教案的編寫需要綜合考慮學生的實際情況、學科的特點和教學的目標要求。教案的編寫要注意時效性,及時適應教學的要求和變化。下面是一些編寫教案的注意事項和方法,希望對大家起到一定的指導作用。
六年級數(shù)學面積的變化教案篇一
1.理解圓柱表面積的意義,掌握圓柱表面積的計算方法。
3會解決簡單的實際問題。
4.初步培養(yǎng)學生抽象的邏輯思維能力。
教學重點。
理解并掌握圓柱表面積的計算方法,并能正確進行圓柱表面積的計算。
教學難點。
能充分運用圓柱表面積的相關知識靈活的解決實際問題。
教學過程。
一復習舊知。
(1)底面周長2.5米,高0.6米。
(2)底面直徑4厘米,高10厘米。
(3)底面半徑1.5分米,高8分米。
(1)長方體的長為4厘米,寬為7厘米,高為9厘米。
(2)正方體的棱長為6分米。
3討論說說長方體、正方體的表面積的意義及其表面積的計算方法。
學生甲:長方體、正方體的表面積指的是長方體、正方體的六個面的面積的總和。
學生乙:計算長方體的表面積時只要計算長方體相互對立的3個面的面積,3個面的面積相加再乘以2就是長方體的表面積。正方體的表面積是棱長乘以棱長再乘以6。
二新課導入。
1教師:以前我們學習了長方體、正方體的表面積的意義及其表面積的求法,那么圓柱體的表面積的計算和長方體、正方體的表面積的.計算有什么區(qū)別和聯(lián)系呢?圓柱的表面積又是如何計算的呢?接下來我們一起來討論和探索這個問題。(板書:圓柱的表面積)。
2學生討論:你認為圓柱的表面積是指哪一部分?它由幾個面組成?
(1)學生分組討論。
(2)學生匯報討論結果。
3反饋小節(jié):圓柱的表面積指的是圓柱的側面積和兩個底面積的總和,圓柱的表面積由一個側面機和兩個底面組成。(板書:圓柱的側面積+圓柱的兩個底面積=圓柱的表面積)。
4教師進行圓柱模型表面展開演示。
(1)學生說說展開的側面是什么圖形。
學生:圓柱展開的側面是一個長方形。
(2)學生說說長方形的長和寬與圓柱的底面周長和高有什么關系?
學生:長方體的長(或寬)等于圓柱的底面積,長方體的寬(或長)等于圓柱的高。
(3)圓柱的側面積是怎樣計算的?抽生回答進行復習整理。(板書:圓柱的側面積=圓柱的底面周長×圓柱的高)。
(3)圓柱的底面積怎么計算?(復習底面積的計算方法)。
5說說實際生活中有哪些圓柱體?哪些表面是完整的,哪些表面是不完整的?
學生舉例:完整的圓柱有兩個底面,不完整的圓柱只有一個底面(如水桶)或者根本就沒有底面(如煙囪)。
教師:所以我們每個同學在計算圓柱的表面積時要特別認真,要特別注意這個圓柱到底有幾個底面。
三新課教學。
1例2一個圓柱的高是4.5分米,底面半徑2分米,它的表面積是多少?(課件演示)。
2學生嘗試練習,教師巡回檢查、指導。
3反饋評價:
(1)側面積:2×2×3.14=56.52(平方分米)。
(2)底面積:3.14×2×2=12.56(平方分米)。
(3)表面積:56.52+12.56=81.64(平方分米)。
答:它的表面積是81.64平方分米。
4學生質疑。
5教師強調答題過程的清楚完整和計算的正確。
6教學小節(jié):在計算過程中你發(fā)現(xiàn)了什么?計算圓柱的表面積一般要分成幾步來計算呀?
四反饋練習:試一試。
1學生嘗試練習:要做一個沒有蓋的圓柱形鐵皮水桶,高50厘米,底面直徑為30厘米,至少需要多少鐵皮?(得數(shù)保留整數(shù))。
2學生交流練習結果(注意計算結果的要求)。
3教師評議。
教師:在實際運用中四舍五入法和進一法有什么不同?
學生;計算使用材料的用量時為確保使用材料的充足通常都使用進一法,計算結果如果使用四舍五入法也許會出現(xiàn)使用材料不足的現(xiàn)象。
五拓展練習。
1教師發(fā)給學生教具,學生分組進行數(shù)據測量。
2學生自行計算所需的材料。
3計算結果匯報。
教師:同學們的答案為什么會有不同?哪里出現(xiàn)偏差了?
學生甲:可能是數(shù)據的測量不準確。
學生乙:可能是計算出現(xiàn)錯誤。
教師:在實際運用中如果數(shù)據測量不準確或者計算出現(xiàn)錯誤,或許就會造成很大的經濟損失,這種損失也許是不可估量的,但事實上它又是很容易避免的。所以我們每個同學都要養(yǎng)成認真、仔細的好習慣。
六鞏固練習。
1計算下面圖形的表面積(單位:厘米)(略)。
(1)底面周長是21.52厘米,高2.5分米。
(2)底面半徑0.6米,高2米。
(3)底面直徑10分米,高80厘米。
3一個圓柱形的罐頭盒,底面直徑是16厘米,高是10厘米,它的表面積是多少厘米?
4一個圓柱鐵桶(沒蓋),高是5分米,底面半徑是2分米,做一個這樣的鐵桶,至少需要多少鐵皮?(得數(shù)保留一位小數(shù))。
六年級數(shù)學面積的變化教案篇二
1.通過教學使學生建立圓面積的概念,理解圓面積計算公式的推導過程,掌握圓面積的計算公式。
2.能正確地應用圓面積計算公式進行圓面積的計算,并能解答有關圓的實際問題。
理解和掌握圓面積的計算公式的推導過程。
圓面積計算公式的推導。
一、創(chuàng)設情境,提出問題。
(課件演示)用一根繩子把羊栓在木樁上,演示羊邊吃草邊走的情景。(生看完提問題)。
生:
1、羊走一圈有多長?
2、羊最多能吃到多少草?
3、羊能吃到草的最大面積是多少?
二、引導探究,構建模型。
a:啟發(fā)猜想。
師:羊吃到草的最大面積最大是圓形:
1、這個圓的面積有多大猜猜看;
2、試想圓的面積和哪些條件有關?
