2023年二次根式數學教案(模板20篇)

格式:DOC 上傳日期:2023-12-10 12:06:03
2023年二次根式數學教案(模板20篇)
時間:2023-12-10 12:06:03     小編:紫薇兒

教案是教師為指導學生學習而設計的一種教學計劃,它包括教學目標、教學內容、教學步驟等內容。通過編寫教案,教師可以合理安排教學活動,提高教學效果。我們需要準備一份教案了吧。教案的編寫需要注意哪些方面呢?教案作為一種教學工具,在教學過程中起著重要的作用。以下是一些常見的教案范例,我們可以參考一下。編寫教案是教師的基本功之一,掌握好這項技能對于提高教學質量十分重要。教案的編寫是教學過程的規(guī)劃,它直接關系到課堂教學的效果。教案應該根據學生的學習特點和知識水平,選擇合適的教學策略和教學方法。以下是小編為大家收集的教案范文,僅供參考,希望能給大家一些啟發(fā)。通過合理規(guī)劃教學內容和設計教學方法,我們可以創(chuàng)造出更好的教學效果,提升學生的學習成績。讓我們一起來看看這些精選教案吧!

二次根式數學教案篇一

1、知識與技能:了解二次根式的概念,能求根號內字母范圍,理解二次根式的雙重非負性,并能應用它解決相關問題。

2、過程與方法:進一步體會分類討論的數學思想。

3、情感、態(tài)度與價值觀:通過小組合作學習,體驗在合作探索中學習數學的樂趣。

1、重點:準確理解二次根式的概念,并能進行簡單的計算。

2、難點:準確理解二次根式的雙重非負性。

課本第2—3頁。

一、課前準備(預習學案見附件1)。

學生在家中認真閱讀理解課本中相關內容的知識,并根據自己的理解完成預習學案。

二、課堂教學。

(一)合作學習階段。

教師出示課堂教學目標及引導材料,各學習小組結合本節(jié)課學習目標,根據課堂引導材料中得內容,以小組合作的形式,組內交流、總結,并記錄合作學習中碰到的問題。組內各成員根據課堂引導材料的要求在小組合作的前提下認真完成課堂引導材料。教師在巡視中觀察各白話文…小組合作學習的情況,并進行及時的引導、點撥,對普遍存在的問題做好記錄。

(二)集體講授階段。(15分鐘左右)。

1.各小組推選代表依次對課堂引導材料中的問題進行解答,不足的本組成員可以補充。

2.教師對合作學習中存在的普遍的不能解決的問題進行集體講解。

3.各小組提出本組學習中存在的困惑,并請其他小組幫助解答,解答不了的由教師進行解答。

(三)當堂檢測階段。

為了及時了解本節(jié)課學生的學習效果,及對本節(jié)課進行及時的鞏固,對學生進行當堂檢測,測試完試卷上交。

(注:合作學習階段與集體講授階段可以根據授課內容進行適當調整次序或交叉進行)。

三、課后作業(yè)(課后作業(yè)見附件2)。

教師發(fā)放根據本節(jié)課所學內容制定的針對性作業(yè),以幫助學生進一步鞏固提高課堂所學。

四、板書設計。

二次根式數學教案篇二

重難點分析。

本節(jié)課的重點是二次根式的加、減、乘、除、乘方、開方的混合運算及分母有理化。它是以二次根式的概念和性質為基礎,同時又緊密地聯系著整式、分式的運算,也可以說它是運算問題在初中階段一次總結性,提高性綜合學習;二次根式的運算和有理化的方法與技巧,能夠進一步開拓學生的解題思路,提高學生的解題能力。

本節(jié)課的難點是把分母中含有兩個二次根式的式子進行分母有理化。分母有理化,實際上二次根式的除法與混合運算的綜合運用。分母有理化的過程,一般地,先確定分母的有理化因式,然后再根據分式的基本性質把分子、分母都乘以這個有理化因式,就可使分母有理化。所以對初學者來說,這一過程容易出現找錯有理化因式和計算出錯的問題。

