性的判斷?引出。
4.研究項的符號。
這是為研究等差數(shù)列前項和的最值所做的準備工作.可配備的題目如。
(1)已知數(shù)列的通項公式為,問數(shù)列從第幾項開始小于0?
(2)等差數(shù)列從第________項起以后每項均為負數(shù).
三.小結(jié)。
1.用方程思想認識等差數(shù)列通項公式;
四.板書設(shè)計。
1.方程思想的運用。
2.基本量方法的使用。
4.研究項的符號。
高一數(shù)學(xué)教案數(shù)列篇二
所謂三維目標是是指:“知識與技能”,“過程和方法”、“情感、態(tài)度、價值觀”。
知識與技能:既是課堂教學(xué)的出發(fā)點,又是課堂教學(xué)的歸宿。我們在教學(xué)過程中,需要學(xué)生掌握什么,哪些些問題需要重點掌握,哪些只需簡單理解;技能是會與不會的問題。屬顯性范疇,具有可測性,大都采用定量分析與評價、知識與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國傳統(tǒng)教育教學(xué)的優(yōu)勢,應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚。新課改不是不要雙基,而是不要過度的強調(diào)雙基,而舍棄弱化其它有價值的東西,導(dǎo)致非全面、不和藹的發(fā)展。
過程與方法:既是課堂教學(xué)的目標之一,又是課堂教學(xué)的操作系統(tǒng)。“過程和方法”維度的目標立足于讓學(xué)生會學(xué),新課程倡導(dǎo)對學(xué)與教的過程的體驗、方法的選擇,是在知識與能力目標基礎(chǔ)上對教學(xué)目標的進一步開發(fā)。過程與方法是一個體驗的過程、發(fā)現(xiàn)的過程,不但可以讓學(xué)生體驗到科學(xué)發(fā)展的過程,我們更多地要讓學(xué)生掌握過程,不一定要統(tǒng)一的結(jié)果。
情感、態(tài)度與價值觀:既是課堂教學(xué)的目標之一,又是課堂教學(xué)的動力系統(tǒng)?!扒楦小B(tài)度和價值觀”,目標立足于讓學(xué)生樂學(xué),新課程倡導(dǎo)對學(xué)與教的情感體驗、態(tài)度形成、價值觀的體現(xiàn),是在知識與能力、過程與方法目標基礎(chǔ)上對教學(xué)目標深層次的開拓,只有學(xué)生充分的認識到他們肩負的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來回報社會。
三維目標不是三個目標,也不是三種目標,是一個問題的三個方面。三維目標是三位一體不可分割的,他們是相輔相成的,相互促進的。
高一數(shù)學(xué)教案數(shù)列篇三
在具體的問題情境中,發(fā)現(xiàn)數(shù)列的`等比關(guān)系,能用有關(guān)知識解決相應(yīng)問題。
等比數(shù)列的前n項和的公式及應(yīng)用。
等比數(shù)列的前n項和公式的推導(dǎo)過程。
一、復(fù)習(xí)準備:
提問:等比數(shù)列的通項公式;
等比數(shù)列的性質(zhì);
等差數(shù)列的前n項和公式;
二、講授新課:
1、教學(xué):
思考:一個細胞每分鐘就變成兩個,那么經(jīng)過一個小時,它會分裂成多少個細胞呢?
分析:公比,因為,一個小時有60分鐘。
思考:那么經(jīng)過一個小時,一共有多少個細胞呢?
又因為。
所以,則=1152921504。
則一個小時一共有1152921504個細胞。
2、練習(xí):
列1(解略)。
列2(解略)。
在等比數(shù)列中:已知求已知求。
在等比數(shù)列中,xx,則xx。
三、小結(jié):等比數(shù)列的前n項和公式。
四、作業(yè):p66,1題。
高一數(shù)學(xué)教案數(shù)列篇四
(6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.。
重點是判斷復(fù)合命題真假的方法;難點是對“或”的含義的理解.。
1.新課導(dǎo)入。
初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個命題的例子.(板書:命題.)。
(從初中接觸過的“命題”入手,提出問題,進而學(xué)習(xí)邏輯的有關(guān)知識.)。
學(xué)生舉例:平行四邊形的對角線互相平.……(1)。
兩直線平行,同位角相等.…………(2)。
教師提問:“……相等的角是對頂角”是不是命題?……(3)。
(同學(xué)議論結(jié)果,答案是肯定的.)。
教師提問:什么是命題?
(學(xué)生進行回憶、思考.)。
概念總結(jié):對一件事情作出了判斷的語句叫做命題.。
(教師肯定了同學(xué)的回答,并作板書.)。
(教師利用投影片,和學(xué)生討論以下問題.)。
例1判斷以下各語句是不是命題,若是,判斷其真假:
2.講授新課。
(片刻后請同學(xué)舉手回答,一共講了四個問題.師生一道歸納如下.)。
(1)什么叫做命題?