3、怎樣推導圓的面積公式?(生試說)。
b:分組實驗,發(fā)現(xiàn)模型。
學生分小組將平均分成16等分、32等分的圓放在桌上自由拼擺,拼成以前學過的平面圖形擺好后想一想:
1、你擺的是什么圖形?
2、你擺的圖形與圓的面積有什么關系?
3、圖形各部分相當于圓的什么?
4、你如何推導出圓的面積?
請小組長匯報拼擺的情況,鼓勵學生拼擺成不同的平面圖形(師課件展示動畫效果)可以拼擺成長方形、梯形、三角形、平行四邊形四種情況。
三、應用知識,拓展思維。
1、師:要求圓的面積必須知道什么?
2、運用公式計算面積。
b完成課后“做一做”
c一個圓的直徑是10厘米,它的面積是多少平方厘米?
d找出身邊的圓,同桌合作量一量半徑,算一算面積(完成實驗報告單)。
測量物直徑(厘米)半徑(厘米)面積(平方厘米)。
3、應用知識解決身邊的實際問題(知識應用)。
四、歸納總結,完善認知。
今天學了什么,這些知識我們是用什么方法學來的,你懂得了什么?
六年級數(shù)學面積的變化教案篇三
教學要求:
1、使學生理解和掌握圓柱體側面積和表面積的計算方法,能正確運用公式計算圓柱的側面積和表面積。
2、培養(yǎng)學生觀察、操作、概括的能力和利用所學知識合理靈活地分析、解決實際問題的能力。
3、培養(yǎng)學生的合作意識和主動探求知識的學習品質和實踐能力。
教學難點:圓柱體側面積計算方法的推導。
教具:圓柱體教具、多媒體課件。
學具:圓柱形紙筒、筆筒等。
教學過程:
師:(拿著圓柱模型)昨天我們認識了圓柱,誰來說說圓柱有哪些特征?(學生回答略)。
師:拿出圓柱形狀的罐頭,辨析:外面的商標紙的面積就是圓柱的什么?學生(圓柱的側面積)。好,今天我們首先來探討圓柱的側面積。(板書:圓柱的側面積)。
師:想一想如何計算包在外面的商標紙的面積?
生:圓柱的側面是一個曲面,所以商標紙包在外面也是曲面,必須要把它拿下來。
師:說的對呀,那么怎么把商標紙拿下來,拿下來后和圓柱有什么關系?請同學們小組合作,拿出你們帶來的圓柱形物體,動手操作去探究,去發(fā)現(xiàn)。
匯報交流:
生1:我們是沿著圓柱的高剪開的,剪開后就是一個長方形,-----。
(還沒有等他說完,另一個學生就搶著說)。
生2:我們是斜著剪的,剪開后得到一個平行四邊形;
我再問:還有不同的剪法嗎?
生3:我沒有剪,就是沿著罐頭的接頭撕開的,展開后也是一個長方形。
生4:我這個圓柱的商標紙有點緊,我撕得有點破,不太像長方形。
生5:簡單,用我們上學期學的轉化法就行了。接著他說了方法:就是再把那兩種沿著高對折,剪開重新拼成長方形。
我照著他說的做演示,并且大聲表揚他說:“同學們,這并不簡單,轉化方法是一種非常重要的數(shù)學思想方法,學會用它,就會化難為易,化復雜為簡單啦!”
師:那么,我們可以總結一下,把圓柱的側面沿著高剪開可以得到一個什么形?
師:這時,長方形的長和寬與圓柱有什么關系呢?(引導學生觀察、發(fā)現(xiàn))。
生:長方形的長就是圓柱的底面周長,長方形的寬就是圓柱的高,得到圓柱的側面積=底面周長×高。
生:老師,平行四邊形也能推導出來,不需要變成長方形!讓他來說說看,平行四邊形的底就是圓柱的底面周長,平行四邊形的高就是圓柱的高,也能推出來。我們給他以熱烈的掌聲,為他的精彩發(fā)言而喝彩!
生6:老師,剛才我沒有用剪刀剪開,也沒有撕,我也能推導出圓柱側面積的計算方法。接著他邊做邊說:我這個商標紙有點松,我直接拖下來壓平,這時也是一個長方形,長方形的長就是圓柱的底面周長的一半,長方形的寬就是圓柱的高,長方形的面積×2就是圓柱的側面積,也就是底面周長的一半×高×2,所以圓柱的側面積=底面周長×高。
師:今天同學們表現(xiàn)真不錯,通過自己的探究活動,有自己的親身體驗,有自己的獨特發(fā)現(xiàn),同時我們從不同的途徑得到了一個共同的結論,真棒!下面如果用s表示側面積,c表示底面周長,h表示高。你能寫出圓柱體側面積的公式嗎?(板書:s=ch)。
基本練習(求側面積)。
1、底面周長是1.6米,高是0.7米。
2、底面半徑是3.2分米,高是5分米。
3、底面直徑是10厘米,高是25厘米。
師小結:要計算圓柱的側面積,必須知道圓柱底面周長和高這兩個條件,有時題里只給出直徑或半徑,底面周長這個條件可以通過計算得到,在解題前要注意看清題意再列式。
師:我們掌握了圓柱的側面積的計算方法,那么表面積怎樣計算呢?
請大家把上節(jié)課自己制作的圓柱模型展開,觀察一下,援助的表面由那幾個部分組成?
生:圓柱的表面積是指圓柱表面的面積,也就是圓柱的側面積加上兩個底面的面積。
板書:圓柱的表面積=圓柱側面積+兩個底面的面積。
5.教學例4。
課件出示例4的題目。
1教師:這道題已知什么?求什么?
3教師:要求圓柱的表面積,應該先求什么?·后求什么?
使學生明白:要先求圓柱側面積和底面積,后求表面積。
4介紹進一法。
四、學以致用,靈活運用。
師:從例4可以看出來數(shù)學來源于生活,下面我們就來解決幾道生活中常出現(xiàn)的問題。
提高練習:
師:我們在解決實際問題時,一定要分析好求的是哪一部分的面積?在選擇解答方法。
設計制作一個筆筒需要解決哪些問題呢?怎樣確定筆筒的大???