教法建議。

1.在知識的引入上,可采取復習引入方式,比如復習有理數的混合運算或整式的運算。

2.在二次根式的加減、乘法混合運算中,要注意由淺入深的層次安排,從單項式與多項式相乘、多項式與多項式到乘法公式的應用,逐漸從數過渡到帶有字母的式。

3.在有理化因式教學中,要多出幾組題目從不同角度要求學生辨別,并及時總結。

學生特點:實驗班的a層學生(數學實施分層教學),主動學習積極性高,基礎扎實,思維活躍,,并具有一定的獨立分析問題,探索問題,歸納概括問題的能力,有較好的思考、質疑的習慣。

教材特點:本節(jié)課是在學習了二次根式的三個重要概念(最簡二次根式、同類二次根式、分母有理化)和二次根式的有關運算(二次根式的乘法、二次根式的除法、二次根式的加減法)基礎上,將加、減、乘、除、乘方、開方運算綜合在一起的混合運算的學習。

鑒于學生的特點及教材的特點,本節(jié)課主要采用“互動式”的課堂教學模式及“談話式”的教學方法,以此實現生生互動、師生互動、學生與教材之間的互動。具體說明如下:

(一)在師生互動方面,教師注重問題設計,注重引導、點撥及提高性總結。使學生學中有思、思中有獲。如本節(jié)課開始,出示書中例題1:

強調:運算順序及運算律和有理數相同。

(二)在學生與學生的互動上,教師注重活動設計,使學生學中有樂,樂中悟道。教師設計一組題目,讓學生以競賽的形式解答,然后以記成績的方法讓其它同學說出優(yōu)點(簡便方法及靈活之處)與錯誤。由于本節(jié)課主要以計算為主,對運算法則及規(guī)律性的基礎知識,學生很容易掌握而且從意識上認為本節(jié)課太簡單,不會很感興趣,所以為了提高學生的學習興趣及更好的抓好基礎,提高學生的運算能力,如此這般設計。

(三)在個體與群體的互動方式上,教師注重合作設計,使學生學中有辯,辯中求同。如本節(jié)課中對重點問題:“分母有理化”的教學,出示一個題目,讓學生思考,找個別學生說出自己的想法,然后其它同學補充完成。

學生的主體意識和自主能力不是生來就有的,主要靠教師的激勵和主導,才能達到彼此互動。正是在這一教育思想的指導下,追求學生的認知活動與情感活動的協調發(fā)展,有效地喚起學生的主體意識,在和諧、愉快的情境中達到師生互動,生生互動。互動式教學模式的目的是讓教師樂教、會教、善教,促使學生樂學、會學、善學,從而優(yōu)化課堂教學、提高教學質量,在和諧、愉快的情景中實現教與學的共振。

二次根式數學教案篇三

本課先通過對實際問題的解決來引入二次根式的加減運算,此問題貼近學生生活,易激發(fā)學生的學習興趣。采用分組討論,由四人一組探索、發(fā)現、解決問題,培養(yǎng)學生用數學方法解決實際問題的能力。.對法則的教學與整式的加減比較學習。再由學生自主討論并總結二次根式的加減運算法則,在理解、掌握和運用二次根式的加減法運算法則的學習過程中,滲透了分析、概括、類比等數學思想方法,提高學生的思維品質和興趣。

學生在自主探究的過程中發(fā)現問題,解決問題,總結規(guī)律,加深對所學知識的理解。并向學生傳遞這樣一個信息:二次根式的加減運算并不是孤立的全新的知識,可以將二次根式的加減進行比較學習。

使學生掌握被開方數相同的二次根式合并的方法,注意二次根式加減運算的聯系與區(qū)別,避免一些常見錯誤,提高解題的準確程度。4、在二次根式的加減運算時,首先需搞清楚什么是同類二次根式,同類二次根式的判斷,關鍵是能熟練準確地化二次根式為最簡二次根式。再由學生自主討論并總結二次根式的加減運算法則。

二次根式數學教案篇四

重點:化二次根式為最簡二次根式的方法.

計算:

我們再看下面的問題:

簡,得到。

從上面例子可以看出,如果把二次根式先進行化簡,會對解決問題帶來方便.

答:

1.被開方數的因數是整數或整式;

2.被開方數中不含能開得盡方的因數或因式.

滿足上面兩個條件的二次根式叫做最簡二次根式.

(l)不是最簡二次根式.因為a3=a2·a,而a2可以開方,即被開方數中有開得盡方的因式.

整數.

(3)是最簡二次根式.因為被開方數的因式x2+y2開不盡方,而且是整式.