可以判斷真假的語句叫做命題.。
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.。
命題可分為簡單命題和復(fù)合命題.。
(4)命題的表示:用p,q,r,s,……來表示.。
(教師根據(jù)學(xué)生回答的情況作補充和強調(diào),特別是對復(fù)合命題的概念作出分析和展開.)。
對于給出“若p則q”形式的復(fù)合命題,應(yīng)能找到條件p和結(jié)論q.。
3.鞏固新課。
(1)5;
(2)0.5非整數(shù);
(3)內(nèi)錯角相等,兩直線平行;
(4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
(6)若ab=0,則a=0.。
(讓學(xué)生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補充.)。
高一數(shù)學(xué)教案數(shù)列篇五
高中數(shù)學(xué)學(xué)習(xí)是中學(xué)階段承前啟后的關(guān)鍵時期,不少學(xué)生升入高中后,能否適應(yīng)高中數(shù)學(xué)的學(xué)習(xí),是擺在高中新生面前的一個亟待解決的問題,除了學(xué)習(xí)環(huán)境、教學(xué)內(nèi)容和教學(xué)因素等外部因素外,同學(xué)們應(yīng)該轉(zhuǎn)變觀念、提高認識和改進學(xué)法,本文就此問題談點看法。
1、認識高中數(shù)學(xué)的特點。
高中數(shù)學(xué)是初中數(shù)學(xué)的提高和深化,初中數(shù)學(xué)在教材表達上采用形象通俗的語言,研究對象多是常量,側(cè)重于定量計算和形象思維,而高中數(shù)學(xué)語言表達抽象.
2、要提高自我調(diào)控的“適教”能力。
一般來說,教師經(jīng)過一段時間的教學(xué)實踐后,因自身對教學(xué)過程的不同理解和知識結(jié)構(gòu)、思維特點、個性傾向、能力品質(zhì)、教學(xué)觀念、職業(yè)經(jīng)歷等原因,在教學(xué)方式、方法、策略的采用上表現(xiàn)出一定的傾向性,形成自己獨特的、鮮明的、一貫的教學(xué)風(fēng)格或特點。作為一名學(xué)生,讓老師去適應(yīng)自己顯然不現(xiàn)實,我們應(yīng)該根據(jù)教的特點,從適應(yīng)教的目的出發(fā),立足于自身的實際,優(yōu)化學(xué)習(xí)策略,調(diào)控自己的學(xué)習(xí)行為,使自己的學(xué)法逐步適應(yīng)老師的教法,從而使自己學(xué)得好、學(xué)得快。
3、正確對待學(xué)習(xí)中遇到的新困難和新問題。
在開始學(xué)習(xí)高中數(shù)學(xué)的過程中,肯定會遇到不少困難和問題,同學(xué)們要有克服困難的勇氣和信心,勝不驕,敗不餒,有一種“初生牛犢不怕虎”的精神,愈挫愈勇,千萬不能讓問題堆積,形成惡性循環(huán),而是要在老師的引導(dǎo)下,尋求解決問題的辦法,培養(yǎng)分析問題和解決問題的能力。
4、要將“以老師為中心”轉(zhuǎn)變?yōu)椤耙宰约簽橹黧w,老師為主導(dǎo)”的學(xué)習(xí)模式。
數(shù)學(xué)不是靠老師教會的,而是在老師引導(dǎo)下,靠自己主動思維活動去獲取的,學(xué)習(xí)數(shù)學(xué)就是要積極主動地參與教學(xué)過程,并經(jīng)常發(fā)現(xiàn)和提出問題,而不能依著老師的慣性運轉(zhuǎn),被動地接受所學(xué)知識和方法。
5、要養(yǎng)成良好的預(yù)習(xí)習(xí)慣,提高自學(xué)能力。
課前預(yù)習(xí)而“生疑”,“帶疑”聽課而“感疑”,通過老師的點撥、講解而“悟疑”、“解疑”,從而提高課堂聽課效果。
6、要養(yǎng)成良好的審題和解題習(xí)慣,提高閱讀能力。
審題是解題的關(guān)鍵,數(shù)學(xué)題是由文字語言、符號語言和圖形語言構(gòu)成的,拿到目要“寧停三分”,“不搶一秒”,要在已有知識和解題經(jīng)驗基礎(chǔ)上,譯字逐句仔細審題,細心推敲,切忌題意不清,倉促上陣,審數(shù)學(xué)題有時須對題意逐句“翻譯”,將隱含條件轉(zhuǎn)化為明顯條件;有時需聯(lián)系題設(shè)與結(jié)論,前后呼應(yīng)挖掘構(gòu)建題設(shè)與目標的橋梁,尋找突破點,從而形成解題思路。