五、師小結:下課鈴響起,老師希望在座的各位同學能夠應用本節(jié)課所學知識制作出的筆筒送給你最喜愛的人。
六、板書設計:
圓柱的側面積=底面周長×高。
s??=??ch。
圓柱的表面積=圓柱的側面積+底面積×2。
步的幾何知識概念,空間想象力的基礎上進行教學的。本節(jié)課的教學目標是通過教學培養(yǎng)學生的合作意識和從生活實踐中探求知識的學習品質;使學生理解和掌握圓柱體側面積的計算方法,能正確運用公式計算圓柱體側面積和表面積;培養(yǎng)學生觀察、操作、概括的能力。教學的重、難點是圓柱體側面積計算方法的推導。
教學設計意圖:對于《圓柱的表面積》的教學,以往我都是在第一課時《圓柱的認識》的教學中推導出圓柱側面積的公式,然后在第二課時《圓柱的表面積》教學時,要求學生在教師的指令下進行操作,將圓柱的側面展開得到一個長方形,再比較兩者之間的關系,從而推導出側面積公式,然后通過一系列的練習來加深鞏固,課堂的教學設計以練筆的形式進行教學,但這樣的教學學生的學習效果不明顯,容易把求表面積中所應用到的公式混淆在一起,而且這種教學手段學生是在老師的牽引下被動學習,不利于學生創(chuàng)造性思維的發(fā)展,局限了學生應用已有知識去解決問題的能力。今天我再教學《圓柱的表面積》,如何讓學生充分運用已有的知識經驗和基本技能,用自己的思維方式去嘗試解決新問題,構建新的知識,這是本節(jié)課教學設計的靈魂。
教學反思:
我首先解決的是“商標紙的面積就是圓柱的側面積”,再進而啟發(fā)學生想到“如何把商標紙拿下來”,學生自然就想到“用剪或其他方法”,探究的方向準確后,我則放手讓學生去發(fā)揮,去操作,留給學生大量的思維空間。學生在活動中,會隨著操作的不同而有不同的發(fā)現(xiàn),個性化的精彩隨之綻放!中國有句古話就是:給你點顏色,你就開染坊!我覺得確實是的,我們的學生就是這樣:你給他一個探究的空間,他就會回饋你一個意想不到的驚喜,還你以一幅精彩的畫面!“天高任鳥飛,海闊憑魚躍”,只有為學生的思維提供足夠的時間和空間,才能讓學生“如魚得水”,讓學生的精彩得以釋放,讓學生的潛能得以發(fā)揮,讓學生的智慧充分展示,讓我們的課堂永遠充滿生命和活力!
六年級數(shù)學面積的變化教案篇四
1、使學生掌握分數(shù)乘法應用題的數(shù)量關系,學會應用一個數(shù)乘以分數(shù)的意義解答分數(shù)乘法的兩步應用題。
2、發(fā)展學生思維,側重培養(yǎng)學生分析問題的`能力。
教學重點:理解數(shù)量關系。
教學難點:根據多幾分之幾或少幾分之幾找出所求量是多少。
教具準備:多媒體課件。
教學過程:
1、口答:把什么看作單位“1”的量,誰是幾分之幾相對應的量?
(1)一塊布做衣服用去。
(2)用去一部分錢后,還剩下。
(3)一條路,已修了。
(4)水結成冰,體積膨脹。
(5)甲數(shù)比乙數(shù)少。
2、口頭列式:
(1)32的是多少?
(2)120頁的是多少?
3、你能把口頭列式計算中的第(3)(4)題合并成一道題嗎?
4、根據學生回答,出示例4,并指出:這就是我們今天要學習的“稍復雜的分數(shù)乘法應用題”。
六年級數(shù)學面積的變化教案篇五
2.掌握圓柱側面積和表面積的計算方法。
(二)能力目標。
能靈活運用求表面積、側面積的有關知識解決一些實際問題。
教學重點。
理解求表面積、側面積的計算方法,并能正確進行計算。
教學難點。
能靈活運用表面積、側面積的有關知識解決實際問題。
教具學具準備。
1.教師、學生每人用硬紙做一個圓柱體模型。
2.投影片。
教學過程:
生:我想對老師們說,我們一定會好好表現(xiàn)的,不會讓你們失望。
生:我們的課堂將比賽場更精彩……。
師:我堅信你們一定不會讓老師失望的。
一、引入新課:
生:圓柱是由平面和曲面圍成的立體圖形。
生:我還知道圓柱各部分的名稱……。
生:把圓柱的側面沿著它的一條高剪開得到一個長方形,這個長方形的長等于圓柱的底面周長、寬等于圓柱的高。
課件演示這一過程。
師:你們對圓柱已經知道得這么多了,真了不起,還想對它作進一步的了解嗎?(生:想)。
師:你還想知道什么呢?
生:還想知道怎么求它的表面積......
二、探究新知。
指名學生摸其表面積,并追問:怎樣求它的表面積?
學生匯報:圓柱的側面積加上兩個底面的面積就是圓柱的表面積。(教師板書)。
師:兩個底面是圓形的我們早就會求它的面積,而它的側面是一個曲面,怎樣計算它的側面積呢?(請同學們討論一下,我們看哪個小組最先找到突破口)。
小組代表匯報:把圓柱的側面沿著它的一條高展開得到一個長方形,長方形的面積等于長乘寬,而這個長方形的長正好等于圓柱的底面周長,寬等于圓柱的高,所以我們由此推出:圓柱的側面積就等于底面周長乘高。
師:大家同意他們的推理嗎?(生:我們討論的結果也跟他們一樣)你們能夠利用以前的經驗,把它變成我們學過的圖形來計算,太棒了。
課件展示其變化過程。
師生小結:(教師板書)側面積=底面周長×高。
(評價:在體育賽場上你們是我的驕傲,在課堂上你們更是我的自豪)。
師:讓我們用熱烈的掌聲慶祝一下我們的成功。(掌聲……)。
投影呈現(xiàn)例一:一個圓柱,底面直徑是0、4米,高是1、8米,求它的側面積。
(1)學生獨立解答。
(2)投影呈現(xiàn)學生的解答,并讓其講清自己的解題思路。
師:通過剛才的解題思路說明要計算圓柱的側面積需要抓出哪兩個量?