(4)是最簡二次根式.因為被開方數的因式a-b開不盡方,而且是整式.

(5)是最簡二次根式.因為被開方數的因式5x開不盡方,而且是整式.

(6)不是最簡二次根式.因為被開方數中的因數8=22·2,含有開得盡的因數22.

指出:從(1),(2),(6)題可以看到如下兩個結論.

1.在二次根式的被開方數中,只要含有分數或小數,就不是最簡二次根式;

2.在二次根式的被開方數中的每一個因式(或因數),如果冪的指數等于或大于2,也不是最簡二次根式.

分析:把被開方數分解因式或因數,再利用積的算術平方根的性質。

分析:題(l)的被開方數是帶分數,應把它變成假分數,然后將分母有理化,把原式化成最簡二次根式.

題(2)及題(3)的被開方數是分式,先應用商的算術平方根的性質把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式.

通過例2、例3,請同學們總結出把二次根式化成最簡二次根式的方法.

答:如果被開方數是分式或分數(包括小數)先利用商的算術平方根的性質,把它寫成分式的形式,然后利用分母有理化化簡.

如果被開方數是整式或整數,先把它分解因式或分解因數,然后把開得盡方的因式或因數開出來,從而將式子化簡.

的二次根式的式子有_____個.[]。

a.2b.3。

c.1d.0。

答案:

1.b。

2.b。

(1)被開方數的因數是整數,因式是整式;

(2)被開方數中不含能開得盡方的因數或因式.

(2)如果被開方數含有分母,應去掉分母的根號.

答案:

二次根式數學教案篇五

上節(jié)課我們認識了什么是二次根式,那么二次根式有什么性質呢?本節(jié)課我們一起來學習。

二、展示目標,自主學習:

自學指導:認真閱讀課本第3頁——4頁內容,完成下列任務:

1、請比較與0的大小,你得到的結論是:________________________。

2、完成3頁“探究”中的填空,你得到的結論是____________________。

3、看例2是怎樣利用性質進行計算的。

4、完成4頁“探究”中的填空,你得到的結論是:____________________。

5、看懂例3,有困難可與同伴交流或問老師。

二次根式數學教案篇六

4.通過學習分母有理化與除法的關系,向學生滲透轉化的數學思想。

二、教學設計。

小結、歸納、提高。

三、重點、難點解決辦法。

1.教學重點:分母有理化.。

2.教學難點:分母有理化的技巧.。

四、課時安排。

1課時。

五、教具學具準備。

投影儀、膠片、多媒體。

六、師生互動活動設計。

復習小結,歸納整理,應用提高,以學生活動為主。

七、教學過程。

【復習提問】。

例1說出下列算式的運算步驟和順序:

(1)(先乘除,后加減).。

(2)(有括號,先去括號;不宜先進行括號內的運算).。

(3)辨別有理化因式:

有理化因式:與,與,與…。

不是有理化因式:與,與…。

例如,、、等式子的化簡,如果分母是兩個二次根式的和,應該怎樣化簡?

引入新課題.。

【引入新課】。

例2把下列各式的分母有理化:

(1);(2);(3)。

解:略.。

(二)隨堂練習。

1.把下列各式的分母有理化:

(1);(2);

(3);(4).。

解:(1).。

(2).。

另解:.。

(3)。

另解:.。

通過以上例題和練習題,可以看出,有關二次根式的除法,可先寫成分式的形式,然后通過分母有理化進行運算,例如:

現將分母有理化就可以了.。

學生易發(fā)生如下錯誤將式子變形為而正確的做法是.。

2.計算:

(1);

(2);

(3).。

解:(1)。

(2)。

(3)。

(三)小結。

2.注意對有理化因式的概括并尋找出它的規(guī)律.。

(2)練習:教材p202中1、2.。

(四)布置作業(yè)。

教材p205中4、5.。

(五)板書設計。

標題。

1.復習內容3.練習題一。

2.例44.練習題二。

二次根式數學教案篇七

新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實踐到理論再回到實踐,由淺入深,符合認知結構的新模式。本節(jié)首先通過四個實際問題引出二次根式的概念,給出二次根式的意義。然后讓學生通過二次根式的意義和算術平方根的意義找出二次根式的三個性質。本節(jié)通過學生所熟悉的實際問題建立二次根式的概念,使學生在經歷將現實問題符號化的過程中,進一步體會二次根式的重要作用,發(fā)展學生的應用意識。

二次根式數學教案篇八

知識與技能目標:理解和掌握二次根式加減的方法.