7、要養(yǎng)成良好的演算、驗算習(xí)慣,提高運算能力。
學(xué)習(xí)數(shù)學(xué)離不開運算,初中老師往往一步一步在黑板上演算,因時間有限,運算量大,高中老師常把計算留給學(xué)生,這就要同學(xué)們多動腦,勤動手,不僅能筆算,而且也能口算和心算,對復(fù)雜運算,要有耐心,掌握算理,注重簡便方法。解后要反思,提高分析問題的能力。解完題目之后,要不失時機地回顧:解題過程中是如何分析聯(lián)想探索出解題途徑的?使問題獲得解決的關(guān)鍵是什么?在解決問題的過程中遇到了哪些困難?又是怎樣克服的?這樣,通過解題后的回顧與反思,就有利于發(fā)現(xiàn)解題的關(guān)鍵所在,并從中提煉出數(shù)學(xué)思想和方法,只有勤反思,才能“站得高山,看得遠,駕馭全局”,才能提高自己分析問題的能力。
8、要善于交流,提高表達能力,養(yǎng)成糾錯訂正的習(xí)慣。
在數(shù)學(xué)學(xué)習(xí)過程中,對一些典型問題,同學(xué)們應(yīng)善于合作,各抒己見,互相討論,取人之長,補己之短,也可主動與老師交流,說出自己的見解和看法,在老師的點撥中,他的思想方法會對你產(chǎn)生潛移默化的影響。因此,只有不斷交流,才能相互促進、共同發(fā)展,提高表達能力。如果固步自封,就會造成鉆牛角尖,浪費不必要的時間。
9、要勤學(xué)善思,提高創(chuàng)新能力。
“學(xué)而不思則罔,思而不學(xué)則貽”。在學(xué)習(xí)數(shù)學(xué)的過程中,要遵循認識規(guī)律,善于開動腦筋,積極主動去發(fā)現(xiàn)問題,進行獨立思考,注重新舊知識的內(nèi)在聯(lián)系,把握概念的內(nèi)涵和外延,做到一題多解,一題多變,不滿足于現(xiàn)成的思路和結(jié)論,善于從多側(cè)面、多方位思考問題,挖掘問題的實質(zhì),勇于發(fā)表自己的獨特見解。因為只有思索才能生疑解疑,只有思索才能透徹明悟。一個人如果長期處于無問題狀態(tài),就說明他思考不夠,學(xué)業(yè)也就提高不了。
10、要養(yǎng)成做筆記的習(xí)慣,提高理解力。
為了加深對內(nèi)容的理解和掌握,老師補充內(nèi)容和方法很多,如果不做筆記,一旦遺忘,無從復(fù)習(xí)鞏固,何況在做筆記和整理過程中,自己參與教學(xué)活動,加強了學(xué)習(xí)主動性和學(xué)習(xí)興趣,從而提高了自己的理解力,也養(yǎng)成歸納總結(jié)的習(xí)慣。
總之,要養(yǎng)成良好的學(xué)習(xí)習(xí)慣,勤奮的學(xué)習(xí)態(tài)度,科學(xué)的學(xué)習(xí)方法,充分發(fā)揮自身的主體作用,不僅學(xué)會,而且會學(xué),只有這樣,才能取得事半功倍之效。
高一數(shù)學(xué)教案數(shù)列篇六
教學(xué)重點:理解等比數(shù)列的概念,認識等比數(shù)列是反映自然規(guī)律的重要數(shù)列模型之一,探索并掌握等比數(shù)列的通項公式。
教學(xué)難點:遇到具體問題時,抽象出數(shù)列的模型和數(shù)列的等比關(guān)系,并能用有關(guān)知識解決相應(yīng)問題。
教學(xué)過程:
1.等差數(shù)列的通項公式。
2.等差數(shù)列的前n項和公式。
引入:1“一尺之棰,日取其半,萬世不竭?!?/p>
2細胞分裂模型。
3計算機病毒的傳播。
由學(xué)生通過類比,歸納,猜想,發(fā)現(xiàn)等比數(shù)列的特點。
進而讓學(xué)生通過用遞推公式描述等比數(shù)列。
讓學(xué)生回憶用不完全歸納法得到等差數(shù)列的通項公式的過程然后類比等比數(shù)列的通項公式。
注意:1公比q是任意一個常數(shù),不僅可以是正數(shù)也可以是負數(shù)。
2當首項等于0時,數(shù)列都是0。當公比為0時,數(shù)列也都是0。
所以首項和公比都不可以是0。
3當公比q=1時,數(shù)列是怎么樣的,當公比q大于1,公比q小于1時數(shù)列是怎么樣的?
