總結(jié)是對某一特定時間段內(nèi)的學習和工作生活等表現(xiàn)情況加以回顧和分析的一種書面材料,它能夠使頭腦更加清醒,目標更加明確,讓我們一起來學習寫總結(jié)吧。那么我們該如何寫一篇較為完美的總結(jié)呢?下面是小編整理的個人今后的總結(jié)范文,歡迎閱讀分享,希望對大家有所幫助。
高考數(shù)學解題技巧總結(jié) 淺談高考數(shù)學解題思路與技巧篇一
高考數(shù)學解題思路12種
高考數(shù)學公式、結(jié)論:數(shù)列
高考數(shù)學答題模板12個
高考數(shù)學學霸學習經(jīng)驗
高考數(shù)學七大必考專題
高考數(shù)學解題技巧總結(jié) 淺談高考數(shù)學解題思路與技巧篇二
轉(zhuǎn)化與化歸是中學數(shù)學最基本的數(shù)學思想之一,是一切數(shù)學思想方法的核心。數(shù)形結(jié)合的思想體現(xiàn)了數(shù)與形的轉(zhuǎn)化;函數(shù)與方程的思想體現(xiàn)了函數(shù)、方程、不等式之間的相互轉(zhuǎn)化;分類討論思想體現(xiàn)了局部與整體的相互轉(zhuǎn)化,所以以上三種思想也是轉(zhuǎn)化與化歸思想的具體呈現(xiàn)。
轉(zhuǎn)化包括等價轉(zhuǎn)化和非等價轉(zhuǎn)化,等價轉(zhuǎn)化要求在轉(zhuǎn)化的過程中前因和后果是充分的也是必要的;不等價轉(zhuǎn)化就只有一種情況,因此結(jié)論要注意檢驗、調(diào)整和補充。轉(zhuǎn)化的原則是將不熟悉和難解的問題轉(zhuǎn)為熟知的、易解的和已經(jīng)解決的問題,將抽象的問題轉(zhuǎn)為具體的和直觀的問題;將復(fù)雜的轉(zhuǎn)為簡單的問題;將一般的轉(zhuǎn)為特殊的問題;將實際的問題轉(zhuǎn)為數(shù)學的問題等等使問題易于解決。
常見的轉(zhuǎn)化方法
①直接轉(zhuǎn)化法:把原問題直接轉(zhuǎn)化為基本定理、基本公式或基本圖形問題;
②換元法:運用“換元”把式子轉(zhuǎn)化為有理式或使整式降冪等,把較復(fù)雜的函數(shù)、方程、不等式問題轉(zhuǎn)化為易于解決的基本問題;
③數(shù)形結(jié)合法:研究原問題中數(shù)量關(guān)系(解析式)與空間形式(圖形)關(guān)系,通過互相變換獲得轉(zhuǎn)化途徑;
④等價轉(zhuǎn)化法:把原問題轉(zhuǎn)化為一個易于解決的等價命題,達到化歸的目的;
⑤特殊化方法:把原問題的形式向特殊化形式轉(zhuǎn)化,并證明特殊化后的問題,使結(jié)論適合原問題;
⑥構(gòu)造法:“構(gòu)造”一個合適的數(shù)學模型,把問題變?yōu)橐子诮鉀Q的問題;
⑦坐標法:以坐標系為工具,用計算方法解決幾何問題也是轉(zhuǎn)化方法的一個重要途徑。
高考數(shù)學解題技巧總結(jié) 淺談高考數(shù)學解題思路與技巧篇三
分類討論的思想之所以重要,原因一是因為它的邏輯性較強,原因二是因為它的知識點的涵蓋比較廣,原因三是因為它可培養(yǎng)學生的分析和解決問題的能力。原因四是實際問題中常常需要分類討論各種可能性。
解決分類討論問題的關(guān)鍵是化整為零,在局部討論降低難度。
常見的類型
類型1:由數(shù)學概念引起的的討論,如實數(shù)、有理數(shù)、絕對值、點(直線、圓)與圓的位置關(guān)系等概念的分類討論;
類型2:由數(shù)學運算引起的討論,如不等式兩邊同乘一個正數(shù)還是負數(shù)的問題;
類型3 :由性質(zhì)、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應(yīng)用引起的討論;
類型4:由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關(guān)問題引起的討論。
類型5:由某些字母系數(shù)對方程的影響造成的分類討論,如二次函數(shù)中字母系數(shù)對圖象的影響,二次項系數(shù)對圖象開口方向的影響,一次項系數(shù)對頂點坐標的影響,常數(shù)項對截距的影響等。
分類討論思想是對數(shù)學對象進行分類尋求解答的一種思想方法,其作用在于克服思維的片面性,全面考慮問題。分類的原則:分類不重不漏。
【本文地址:http://mlvmservice.com/zuowen/1887322.html】