生:底面周長和高。
師:無論是直接告訴,還是間接告訴,只要能求出底面周長和高就可以求出其側面積。
師:求側面積似乎難不住大家,現(xiàn)在再加一問,你們還能行嗎?(教師在例一的后面加上求它的側面積和表面積)。
教師巡視,讓一個學生板演,要求學生分步做,并標明每步求的是什么)。
指名學生說解題思路,
師:這說明要計算圓柱的表面積需要抓出哪兩個量?
生:底面積和側面積。
3、反饋練習:(略)。
師:想一想,應該先求什么?再求什么?請大家動手試一試。
4實踐運用:師:在實際生活中計算某些圓柱的表面積時,要根據具體情況靈活運用公式,比如,求一個無蓋的水桶的表面積,煙筒的表面積應該是怎樣的呢?(生:略)。
三、全課小結:這節(jié)課你有什么收獲?
你有沒有想提醒同學們注意的地方?
生:要注意單位,還要注意所要求得圓柱有幾個底面……。
最后,你們猜猜聽課的老師對你們的表現(xiàn)是否滿意?你覺得自己的表現(xiàn)如何?(生:略)。
六年級數(shù)學面積的變化教案篇六
1、聯(lián)系生活實際,創(chuàng)設探究情境,使學生初步掌握分數(shù)乘法應用題的數(shù)量關系,學會應用一個數(shù)乘以分數(shù)的意義解答分數(shù)乘法一步應用題。
2、在觀察、猜想、嘗試練習、交流反饋等活動中,培養(yǎng)學生分析能力,發(fā)展學生思維。
3、創(chuàng)設開放、民主、有趣的自主探究空間,鼓勵學生大膽質疑,培養(yǎng)他們的創(chuàng)新能力。
教學重點:理解題中的單位“1”和問題的關系。
教學難點:抓住知識關鍵,正確、靈活判斷單位“1”。
教具準備:多媒體課件。
教學過程:
1、先說下列各算式表示的意義,再口算出得數(shù)。
12××。
2、列式計算。
(1)20的.是多少?(2)6的是多少?
3、學生得出:求一個數(shù)的幾分之幾用乘法。
1、通過學習掌握求一個數(shù)的幾分之幾是多少的應用題的解。
題方法并會分析數(shù)量關系。
2、知道解這類應用題的關鍵是什么?
3、知道如何找單位“1”。
六年級數(shù)學面積的變化教案篇七
教學目的:
1、引導學生回憶整理平面圖形周長和面積的意義及其計算公式的推導過程,并能熟練地應用公式進行計算。
2、通過知識在實際生活中的運用,體驗數(shù)學與生活的聯(lián)系,培養(yǎng)學生數(shù)學來源于生活,又運用于生活的數(shù)學意識。
教學準備:多媒體課件。
教學過程:
一、整理知識:
二、復習知識:
1、由長方形的周長你還能想到什么圖形的周長?你是怎么想的?分別是怎么計算的呢?(板書公式)。
2、計算周長時,你認為要注意些什么?
3、除了想到周長的計算,你還能想到什么?
5、計算面積時,你認為要注意些什么?這么多的公式怎樣記憶比較快?(板書公式)。
6、小結:從這些公式的推導過程中,我們可以發(fā)現(xiàn)它們之間是有聯(lián)系的。我們每學習一個新的圖形計算公式,通常是把它轉化成一個已經學過的圖形來推導公式進行計算的。(板書:轉化)。
7、對于這部分內容,還有什么問題?什么地方最難?
三、鞏固練習:(課件)。
1、判斷:{=小學教學設計+}。
(1)一個長方形長20厘米,寬10厘米,它的周長是30厘米。()。
(2)半徑是2厘米的圓,它的周長和面積相等。()。
(3)一個梯形,上底4厘米,下底6厘米,高3厘米,它的`面積是15厘米。()。
(4)在同一個圓中,半圓的周長比圓周長的一半長。()。
(5)一個三角形,底6分米,高5分米,它的面積是30平方分米。()。
(6)一個邊長5米的正方形,它的面積是20平方米。()。
(7)一個圓,直徑是2厘米,它的面積是12.56平方厘米.()。
2、搶答題:
(1)一個梯形的面積是15平方分米,上底與下底的和是5分米,它的高是()分米。
(2)小圓半徑2厘米,大圓半徑3厘米,小圓周長與大圓周長的比是(),小圓面積與大圓面積的比是()。
(3)一個平行四邊形和一個三角形等底等高,已知平行四邊形的面積比三角形的面積大8平方厘米,三角形的面積是()平方厘米,平行四邊形的面積是()平方厘米。
(4)一個梯形的面積是15平方分米,上底和下底的和是5分米,它的高是()分米。
3計算下面圖形中陰影部分的面積:
五、總結,注重體驗。
六、作業(yè),留有回味。(網上交流)。
六年級數(shù)學面積的變化教案篇八
《組合圖形的面積》是北師大版五年級第五單元的第一課。學生在三年級已學習了長方形與正方形的面積計算,在本冊的第二單元又學習了平行四邊形、三角形與梯形的面積計算,本課時的組合圖形面積的計算是這兩方面知識的發(fā)展,也是日常生活中經常需要解決的問題。在此基礎上學習組合圖形,一方面可以鞏固已學的基本圖形,另一方面則能將所學的知識進行綜合,提高學生綜合能力。教材在內容呈現(xiàn)上突出了兩個部分,一是感受計算組合圖形面積的必要性,二是針對組合圖形的特點強調學生學習的自主探索性。
二、教學目標。
1、知識與技能。
(1)在自主探索的活動中,理解計算組合圖形的多種方法。
(2)能根據各種組合圖形的條件,有效地選擇計算方法并進行正確的解答。
(3)能運用所學的知識,解決生活中有關組合圖形面積的實際問題。
2、過程與方法。
讓學生在自主探索的基礎上進行合作交流,從而歸納組合圖形面積的計算方法。
3、情感態(tài)度與價值觀。
(1)結合具體的題例,感受計算組合圖形面積的必要性,產生積極的數(shù)學學習情感。
(2)滲透轉化的數(shù)學思想和方法。
三、教學重、難點。
1、教學重點:學生能夠通過自己的動手操作,掌握用割補法求組合圖形面積的計算方法。