4以及等比數(shù)列和指數(shù)函數(shù)的關(guān)系。
5是后一項比前一項。
列:1,2,(略)。
小結(jié):等比數(shù)列的通項公式。
1.教材p59練習(xí)1,2,3,題。
2.作業(yè):p60習(xí)題1,4。
第二課時5.2.4等比數(shù)列(二)。
提問:等差數(shù)列的通項公式。
等比數(shù)列的通項公式。
1.討論:如果是等差列的三項滿足。
由學(xué)生給出如果是等比數(shù)列滿足。
2練習(xí):如果等比數(shù)列=4,=16,=?(學(xué)生口答)。
如果等比數(shù)列=4,=16,=?(學(xué)生口答)。
3等比中項:如果等比數(shù)列。那么,
則叫做等比數(shù)列的等比中項(教師給出)。
4思考:是否成立呢?成立嗎?
成立嗎?
又學(xué)生找到其間的規(guī)律,并對比記憶如果等差列,
5思考:如果是兩個等比數(shù)列,那么是等比數(shù)列嗎?
如果是為什么?是等比數(shù)列嗎?引導(dǎo)學(xué)生證明。
6思考:在等比數(shù)列里,如果成立嗎?
如果是為什么?由學(xué)生給出證明過程。
列3:一個等比數(shù)列的第3項和第4項分別是12和18,求它的第1項和第2項。
解(略)。
列4:略:
練習(xí):1在等比數(shù)列,已知那么。
2p61a組8。
高一數(shù)學(xué)教案數(shù)列篇七
(2)求數(shù)列的前10項的和。例7已知數(shù)列滿足,,.
(1)求證:數(shù)列是等比數(shù)列;
(2)求的表達式和的表達式。
作業(yè):
1.已知同號,則是成等比數(shù)列的。
(a)充分而不必要條件(b)必要而不充分條件。
(c)充要條件(d)既不充分而也不必要條件。
2.如果和是兩個等差數(shù)列,其中,那么等于。
(a)(b)(c)3(d)。
3.若某等比數(shù)列中,前7項和為48,前14項和為60,則前21項和為。
(a)180(b)108(c)75(d)63。
4.已知數(shù)列,對所有,其前項的積為,求的值,
5.已知為等差數(shù)列,前10項的和為,前100項的和為,求前110項的和。
6.等差數(shù)列中,,,依次抽出這個數(shù)列的第項,組成數(shù)列,求數(shù)列的通項公式和前項和公式。
7.&nbs…p;已知數(shù)列,,
(1)求通項公式;
(2)若,求數(shù)列的最小項的值;
(3)數(shù)列的前項和為,求數(shù)列前項的和.
8.三數(shù)成等比數(shù)列,若第二個數(shù)加4就成等差數(shù)列,再把這個等差數(shù)列的第三個數(shù)加上32又成等比數(shù)列,求這三個數(shù)。
高一數(shù)學(xué)教案數(shù)列篇八
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米。
30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了。還記得國王的承諾嗎?第31個格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應(yīng)是粒,用計算器算一下吧(用對數(shù)算也行)。
高一數(shù)學(xué)教案數(shù)列篇九
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標方向線的夾角;
(3)方向角:常見的`如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
一、知識歸納
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構(gòu)造三角形
四)測量角度問題
例4、在一個特定時段內(nèi),以點e為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點e正北55海里處有一個雷達觀測站a.某時刻測得一艘勻速直線行駛的船只位于點a北偏東。
高一數(shù)學(xué)教案數(shù)列篇十
1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個角度認識單調(diào)性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.
2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗,培養(yǎng)樂于求索的精神,形成科學(xué),嚴謹?shù)难芯繎B(tài)度.
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
(1)本節(jié)教學(xué)的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與認識.教學(xué)的難點是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點.
(1)函數(shù)單調(diào)性概念引入時,可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性認識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結(jié)合起來.
(2)函數(shù)單調(diào)性證明的步驟是嚴格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學(xué)生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標為選題的標準,以便幫助學(xué)生總結(jié)規(guī)律.