過程與方法目標:先提出問題,分析問題,在分析問題中,滲透對二次根式進行加減的方法的理解.再總結經驗,用它來指導根式的計算和化簡.

情感與價值目標:通過本節(jié)的學習培養(yǎng)學生:利用規(guī)定準確計算和化簡的嚴謹的科學精神,發(fā)展學生觀察、分析、發(fā)現問題的能力.

重難點關鍵

1.重點:二次根式化簡為最簡根式.

2.難點關鍵:會判定是否是最簡二次根式.

教法:

2、講練結合法:在例題教學中,引導學生閱讀,與同類項進行類比,獲得解決問題的方法后配以精講,并進行分層練習,培養(yǎng)學生的閱讀習慣和規(guī)范的解題格式。

學法:

1、類比的方法通過觀察、類比,使學生感悟二次根式加減的模型,形成有效的學習策略。

2、閱讀的方法讓學生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。

3、分組討論法將自己的意見在小組內交換,達到取長補短,體驗學習活動中的交流與合作。

4、練習法采用不同的練習法,鞏固所學的知識;利用教材進行自檢,小組內進行他檢,提高學生的素質。

自主檢測、同伴互查

1、師生共同解決“學法”問題與13頁“練習1”;

2、學生演板13頁“練習2、3”。

四、知識梳理、師生共議

1、談收獲:

(1)二次根式的加減法則是什么?有哪些運算步驟?

(2)怎樣合并被開方數相同的二次根式呢?

(3)二次根式進行加減運算時應注意什么問題?

2、說不足:。

五、作業(yè)訓練、鞏固提高

1、必做題:課本15頁的“習題2、3”;

1.揭示學法、自主學習

認真閱讀課本14頁內容,完成下列任務:

1、完成14頁“例3、4”,先做再對照:

(1)平方差公式__________,完全平方公式__________.

(2)每步的運算依據是什么?應注意什么問題?

(時間7分鐘若有困難,與同伴討論)

三、自主檢測、同伴互查

1、師生共同解決“學法”問題;

2、學生演板14頁“練習1、2”。

四、知識梳理、師生共議

1、談收獲:

(1)二次根式進行混合運算時運用了哪些知識?

(2)二次根式進行混合運算時應注意哪些問題?

二次根式數學教案篇九

2.教學難點:分母有理化的技巧.

1課時

投影儀、膠片、多媒體

復習小結,歸納整理,應用提高,以學生活動為主

【復習提問】

二次根式混合運算的步驟、運算順序、互為有理化因式.

例1 說出下列算式的運算步驟和順序:

(1) (先乘除,后加減).

(2) (有括號,先去括號;不宜先進行括號內的運算).

(3)辨別有理化因式:

有理化因式: 與 , 與 , 與 …

不是有理化因式: 與 , 與 …

例如:等式子的化簡,如果分母是兩個二次根式的和,應該怎樣化簡?

引入新課題.

【引入新課】

例2 把下列各式的分母有理化:

(1) ; (2) ; (3)

解:略.

二次根式數學教案篇十

2.會運用積和商的算術平方根的性質,把一個二次根式化為最簡二次根式。

最簡二次根式的定義。

一個二次根式化成最簡二次根式的方法。

1.把下列各根式化簡,并說出化簡的根據:

2.引導學生觀察考慮:

化簡前后的根式,被開方數有什么不同?

化簡前的被開方數有分數,分式;化簡后的被開方數都是整數或整式,且被開方數中開得盡方的因數或因式,被移到根號外。

3.啟發(fā)學生回答:

二次根式,請同學們考慮一下被開方數符合什么條件的二次根式叫做最簡二次根式?

1.總結學生回答的內容后,給出最簡二次根式定義:

滿足下列兩個條件的二次根式叫做最簡二次根式:

(1)被開方數的因數是整數,因式是整式;

(2)被開方數中不含能開得盡的因數或因式。

最簡二次根式定義中第(1)條說明被開方數不含有分母;分母是1的例外。第(2)條說明被開方數中每個因式的指數小于2;特別注意被開方數應化為因式連乘積的形式。

2.練習:

下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

3.例題:

例1 把下列各式化成最簡二次根式:

例2 把下列各式化成最簡二次根式:

4.總結

把二次根式化成最簡二次根式的根據是什么?應用了什么方法?