2、教學難點:理解計算組合圖形面積的多種計算方法,根據圖形之間的聯(lián)系和一定的隱蔽條件,選擇最適當?shù)姆椒ㄇ蠼M合圖形的面積。
四、學情分析。
本課的授課對象是五年級的學生,學生通過之前的學習對于平面圖形直觀感知和認識上已有了一定的基礎,也掌握一些解決基本圖形問題的方法。作為五年級的學生應進一步提高知識的綜合運用能力,在學習中去探索掌握解決問題的思考策略。
五、說教法。
情境導入。
創(chuàng)情境導思維使學生樂學。因此在教學中我有意識地利用直觀、努力創(chuàng)設情景,對提高教學效果大有裨益。有趣的七巧板,通過拼一拼,說一說導出組合圖形的意義。
直觀演示法。
直觀形象學生樂學,直觀容易記憶,快樂激發(fā)學習。利用多媒體課件、學具,讓學生通過動手實踐、操作、親身體驗知識的獲取過程。
引導式教學。
在教學中教師要激發(fā)學生的'學習動機,使之對學習產生濃厚的興趣,師精導、生巧學,以學論教,扶放結合。由學生小組合作共同探索問題的解決方法時,當學生想出各種不同的方法時,引導學生自己比較方法的異同點,并進行歸納,同時在此基礎上懂得根據條件選擇合適的方法來解決問題。
六、說學法。
1、自主觀察思考。
學生是學習的主體,只有當學生真正自己主動、積極的參與到學習中時,才能最為有效地提高學生的學習效果。引導學生自己來觀察組合圖形的特點,思考解決的方法,逐步構建自己的知識體系,也有利于后面小組的合作學習以及更好地傾聽他人的不同意見,進一步完善自己的知識體系。
2、小組合作學習。
小組合作學習能夠幫助學生在有限的時間里,通過與他人的合作獲取更多的方法,找到合適、有效的解決問題的方法。本課讓學生在自主觀察思考的前提下,通過小組合作學習來進一步拓寬學生的思維空間,提升學生的學習能力。
以前總是老師幫助學生對所學的知識進行總結,現(xiàn)在由學生自己來對所學的知識進行歸納總結,這樣可幫助學生對新知的學習得到進一步的提高。
七、教學過程。
(一)創(chuàng)設情境,復習導入。
1、猜一猜:
讓學生猜測老師準備的信封里是什么平面圖形,再讓學生從信封中一一摸出來。(以前學過的正方形、長方形、平行四邊形、三角形、梯形。)。
2、說一說:以上各種圖形的面積計算方法,用字母公式如何表示?(多媒體出示圖形)。
3、拼圖活動導入新課:
(1)同桌合作利用事先準備好的七巧板,任先其中的若干個,拼成一個你們喜歡的圖案,最先完成的還可以把你們的作品貼到黑板上向同學們展示。
(2)請同學說說看你拼的圖案像什么?是由哪些基本圖形組成的?
(3)觀察黑板上的這些圖形,看看它們有什么共同特點?引導發(fā)現(xiàn)這些圖形都是由以前學過的基本圖形組成的。
(二)自主探索新知。
1、談話式進入例題的自主探索學習。
小華家新買了住房,計劃在客廳鋪地板,請你估計他家至少要買多大面積的地板。(用多媒體出示)。
2、學生估計圖形的面積有多大,隨后老師拋出問題:如何準確計算出這個客廳的面積呢?
3、學生獨立與小組合作交流解決組合圖形面積計算問題。
學生可能出現(xiàn)分割法和添補法(將學生可能出現(xiàn)的方法用多媒體顯示)。
分割法即將上述圖形分割成幾個基本圖形。
4、討論分割法。
a、對于分割法需要與學生討論其合理性,要讓學生明確:分割的圖形越簡潔,其解題的方法也將越簡單。
b、要考慮分割的圖形與所給條件的關系。有些圖形分割后找不到相關的條件就是失敗的。
5、討論添補法。
a、為什么要補上一塊?
b、補上一塊后計算的方法是怎樣的?(讓學生都理解這一算法)。
(三)實際應用。
1、小試身手。
解決書本76頁的試一試。由學生嘗試獨立解答,全班進行方法交流,并讓學生試著從中歸納出較好的方法。(進行知識鞏固)。
2、出示老師事先拼好的一個七巧板的圖形。
(1)讓學生想一想,想求該圖形的面積,可將其轉變成一些已學的圖形?有幾種方法?
(讓學生懂得在有多種方法時,選擇簡便、合適的方法進行解答。)。
3、動手實踐。
學生針對前面自己所拼的七巧板的圖形,小組中選出一圖,自己動手測量所需數(shù)據,求出圖形的面積。(學習能力的進一步培養(yǎng),讓學生學習在觀察圖形的基礎上,結合所選擇的計算方法去測量自己所需的數(shù)據,再進行計算。)。
(四)質疑問難。
六年級數(shù)學面積的變化教案篇九
1、使學生初步了解歸總應用題的基本結構和數(shù)量關系,能夠正確地解答這種應用題。
2、進一步提高學生分析問題和解決實際問題的能力。
使學生掌握乘、除應用題的數(shù)量關系,結構特征和解答方法。
學畫線段圖,并借助線段圖分析題中數(shù)量關系。
投影片或教學課件。
1、學習例5(為了貼近學生生活,便于學生理解、計算,將例題進行了改編)。
(1)教師說:小華讀一本書,如果每天讀9頁,幾天可以讀完?(學生各抒已見)。
(3)小組展開討論,并獨立列式試做。(教師注意巡視,及時發(fā)現(xiàn)學生出現(xiàn)的問題。)
(4)小組匯報自己的想法,教師點撥,小組間相互質疑問難。
(5)教師根據小組的匯報情況,邊小結邊進行必要的板書:
先求這本書一共多少頁?126=72(頁)
再求幾天能讀完?729=8(天)
(6)讓學生根據分步算式,獨立列出綜合算式。
2、改編例題,引出題目:(如果小華8天讀完,他每天讀幾頁?)
(1)學生獨立思考,并試著列式解答出來。
(2)請一名學生匯報。通過學生之間的質疑問難,教師根據出現(xiàn)的情況,及時進行小結:要求每天讀幾頁?首先知道這本書一共有多少頁?遇到問題,一定要分析清楚先求什么、再求什么。
(3)學生獨立列出綜合算式。
3、比較例題和改編的問題有什么相同點和不同點?