函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達式寫出來.經(jīng)歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數(shù)多個等式,是個恒等式.關(guān)于定義域關(guān)于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象說明定義域關(guān)于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
高一數(shù)學(xué)教案數(shù)列篇十一
1、掌握等比數(shù)列前項和公式,并能運用公式解決簡單的問題。
(1)理解公式的推導(dǎo)過程,體會轉(zhuǎn)化的思想;
2、通過公式的靈活運用,進一步滲透方程的思想、分類討論的思想、等價轉(zhuǎn)化的思想。
3、通過公式推導(dǎo)的教學(xué),對學(xué)生進行思維的嚴謹性的訓(xùn)練,培養(yǎng)他們實事求是的科學(xué)態(tài)度。
(1)知識結(jié)構(gòu)。
先用錯位相減法推出等比數(shù)列前項和公式,而后運用公式解決一些問題,并將通項公式與前項和公式結(jié)合解決問題,還要用錯位相減法求一些數(shù)列的前項和。
(2)重點、難點分析。
是等比數(shù)列前項和公式的推導(dǎo)與應(yīng)用。公式的推導(dǎo)中蘊含了豐富的數(shù)學(xué)思想、方法(如分類討論思想,錯位相減法等),這些思想方法在其他數(shù)列求和問題中多有涉及,所以對等比數(shù)列前項和公式的要求,不單是要記住公式,更重要的是掌握推導(dǎo)公式的方法。等比數(shù)列前項和公式是分情況討論的,在運用中要特別注意和兩種情況。
(1)本節(jié)內(nèi)容分為兩課時,一節(jié)為等比數(shù)列前項和公式的推導(dǎo)與應(yīng)用,一節(jié)為通項公式與前項和公式的綜合運用,另外應(yīng)補充一節(jié)數(shù)列求和問題。
(2)等比數(shù)列前項和公式的推導(dǎo)是重點內(nèi)容,引導(dǎo)學(xué)生觀察實例,發(fā)現(xiàn)規(guī)律,歸納總結(jié),證明結(jié)論。
(3)等比數(shù)列前項和公式的推導(dǎo)的其他方法可以給出,提高學(xué)生學(xué)習(xí)的興趣。
(4)編擬例題時要全面,不要忽略的情況。
(5)通項公式與前項和公式的綜合運用涉及五個量,已知其中三個量可求另兩個量,但解指數(shù)方程難度大。
高一數(shù)學(xué)教案數(shù)列篇十二
(1)通過實物操作,增強學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
(1)讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實生活周圍,增強學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀四、教學(xué)思路。
1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時給予評價。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?
6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7、讓學(xué)生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關(guān)的概念及圓柱的表示。
8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、課本p8,習(xí)題1.1a組第1題。
5、棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容六、布置作業(yè)。
課本p8練習(xí)題1.1b組第1題。
課外練習(xí)課本p8習(xí)題1.1b組第2題。
高一數(shù)學(xué)教案數(shù)列篇十三
1、鞏固集合、子、交、并、補的概念、性質(zhì)和記號及它們之間的關(guān)系。
2、了解集合的運算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的`一般思想。
3、了解集合元素個數(shù)問題的討論說明。
通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法。
培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維。
[教學(xué)重點、難點]:會正確應(yīng)用其概念和性質(zhì)做題[教具]:多媒體、實物投影儀。
[教學(xué)方法]:講練結(jié)合法。
[授課類型]:復(fù)習(xí)課。
[課時安排]:1課時。
[教學(xué)過程]:集合部分匯總。
本單元主要介紹了以下三個問題:
1,集合的含義與特征。
2,集合的表示與轉(zhuǎn)化。
3,集合的基本運算。
一,集合的含義與表示(含分類)。
1,具有共同特征的對象的全體,稱一個集合。
2,集合按元素的個數(shù)分為:有限集和無窮集兩類。
高一數(shù)學(xué)教案數(shù)列篇十四
§3.1.1數(shù)列、數(shù)列的通項公式目的:要求學(xué)生理解數(shù)列的概念及其幾何表示,理解什么叫數(shù)列的通項公式,給出一些數(shù)列能夠?qū)懗銎渫椆剑阎椆侥軌蚯髷?shù)列的項。
重點:1數(shù)列的概念。按一定次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做數(shù)列的項,數(shù)列的第n項an叫做數(shù)列的通項(或一般項)。由數(shù)列定義知:數(shù)列中的數(shù)是有序的,數(shù)列中的數(shù)可以重復(fù)出現(xiàn),這與數(shù)集中的數(shù)的無序性、互異性是不同的。
3.4.-1的正整數(shù)次冪:-1,1,-1,1,…。
5.無窮多個數(shù)排成一列數(shù):1,1,1,1,…。
二、提出課題:數(shù)列。
1.數(shù)列的定義:按一定次序排列的一列數(shù)(數(shù)列的有序性)。
2.名稱:項,序號,一般公式,表示法。
3.通項公式:與之間的函數(shù)關(guān)系式如數(shù)列1:數(shù)列2:數(shù)列4:
4.分類:遞增數(shù)列、遞減數(shù)列;常數(shù)列;擺動數(shù)列;有窮數(shù)列、無窮數(shù)列。
5.實質(zhì):從映射、函數(shù)的觀點看,數(shù)列可以看作是一個定義域為正整數(shù)集n-(或它的有限子集{1,2,…,n})的函數(shù),當自變量從小到大依次取值時對應(yīng)的一列函數(shù)值,通項公式即相應(yīng)的函數(shù)解析式。
6.用圖象表示:—是一群孤立的點例一(p111例一略)。
三、關(guān)于數(shù)列的通項公式1.不是每一個數(shù)列都能寫出其通項公式(如數(shù)列3)。
2.數(shù)列的通項公式不唯一如:數(shù)列4可寫成和。