當被開方數為整數或整式時,把被開方數進行因數或因式分解,根據積的算術平方根的性質,把開得盡方的因數或因式用它的算術平方根代替移到根號外面去。

當被開方數是分數或分式時,根據分式的基本性質和商的算術平方根的性質化去分母。

此方法是先根據分式的基本性質把被開方數的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

1.把下列各式化成最簡二次根式:

2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

本節(jié)課學習了最簡二次根式的定義及化簡二次根式的方法。同學們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據積的算術平方根和商的算術平方根的性質把一個根式化成最簡二次根式,特別注意當被開方數為多項式時要進行因式分解,被開方數為兩個分數的和則要先通分,再化簡。

下列各式化成最簡二次根式:

二次根式數學教案篇十一

二次根式的除法法則及其逆用,最簡二次根式的概念。

2.內容解析

二次根式除法法則及商的算術平方根的探究,最簡二次根式的提出,為二次根式的運算指明了方向,學習了除法法則后,就有比較豐富的運算法則和公式依據,將一個二次根式化成最簡二次根式,是加減運算的基礎.

基于以上分析,確定本節(jié)課的教學重點:二次根式的除法法則和商的算術平方根的性質,最簡二次根式.

1.教學目標

(1)利用歸納類比的方法得出二次根式的除法法則和商的算術平方根的性質;

(2)會進行簡單的二次根式的除法運算;

(3) 理解最簡二次根式的概念.

2.目標解析

(1)學生能通過運算,類比二次根式的乘法法則,發(fā)現并描述二次根式的除法法則;

(2)學生能理解除法法則逆用的意義,結合二次根式的概念、性質、乘除法法則,對簡單的二次根式進行運算.

(3)通過觀察二次根式的運算結果,理解最簡二次根式的特征,能將二次根式的運算結果化為最簡二次根式.

本節(jié)內容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學生可能會出現困難或容易失誤,在除法運算中,可以先計算后利用商的算術平方根的性質來進行,也可以先利用分式的性質,去掉分母中的根號,再結合乘法法則和積的算術平方根的性質來進行.二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算.教學中不能只是列舉題型,應以各級各類習題為載體,引導學生把握運算過程,估計運算結果,明確運算方向.

本節(jié)課的教學難點為:二次根式的除法法則與商的算術平方根的性質之間的關系和應用.

1.復習提問,探究規(guī)律

問題1二次根式的乘法法則是什么內容?化簡二次根式的一般步驟怎樣?

師生活動學生回答。

【設計意圖】讓學生回憶探究乘法法則的過程,類比該過程,學生可以探究除法法則.

二次根式數學教案篇十二

本節(jié)是九年級上學期數學的起始課。二次根式的學習,是對代數式的進一步學習。本節(jié)主要經歷二次根式的發(fā)生過程及對二次根式的理解。掌握求二次根式的值和二次根式根號內字母的取值范圍。為以后的運用二次根式的運算解決實際問題打好基礎。

1、學習任務分析:

通過對數和平方根、算術平方根的復習,鼓勵學生經歷觀察、歸納、類比等方法理解二次根式的概念。在解決實際問題的時候,注意轉化思想的滲透。體會分析問題、解決問題的方法,積累數學活動經驗。比如求二次根式根號內的字母的取值范圍,就是將問題轉化為不等式來解決。注意學生數學書寫格式的規(guī)范,為以后的學習打好基礎。為了使學生更好地掌握這一部分內容,遵循啟發(fā)式教學原則,用復習以前學過的知識導入新課。設計合作學習活動,引導學生操作、觀察、探索、交流、發(fā)現、思維,解決實際問題的過程,真正把學生放到主體位置。

2、學生的認知起點分析:

學生已掌握數的平方根和算術平方根。這為經歷二次根式概念的發(fā)生過程做好準備。另外,學生對數的算術平方根的理解作為基礎,經歷跟此根式概念的發(fā)生過程,引導學生對二次根式概念的理解。

案例反思:

以往對這類問題的回答都是全班回答,有些學生反面信息不能體現出來。采取的`措施是全班舉手勢回答,可以做二次根式的被開方數舉“布”,若不能舉“拳頭”。使班級能夠全面參與,避免集體回答所體現不出的問題。

2、合作活動:

第一位同學——出題者:請你按表中的要求寫完后,按順時針方向交給下一位同學;

第二位同學——解題者:請你按表中的要求解完后,按順時針方向交給下一位同學;

第四位同學——復查者:請你一定要把好關哦!