讓學生說一說自己的想法,教師根據學生的回答,小結。相同點:都是先求這本書的總頁數(shù)。不同點:例題是求幾天讀完,改編后的問題是求每天讀幾頁。
4、教科書第112頁做一做的第2題和例5,讓學生獨立完成。
1、做練習二十五的第1題。
讓學生認真讀題,獨立完成,并找出兩個小題的異同點。
讓學生說一說想法,然后獨立列式解答。
3、做練習二十五的第3、4題。
讓學生獨立列式解答。做完后,集體訂正。
通過師生交流,突出兩步應用題的數(shù)量關系。
板書設計:
兩步應用題
(1)先求這本書一共多少頁?(2)先求這本書一共多少頁?
126=72(頁)126=72(頁)
再求幾天能讀完?再求每天讀幾頁?
729=8(天)728=9(頁)
答:8天可以讀完。答:每天讀9頁。
六年級數(shù)學面積的變化教案篇十
出示例題。
出示例3:算出下面長方形的面積和周長各是多少。
學生試做,指名板演。評析板演情況。
2、比較整理。
學生回答后板書:
概念計算方法計量單位。
(2)分組討論:周長和面積在概念、計算方法、計量單位上有些什么不同?并完成下表。
投影展示各組填寫的表?并指名說一說長方形和正方形的周長、面積有哪些不同。
(3)學生看表回答:
為什么計算長方形的周長用(長+寬)×2,
計算長方形面積用“長×寬”?
正方形的周長、面積方法分別與長方形的周長、面積計算方法有什么關系?
三、練習中深化比較。
1、出示:一張長30厘米、寬5厘米的長方形紙。
(1)指名回答:
根據學生的回答,板書解答過程。
(2)擺一擺。每個學生拿出課前準備好的6個邊長是5厘米的小正方形。4人一組,動手擺一擺,6個小正方形可以擺出哪些不同的圖形。
(3)投影展示學生擺出的不同圖形:
(4)討論:
這些圖形的面積相等嗎?為什么?
算一算,這些圖形的周長都相等嗎?
想一想,你發(fā)現(xiàn)了什么?
結合學生的匯報,引導學生得出;面積相等的圖形,周長不一定相等。
(2)討論:
周長相等,它們的面積相等嗎?
周長一定時,面積的大小與長、寬之間的差有怎樣的關系?
在什么情況下,這個花壇里種的花的最多?
結合學生的匯報,引導學生得出:當長方形和正方形周長相等時,面積不一定相等。周長一定時,長與寬的差越小,面積越大;長與寬相等即正方形時,面積最大。
六年級數(shù)學面積的變化教案篇十一
教學目標:
知識與技能:結合生活實際認識組合圖形,并掌握用分解法或添補法求組合圖形的面積。
過程與方法:根據各種組合圖形的自身條件,選擇有效的計算方法進行面積計算。
情感、態(tài)度與價值觀:能運用組合圖形的知識,解決生活中組合圖形的實際問題。
教學重點:理解組合圖形的多種面積計算方法,會找出計算每個簡單圖形所需的條件。
教學難點:根據組合圖形的條件,有效地選擇汁算組合圖形面積的方法。
教學方法:動手實踐、自主探索、合作交流。
教學準備:師:多媒體、各種平面圖形。
生:七巧板、簡單圖形學具、少先隊中隊旗實物。
教學過程。
一、情境導入。
1.創(chuàng)設情境導入:同學們都玩過七巧板吧,在七巧板里都有哪些圖形呢?(長方形、三角形、平行四邊形……)。
2.你能用七巧板拼出什么圖形來?指幾名學生用七巧板拼出圖形,并展示。
通過學生拼出的圖形引出組合圖形的定義:由兩個或兩個以上的簡單圖形組成的大的不規(guī)則圖形叫組合圖形。
3.這節(jié)課我們就一起來學習求組合圖形的面積。(板題:組合圖形的面積)。
二、互動新授。
l.談話:在實際生活中,有許多圖形都是由幾個簡單的圖形組合而成的。出示教材第99頁的各種圖形。
這些組合圖形里有哪些是學過的圖形?同學們試著找一找。
小組合作,嘗試找出情境圖中的組合圖形是哪些圖形組成的,并交流匯報。
2.說一說:在生活中還有哪些地方有組合圖形?請同學們說一說。
學生可能會想到:廚房里的三角架、房子的分布圖、桌子等。
3.引導思考:關于組合圖形,你還想研究它的什么知識?
4.出示教材第99頁例4:一間房子側面墻的形狀圖。
組織學生小組合作學習,說一說是怎樣分的',然后再算一算。集體匯報。
三、鞏固拓展。
1.完成教材第101頁“練習二十二”第1題。
2.完成教材第101頁“練習二十二”第2題。
3.完成教材第101頁“練習二十二”第3題。
四、課堂小結。
師:這節(jié)課你學會了什么?有哪些收獲?
板書設計:
由兩個或兩個以上的簡單圖形組成的大的不規(guī)則圖形叫組合圖形。
5×5+5×2÷2(5+5+2)×(5÷2)÷2×2。
=25+5=12×2.5÷2×2。
=30(2)=30(2)。
教學反思:
六年級數(shù)學面積的變化教案篇十二
教學目標:
1.知識目標:
使學生進一步掌握分數(shù)乘法的計算方法,能正確解決分數(shù)連乘的簡單實際問題,拓展分數(shù)乘法意義的理解。
2.能力目標:
使學生經歷解決問題的探索過程,進一步培養(yǎng)觀察、比較、分析的能力。
3.情感目標:
感受數(shù)學知識和方法的應用價值。
教學重點:
能正確計算分數(shù)連乘的計算。
教學難點:
能用分數(shù)連乘的方法解決實際問題。
教學準備:
教學光盤。
第五課時
教學過程:
一、復習引入
1.下面每個條件分別是以誰為單位“1”的。
23
a是b的3b是c的5
口答,說說可以列成什么數(shù)量關系?
2.今天我們繼續(xù)學習有關分數(shù)乘法新的內容。
板書課題:分數(shù)連乘。
二、教學新課
1.教學例6。
(1)理解題意。
83
二班做的朵數(shù)和誰有關?
(2)畫圖分析。
畫一條線段表示一班所做綢花的朵數(shù)。
可以怎樣表示二班做的綢花朵數(shù)?
怎樣表示三班做的綢花朵數(shù)呢?
(3)討論方法。
要去三班做了多少朵,要先算什么呢?怎樣算?