3.已知通項公式可寫出數(shù)列的任一項,因此通項公式十分重要例二(p111例二)略。
五、小結(jié):1.數(shù)列的有關(guān)概念2.觀察法求數(shù)列的通項公式。
六、作業(yè):練習(xí)p112習(xí)題3.1(p114)1、2。
2.寫出下面數(shù)列的一個通項公式,使它的前4項分別是下列各數(shù):(1)1、、、;(2)、、、;(3)、、、;(4)、、、。
3.求數(shù)列1,2,2,4,3,8,4,16,5,…的一個通項公式。
6.在數(shù)列{an}中a1=2,a17=66,通項公式或序號n的一次函數(shù),求通項公式。
7.設(shè)函數(shù)(),數(shù)列{an}滿足(1)求數(shù)列{an}的通項公式;(2)判斷數(shù)列{an}的單調(diào)性。
7.(1)an=(2)1又an0,∴是遞增數(shù)列。
高一數(shù)學(xué)教案數(shù)列篇十五
【知識與技能】能夠復(fù)述等差數(shù)列的概念,能夠?qū)W會等差數(shù)列的通項公式的推導(dǎo)過程及蘊含的數(shù)學(xué)思想。
【過程與方法】在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,提高知識、方法遷移能力;通過階梯性練習(xí),提高分析問題和解決問題的能力。
【情感態(tài)度與價值觀】通過對等差數(shù)列的研究,具備主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習(xí)慣。
【教學(xué)重點】。
等差數(shù)列的概念、等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。
【教學(xué)難點】。
環(huán)節(jié)一:導(dǎo)入新課。
教師ppt展示幾道題目:
1.我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5一個數(shù),可以得到數(shù)列:0,5,15,20,252.小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92。
在澳大利亞悉尼舉行的奧運會上,女子舉重正式列為比賽項目,該項目共設(shè)置了7個級別,其中交情的4個級別體重組成數(shù)列(單位:kg):48,53,58,63。
教師提問學(xué)生這幾組數(shù)有什么特點?學(xué)生回答從第二項開始,每一項與前一項的差都等于一個常數(shù),教師引出等差數(shù)列。
環(huán)節(jié)二:探索新知。
學(xué)生閱讀教材,同桌討論,類比等比數(shù)列總結(jié)出等差數(shù)列的概念。
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
問題1:等差數(shù)列的概念中,我們應(yīng)該注意哪些細節(jié)呢?
環(huán)節(jié)三:課堂練習(xí)。
(1)1,2,4,6,8,10,12,……。
(2)0,1,2,3,4,5,6,……。
(3)3,3,3,3,3,3,3,……。
(4)-8,-6,-4,-2,0,2,4,……。
(5)3,0,-3,-6,-9,……。
環(huán)節(jié)四:小結(jié)作業(yè)。
關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)。
作業(yè):現(xiàn)實生活中還有哪些等差數(shù)列的實際應(yīng)用呢?根據(jù)實際問題自己編寫兩道等差數(shù)列的題目并進行求解。
高一數(shù)學(xué)教案數(shù)列篇十六
設(shè)計意圖:解題時,以學(xué)生分析為主,教師適時給予點撥,該題有意培養(yǎng)學(xué)生對含有參數(shù)的問題進行分類討論的數(shù)學(xué)思想。7.總結(jié)歸納,加深理解以問題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵學(xué)生積極回答,然后老師再從知識點及數(shù)學(xué)思想方法兩方面總結(jié)。設(shè)計意圖:以此培養(yǎng)學(xué)生的口頭表達能力,歸納概括能力。8.故事結(jié)束,首尾呼應(yīng)最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1.84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設(shè)一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現(xiàn)不了他的承諾。設(shè)計意圖:把引入課題時的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續(xù)積極思維。9.課后作業(yè),分層練習(xí)必做:p129練習(xí)1、2、3、4選作:(2)“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”這首中國古詩的答案是多少?設(shè)計意圖:出選作題的目的是注意分層教學(xué)和因材施教,讓學(xué)有余力的學(xué)生有思考的空間。四、教法分析對公式的教學(xué),要使學(xué)生掌握與理解公式的來龍去脈,掌握公式的推導(dǎo)方法,理解公式的成立條件,充分體現(xiàn)公式之間的聯(lián)系。在教學(xué)中,我采用“問題――探究”的教學(xué)模式,把整個課堂分為呈現(xiàn)問題、探索規(guī)律、總結(jié)規(guī)律、應(yīng)用規(guī)律四個階段。利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動得以充分展開,從而優(yōu)化了教學(xué)過程,大大提高了課堂教學(xué)效率。五、評價分析本節(jié)課通過三種推導(dǎo)方法的研究,使學(xué)生從不同的思維角度掌握了等比數(shù)列前n項和公式。錯位相減:變加為減,等價轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實。學(xué)生從中深刻地領(lǐng)會到推導(dǎo)過程中所蘊含的數(shù)學(xué)思想,培養(yǎng)了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性。同時通過精講一題,發(fā)散一串的變式教學(xué),使學(xué)生既鞏固了知識,又形成了技能。在此基礎(chǔ)上,通過民主和諧的課堂氛圍,培養(yǎng)了學(xué)生自主學(xué)習(xí)、合作交流的學(xué)習(xí)習(xí)慣,也培養(yǎng)了學(xué)生勇于探索、不斷創(chuàng)新的思維品質(zhì)。
高一數(shù)學(xué)教案數(shù)列篇十七
3.能利用上述知識進行相關(guān)的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。
一、預(yù)習(xí)檢查。
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為.