出題者姓名:

解題者姓名:

1、要使式子的值為實數,求x的取值范圍。

2、寫出x的一個值,使式子的值為有理數,并求出這個有理數。

3、寫出x的一個值,使式子的值為無理數,并求出這個無理數。

1、要使式子的值為實數,求x的取值范圍。

2、寫出x的一個值,使式子的值為有理數,并求出這個有理數。

3、寫出x的一個值,使式子的值為無理數,并求出這個無理數。

批改者姓名:

復查者姓名:

《課程標準》突出了學生在學習中的地位--學生是學習的主人,同時,教師的地位、角色發(fā)生了變化,從“主導”變成了“學生學習活動的組織者、引導者和合作者”。合作活動的安排就是對這一課程標準的體現。

二次根式數學教案篇十三

5、通過二次根式性質和的介紹滲透對稱性、規(guī)律性的數學美。

重點:(1)二次根的意義;

難點:確定二次根式中字母的取值范圍。

啟發(fā)式、講練結合。

(一)復習提問。

1、什么叫平方根、算術平方根?

2、說出下列各式的意義,并計算:

通過練習使學生進一步理解平方根、算術平方根的`概念。

觀察上面幾個式子的特點,引導學生總結它們的被平方數都大于或等于零,其中,表示的是算術平方根。

(二)引入新課。

我們已遇到的這樣的式子是我們這節(jié)課研究的內容,引出:

對于請同學們討論論應注意的問題,引導學生總結:

(1)式子只有在條件a0時才叫二次根式,是二次根式嗎?呢?

若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。

(2)是二次根式,而,提問學生:2是二次根式嗎?顯然不是,因此二次。

根式指的是某種式子的外在形態(tài)。請學生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據二次根式定義,由學生分析、回答。

例1當a為實數時,下列各式中哪些是二次根式?

例2x是怎樣的實數時,式子在實數范圍有意義?

解:略。

說明:這個問題實質上是在x是什么數時,x-3是非負數,式子有意義。

例3當字母取何值時,下列各式為二次根式:

分析:由二次根式的定義,被開方數必須是非負數,把問題轉化為解不等式。

解:(1)∵a、b為任意實數時,都有a2+b20,當a、b為任意實數時,是二次根式。

(2)-3x0,x0,即x0時,是二次根式。

(3),且x0,x0,當x0時,是二次根式。

(4),即,故x-20且x-20,x2、當x2時,是二次根式。

例4下列各式是二次根式,求式子中的字母所滿足的條件:

分析:這個例題根據二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,、即:只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數都大于等于零。

解:(1)由2a+30,得、

(2)由,得3a-10,解得、

(3)由于x取任何實數時都有|x|0,因此,|x|+0、10,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數。

(三)小結(引導學生做出本節(jié)課學習內容小結)。

1、式子叫做二次根式,實際上是一個非負的實數a的算術平方根的表達式。

2、式子中,被開方數(式)必須大于等于零。

(四)練習和作業(yè)。

1、判斷下列各式是否是二次根式。

分析:(2)中,,是二次根式;(5)是二次根式。因為x是實數時,x、x+1不能保證是非負數,即x、x+1可以是負數(如x0時,又如當x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義。

2、a是怎樣的實數時,下列各式在實數范圍內有意義?

二次根式數學教案篇十四

(2)會用公式化簡二次根式。

(1)學生能通過計算發(fā)現規(guī)律并對其進行一般化的推廣,得出乘法法則的內容;

(2)學生能利用二次根式的乘法法則和積的算術平方根的性質,化簡二次根式。

教學問題診斷分析

本節(jié)課的學習中,學生在得出乘法法則和積的算術平方根的性質后,對于何時該選用何公式簡化運算感到困難。運算習慣的養(yǎng)成與符號意識的養(yǎng)成、運算能力的形成緊密相關,由于該內容與以前學過的實數內容有較多的聯系,例如,整式中的乘法公式在二次根式的運算中也成立,在教學中,要多從聯系性上下力氣。,培養(yǎng)學生良好的運算習慣。