討論交流,匯報方法。
2.完成練一練。
獨立完成計算,展示作業(yè)。
說說計算時要注意什么?
三、鞏固練習
1.完成練習九第6題。
獨立完成,集體核對。
2.完成第7題。
3.完成第8、9題。
理解題意,弄清解決每一個問題時要先算什么,再算什么?
列式解答。
四、課堂小結
今天學習了什么內容?你對自己的表現(xiàn)滿意嗎?
六年級數(shù)學面積的變化教案篇十三
(1)用一張長2.5米,寬1.5米的鐵皮做一個圓柱形煙筒,這個煙筒的側面積是多少?(接口處忽略不計)。
(2)一個圓柱形無蓋的水桶,底面的直徑是60厘米,高是40厘米,做這樣一個水桶,需要多少平方分米的鐵皮?(得數(shù)保留整數(shù))。
(7)一個圓柱的側面積是12.56平方米,底面半徑是4分米,它的高是多少分米?
(8)一個圓柱高9分米,側面積226.08平方分米,它的底面積是多少平方分米?
(10)做5節(jié)底面直徑是2分米,長8分米的圓柱形通風管,至少需要多少鐵皮?
六年級數(shù)學面積的變化教案篇十四
教學目標:
1、使學生進一步掌握求平面組合圖形面積的計算方法,并能合理地把平面組合圖形轉化為簡單圖形,再進行面積的計算。
2、培養(yǎng)學生分析、判斷能力,并發(fā)揮學生的主體作用,積極探索解決新問題,培養(yǎng)學生的創(chuàng)新意識。
教學重點:進一步培養(yǎng)學生學會觀察。
教學難點:進一步學會找隱蔽條件。
教學過程:
一、復習基本知識。
1、我們已學過哪些平面圖形?(請生回答,并出示圖形)。
2、請生回答這些平面圖形的面積怎樣計算?用字母公式表示。
3、基本練習:求各圖形面積。(單位:厘米)開火車。
二、變化練習。
1、小組討論:從剛才的簡單圖形中挑選兩個圖形組成一個新的圖形,你會計算他們的面積嗎?你們有幾種情況?(讓生拼一拼,擺一擺。)。
2、學生匯報:(邊出示,邊板書)。
(1)三角形面積+正方形面積列式:4×4÷2+4×4(圖略)。
(2)正方形面積-角形面積列式:4×4-4×4÷2。
(3)半圓的面積+梯形面積列式:3.14×22÷2+(3+5)×4÷2。
(4)梯形面積-半圓的面積列式:(3+5)×4÷2-3.14×22÷2。
(5)長方形面積+半圓的面積列式:3.14×22÷2+4×2。
(6)長方形面積-半圓的面積列式:4×2-3.14×22÷2。
3、,并回答以下問題:
(1)由幾個簡單圖形組成的圖形叫做。
(2)在你拼擺的過程中,你發(fā)現(xiàn)圖形的組合一般有幾種情況?
(3)求組合圖形的面積時,解答的步驟是什么?關鍵是什么?
三、強化練習。
1、如圖:陰影部分平行四邊行的面積是36平方厘米,求出三角形的面積。(單位:厘米)。
6(1)先讓學生獨立思考,然后再請生回答。
(2)你有幾種解法?并在大屏幕出示。
9
2、求下列各個陰影部分的面積。(單位:厘米)。
(1)(2)。
6
6d=6。
a:先讓學生做在自己的本子上。
b:并讓學生說一說你是怎樣解答的?
c:核對,并在大屏幕演示。
d::如果組合圖形不能直接拆成幾個簡單圖形,那該怎么辦呢?
3、計算陰影部分的面積。(單位:厘米)(圖略,書本第127頁練一練2中的第3小題)。
先讓學生思考,說一說應該怎么辦?然后借助多媒體演示,請生列式。并說一說有幾種方法。
4、:通過圖形的平移、翻轉,可以使它成為兩個或兩個以上的簡單圖形。
四、發(fā)散練習。
(5分鐘內看誰做得最多,方法最巧妙)。
五、板書設計。
(1)三角形面積+正方形面積。
列式:4×4-4×4÷2。
(2)正方形面積-角形面積。
列式:4×4÷2+4×4。
(3)半圓的面積+梯形面積。
列式:(3+5)×4÷2-3.14×22÷2。
列式:3.14×22÷2+(3+5×4÷2。
(5)長方形面積+半圓的面積。
列式:3.14×22÷2+4×2。
(6)長方形面積-半圓的面積。
列式:4×2-3.14×22÷2。
六年級數(shù)學面積的變化教案篇十五
教學內容:
教學目標:
1.知識與技能:使學生初步學會用“替換”的策略理解題意、分析數(shù)量關系,并能根據問題的特點確定合理的解題步驟。
2.過程與方法:使學生在對解決實際問題過程的不斷反思中,感受“替換”策略對于解決特定問題的價值,進一步發(fā)展分析、綜合和簡單推理能力。
3.情感、態(tài)度與價值觀:使學生進一步積累解決問題的經驗,增強解決問題的策略意識,獲得解決問題的成功體驗,提高學好數(shù)學的信心。
教學重點:
使學生掌握用“替換”的策略解決一些簡單問題的方法。
教學難點:
使學生能感受到“替換”策略對于解決特定問題的價值。
教學過程:
一、復習導入。
1.說說圖中兩個量的關系可以怎樣表示?
追問:還可以怎么說?
指出:兩個量的關系,換一個角度,還可以有另外一種表示方法。
2.從圖中你可以知道些什么?
(多媒體出示:天平的左邊放上一個菠蘿,右邊放上四個香蕉,天平平衡。)
指出:從這題中,我們可以看出,能把一個物體換成與之相等的另外一個物體。
3.口答準備題:
(2)小明把720毫升果汁倒入3個相同的大杯,正好都倒?jié)M,每個大杯的容量是多少毫升?指出:這兩題我們都是用果汁總量去除以杯子總數(shù),就能得出所要求的問題。
二、新授
(一)教學例1
1.讀題
2.分析探索
提問:也同樣是720毫升的果汁要倒入到杯子里,這題與剛才的兩題相比較,有何不同之處?小結:剛才兩題是把果汁倒入到一種杯子里,而這題是把果汁倒入到兩種不同的杯子里。提問:那么還能像剛才一樣用果汁總量去除以杯子總數(shù),用720÷(6+1),可以這樣計算嗎?追問:那該怎么辦?同桌先相互說說自己的想法。
3.交流
談話:我們一起來交流一下,該怎么辦?