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為.
3、雙曲線的漸進線方程為.
4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是.
二、問題探究。
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同.
探究2、雙曲線與其漸近線具有怎樣的關(guān)系.
練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是.
例1根據(jù)以下條件,分別求出雙曲線的標準方程.
(1)過點,離心率.
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為.
例2已知雙曲線,直線過點,左焦點到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率.
例3(理)求離心率為,且過點的雙曲線標準方程.
三、思維訓(xùn)練。
1、已知雙曲線方程為,經(jīng)過它的右焦點,作一條直線,使直線與雙曲線恰好有一個交點,則設(shè)直線的斜率是.
2、橢圓的離心率為,則雙曲線的離心率為.
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=.
4、(理)設(shè)是雙曲線上一點,雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點,若,則.
四、知識鞏固。
1、已知雙曲線方程為,過一點(0,1),作一直線,使與雙曲線無交點,則直線的斜率的集合是.
2、設(shè)雙曲線的一條準線與兩條漸近線交于兩點,相應(yīng)的焦點為,若以為直徑的圓恰好過點,則離心率為.
3、已知雙曲線的左,右焦點分別為,點在雙曲線的右支上,且,則雙曲線的離心率的值為.
4、設(shè)雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率.
5、(理)雙曲線的焦距為,直線過點和,且點(1,0)到直線的距離與點(-1,0)到直線的距離之和.求雙曲線的離心率的取值范圍.
高一數(shù)學(xué)教案數(shù)列篇十八
突出重點.培養(yǎng)能力.。
三、課堂練習(xí)。
教材第13頁練習(xí)1、2、3、4.。
【助練習(xí)】第13頁練習(xí)4(1)中用一個方向的斜平行線段表示,用另一方向的平行線段表示如圖:
凡有陰影部分即為所求.。
四、小結(jié)。
提綱式(略).再一次突出交集和并集兩個概念中“且”,“或”的含義的不同.。
五、作業(yè)。
習(xí)題1至8.。
筆練結(jié)合板書.。
傾聽.修改練習(xí).掌握方法.。
觀察.思考.傾聽.理解.記憶.。
傾聽.理解.記憶.。
回憶、再現(xiàn)內(nèi)容.。
落實。
介紹解題技能技巧.。
內(nèi)容條理化.。
課堂教學(xué)設(shè)計說明。
2.反演律可根據(jù)學(xué)生實際酌情使用.。
高一數(shù)學(xué)教案數(shù)列篇十九
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。
一、片頭。
(30秒以內(nèi))。
前面學(xué)習(xí)了數(shù)列的概念與簡單表示法,今天我們來學(xué)習(xí)一種特殊的數(shù)列-等差數(shù)列。本節(jié)微課重點講解等差數(shù)列的定義,并且能初步判斷一個數(shù)列是否是等差數(shù)列。
30秒以內(nèi)。
二、正文講解(8分鐘左右)。
第一部分內(nèi)容:由三個問題,通過判斷分析總結(jié)出等差數(shù)列的定義60秒。
第二部分內(nèi)容:給出等差數(shù)列的定義及其數(shù)學(xué)表達式50秒。
三、結(jié)尾。
(30秒以內(nèi))授課完畢,謝謝聆聽!30秒以內(nèi)。
本節(jié)課通過生活中一系列的實例讓學(xué)生觀察,從而得出等差數(shù)列的概念,并在此基礎(chǔ)上學(xué)會判斷一個數(shù)列是否是等差數(shù)列,培養(yǎng)了學(xué)生觀察、分析、歸納、推理的能力。充分體現(xiàn)了學(xué)生做數(shù)學(xué)的過程,使學(xué)生對等差數(shù)列有了從感性到理性的認識過程。
讀書破萬卷下筆如有神,以上就是為大家?guī)淼?篇《高中數(shù)學(xué)數(shù)列教案:等差數(shù)列》,希望可以對您的寫作有一定的參考作用,更多精彩的范文樣本、模板格式盡在。
高一數(shù)學(xué)教案數(shù)列篇二十
各位評委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。
下面從教材分析、教學(xué)目標分析、教學(xué)重難點分析、教法與學(xué)法、課堂設(shè)計、效果評價六方面進行說課。
一、教材分析。
(一)教材的地位和作用。
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
(二)教學(xué)內(nèi)容。
本節(jié)內(nèi)容分2課時學(xué)習(xí)。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。
二、教學(xué)目標分析。
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高一學(xué)生的認知規(guī)律,本節(jié)課的教學(xué)目標確定為:
知識目標——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標——創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強化學(xué)生參與意識及主體作用。
三、重難點分析。
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。
要把握這個重點。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點的橫坐標的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關(guān)系。要突破這個難點,讓學(xué)生歸納“三個一次”的關(guān)系作鋪墊。
四、教法與學(xué)法分析。
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析。
本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點,指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。
高一數(shù)學(xué)教案數(shù)列篇二十一
教學(xué)目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號及術(shù)語。
教學(xué)過程:
一、閱讀下列語句:
1)全體自然數(shù)0,1,2,3,4,5,
2)代數(shù)式.
3)拋物線上所有的點。
4)今年本校高一(1)(或(2))班的全體學(xué)生。
5)本校實驗室的所有天平。
6)本班級全體高個子同學(xué)。
7)著名的科學(xué)家。
上述每組語句所描述的對象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個數(shù)分,可分為1)__________2)_________。
三、集合中元素的'三個性質(zhì):
四、元素與集合的關(guān)系:1)____________2)____________。
五、特殊數(shù)集專用記號:
4)有理數(shù)集______5)實數(shù)集_____6)空集____。
六、集合的表示方法:
1)。
2)。
3)。
七、例題講解:
例1、中三個元素可構(gòu)成某一個三角形的三邊長,那么此三角形一定不是()。
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形。
例2、用適當?shù)姆椒ū硎鞠铝屑希缓笳f出它們是有限集還是無限集?
1)地球上的四大洋構(gòu)成的集合;。
2)函數(shù)的全體值的集合;。
3)函數(shù)的全體自變量的集合;。
4)方程組解的集合;。
5)方程解的集合;。
6)不等式的解的集合;。
7)所有大于0且小于10的奇數(shù)組成的集合;。
8)所有正偶數(shù)組成的集合;。
例3、用符號或填空:
1)______q,0_____n,_____z,0_____。
2)______,_____。
3)3_____,
4)設(shè),,則。
例4、用列舉法表示下列集合;。
1.
2.
3.
4.
例5、用描述法表示下列集合。
1.所有被3整除的數(shù)。
2.圖中陰影部分點(含邊界)的坐標的集合。
課堂練習(xí):。
例7、已知:,若中元素至多只有一個,求的取值范圍。
思考題:數(shù)集a滿足:若,則,證明1):若2,則集合中還有另外兩個元素;2)若則集合a不可能是單元素集合。
小結(jié):
作業(yè)班級姓名學(xué)號。
1.下列集合中,表示同一個集合的是()。
a.m=,n=b.m=,n=。
c.m=,n=d.m=,n=。
2.m=,x=,y=,,.則()。
a.b.c.d.
3.方程組的解集是____________________.
4.在(1)難解的題目,(2)方程在實數(shù)集內(nèi)的解,(3)直角坐標平面內(nèi)第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.
5.設(shè)集合a=,b=,
c=,d=,e=。
其中有限集的個數(shù)是____________.
6.設(shè),則集合中所有元素的和為。
7.設(shè)x,y,z都是非零實數(shù),則用列舉法將所有可能的值組成的集合表示為。
8.已知f(x)=x2-ax+b,(a,br),a=,b=,。
若a=,試用列舉法表示集合b=。
9.把下列集合用另一種方法表示出來:
(1)(2)。
(3)(4)。
10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說明理由。
11.已知集合a=。
(1)若a中只有一個元素,求a的值,并求出這個元素;。
(2)若a中至多只有一個元素,求a的取值集合。
12.若-3,求實數(shù)a的值。
【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來幫助!
高一數(shù)學(xué)教案數(shù)列篇二十二
(2)理解任意角的三角函數(shù)不同的定義方法;。
(4)掌握并能初步運用公式一;。
(5)樹立映射觀點,正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù).
初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號.最后主要是借助有向線段進一步認識三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).
任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點.過去習(xí)慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運算才能得到,這與函數(shù)值是一個確定的實數(shù)也有不同,這些都會影響學(xué)生對三角函數(shù)概念的理解.
本節(jié)利用單位圓上點的`坐標定義任意角的正弦函數(shù)、余弦函數(shù).這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應(yīng)關(guān)系,也表明了這兩個函數(shù)之間的關(guān)系.
教學(xué)重難點。
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解.
高一數(shù)學(xué)教案數(shù)列篇二十三
2、掌握標準方程中的幾何意義。
3、能利用上述知識進行相關(guān)的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
例1根據(jù)以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例3(理)求離心率為,且過點的雙曲線標準方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
4、設(shè)雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
將本文的word文檔下載到電腦,方便收藏和打印。
【本文地址:http://mlvmservice.com/zuowen/19056490.html】