追問:還可以怎么辦?
小結:兩位同學都是把兩種不同的杯子換成相同的一種杯子,這樣就可以解決問題啦!同學們可真了不起啊,剛才大家的做法中已經蘊涵了一種新的數(shù)學思想方法――替換。(板書:替換)
4.列式計算
a:把大杯換成小杯
提問:把一個大杯換成三個小杯(板書),這樣做的依據是什么?
追問:如果把720毫升果汁全部倒入小杯,一共需要幾個小杯?(板書)能求出每個小杯的容量嗎?每個大杯呢?(板書)
小結:在用這種方法解的時候,我們是把它們都看成了小杯,所以先求出來的也是每個小杯的容量,然后求出每個大杯的容量。
b:把小杯換成大杯
談話:那反過來,把小杯換成大杯呢?(板書)
提問:如果把720毫升果汁全部倒入大杯,又需要幾個大杯呢?你又是怎么知道的?
指出:把三個小杯換成一個大杯,再把三個小杯換成一個大杯。
提問:這樣做的依據又是什么?
指出:如果把720毫升果汁全部倒入大杯,就需要3個大杯。(板書)
提問:能求出每個大杯的容量嗎?每個小杯呢?(板書)
5.檢驗
談話:求出的結果是否正確,我們還要對它進行檢驗。想一想可以怎么檢驗?
指出:哦!把6個小杯的容量和1個大杯的容量加起來,看它等不等于720毫升。(板書)除此之外,我們還要檢驗大杯的容量是不是小杯容量的3倍。(板書)總之,檢驗時要看求出來的結果是否符合題目中的兩個已知條件。
6.小結
指出:解這題的關鍵就是把兩種杯子看成一種杯子。
(二)練習十七第1題
談話:把這道題目,做在自己的草稿本上。(指名板演)
提問:把你的做法講給同學們聽。
追問:計算的結果是否正確,還要對它進行檢驗。就請你口答一下檢驗的過程吧!
(三)教學“練一練”
1.出示題目
談話:自己先在下面讀一遍題目。
2.分析比較
提問:這題與剛才的例1相比較有何不同之處?
指出:哦!例1中小杯和大杯的關系是用分數(shù)來表示的,而這題已知的是一個量比另一個量多多少的差數(shù)關系。
提問:那么這題中的大盒還能把它換成若干個小盒嗎?那該怎么換?談話:現(xiàn)在你能做了嗎?把它做在草稿本上。
3.學生試做
4.評講
談話:說說你是怎么做的?
指出:在大盒中取出8個球,就可以換成小盒;另外一個大盒也是這樣。
提問:現(xiàn)在這7個小盒中,一共裝了多少個球?還是100個嗎?幾個?指出:算式是100-8×2,所以84÷7算出來的是每個小盒裝球的個數(shù)。
指出:算式是100+8×5,所以140÷7算出來的是每個大盒裝球的個數(shù)。
談話:把大盒換成小盒算出結果的請舉手!把小盒換成大盒算出結果的也請舉手!看來同學們還是喜歡把大盒換成小盒來計算。
5.檢驗
談話:同桌相互檢驗一下剛才計算的結果是否正確。
6.小結
提問:解這題時你覺得哪一步是關鍵?
指出:哦!還是把兩種不同的盒子換成一種相同的盒子,然后再解題。
三、全課總結
談話:今天這節(jié)課老師和同學們一起學習了解決問題的策略中用替換的方法解決問題。(板書完整課題)
提問:那你覺得在什么情況下我們可以用替換的方法來解題,能給大家來舉一個例子說說嗎?指出:哦!當把一個量同時分配給了兩種物體時,而且這兩種物體是有一定關系的時候,我們就能用替換的方法來解題。
追問:那解題時該怎么替換呢?(那在用替換的方法來解題時,關鍵是什么?怎么來替換?)指出:把兩種物體看成同一種物體,(板書)求出一種物體的數(shù)量后,也就能求出另一種物體的.數(shù)量。
四、鞏固練習
3.練習十七2(機動)
――替換
把兩種物體看成同一種物體
1.把大杯替換成小杯共需要9個小杯
720÷(6+3)=80(毫升)驗算:240+6×80=720(毫升)
80×3=240(毫升)240÷80=3(倍)
2.把小杯替換成大杯共需要3個大杯
720÷(1+2)=240(毫升)
240÷3=80(毫升)
課后反思:
由于課前對教材進行了深入的研究和學習,所以教學時做到了心中有數(shù),因而今天這節(jié)數(shù)學課的教學效果是不錯的,超出了我的預期目標。學生們對于用替換這種策略來解決生活中一些常見的實際問題都很感興趣,課堂上學生們思維活躍,發(fā)言積極,包括很多平時學習數(shù)學困難較大的學生也掌握了這一策略。
一、培養(yǎng)學生運用所學知識解決實際問題的能力。首先,解決實際問題的教學能培養(yǎng)學生根據需要探索和提取有用信息的能力。其次,它促使學生將過去已掌握的靜態(tài)的知識和方法轉化成可操作的動態(tài)程序。這個過程本身就是一個將知識轉化成能力的過程。再次,它能使學生將已有的數(shù)學知識遷移到他們不熟悉的情景中去,這既是一種遷移能力的培養(yǎng),同時又是一種主動運用原有的知識解決問題能力的培養(yǎng)。
二、培養(yǎng)學生的數(shù)學意識。首先,它能使學生認識到所學數(shù)學知識的重要作用。其次,它能培養(yǎng)學生用數(shù)學的眼光去觀察身邊的事物,用數(shù)學的思維方法去分析日常生活中的現(xiàn)象。再次,它能使學生感受到用數(shù)學知識解決問題后的成功體驗,增強學好數(shù)學的自信心。
不僅使學生獲得初步的創(chuàng)新能力,同時還可以讓學生從小養(yǎng)成創(chuàng)新的意識和創(chuàng)新的思維習慣,為今后實現(xiàn)更高層次的創(chuàng)新奠定良好的基礎。
【本文地址:http://mlvmservice.com/zuowen/18893757.html】