在教學時,通過實例運算,對于將一個二次根式化為最簡二次根式,一般有兩種情況:

(2)如果被開方數不含分母,可以先將它分解因數或分解因式,然后吧開得盡方的因數或因式開出來,從而將式子化簡。

本節(jié)課的教學難點為:二次根式的性質及乘法法則的正確應用和二次根式的化簡。

教學過程設計

1、復習引入,探究新知

我們前面已經學習了二次根式的概念和性質,本節(jié)課開始我們要學習二次根式的乘除。本節(jié)課先學習二次根式的乘法。

問題1什么叫二次根式?二次根式有哪些性質?

師生活動學生回答。

【設計意圖】乘法運算和二次根式的化簡需要用到二次根式的性質。

問題2教材第6頁“探究”欄目,計算結果如何?有何規(guī)律?

師生活動學生計算、思考并嘗試歸納,引導學生用自己的語言描述乘法法則的內容。

【設計意圖】學生在自主探究的過程中發(fā)現規(guī)律,運用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則。要求學生用數學語言和文字分別描述法則,以培養(yǎng)學生的符號意識。

2、觀察比較,理解法則

問題3簡單的根式運算。

師生活動學生動手操作,教師檢驗。

問題4二次根式的乘除成立的條件是什么?等式反過來有什么價值?

師生活動學生回答,給出正確答案后,教師給出積的算術平方根的性質。

【設計意圖】讓學生運用法則進行簡單的二次根式的乘法運算,以檢驗法則的掌握情況。乘法法則反過來就是積的算術平方根的性質,性質是為運算服務的,積的算術平方根的性質將積的算術平方根分解成幾個因數或因式的'算術平方根的積,利用整式的運算法則、乘法公式等可以簡化二次根式,培養(yǎng)學生的運算能力。

3、例題示范,學會應用

例1化簡:(1)二次根式的乘除;(2)二次根式的乘除。

師生活動提問:你是怎么理解例(1)的?

師生合作回答上述問題。對于根式運算的最后結果,一般被開方數中有開得盡方的因數或因式,應依據二次根式的性質二次根式的乘除將其移出根號外。

再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?

【設計意圖】通過運算,培養(yǎng)學生的運算能力,明確二次根式化簡的方向。積的算術平方根的性質可以進行二次根式的化簡。

例2計算:(1)二次根式的乘除;(2)二次根式的乘除;(3)二次根式的乘除

師生活動學生計算,教師檢驗。

(3)例(3)的運算是選學內容。讓學有余力的學生學到“根號下為字母的二次根式”的運算。本題先利用積的算術平方根的性質,得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外。

【設計意圖】引導學生及時總結,強調利用運算律進行運算,利用乘法公式簡化運算。讓學生認識到,二次根式是一類特殊的實數,因此滿足實數的運算律,關于整式運算的公式和方法也適用。

教材中雖然指明,如未特別說明,本章中所有的字母都表示正數,但仍應強調,看到根號就要注意被開方數的符號??梢愿鶕胃降母拍顚ψ帜傅姆栠M行判斷,在移出根號時正確處理符號問題。

4、鞏固概念,學以致用

練習:教科書第7頁練習第1題。第10頁習題16.2第1題。

【設計意圖】鞏固性練習,同時檢驗乘法法則的掌握情況。

5、歸納小結,反思提高

師生共同回顧本節(jié)課所學內容,并請學生回答以下問題:

(1)你能說明二次根式的乘法法則是如何得出的嗎?

(2)你能說明乘法法則逆用的意義嗎?

(3)化簡二次根式的基本步驟是怎樣?一般對最后結果有何要求?

6、布置作業(yè):教科書第7頁第2、3題。習題16.2第1,6題。

五、目標檢測設計

1、下列各式中,一定能成立的是( )

a.二次根式的乘除b.二次根式的乘除

c.二次根式的乘除d.二次根式的乘除

【設計意圖】考查二次根式的概念和性質,這是進行二次根式的乘法運算的基礎。

2、化簡二次根式的乘除______________________________。

【設計意圖】二次根式是特殊的實數,實數的相關運算法則也適用于二次根式。

3、已知二次根式的乘除,化簡二次根式二次根式的乘除的結果是()

a.二次根式的乘除b.二次根式的乘除c.二次根式的乘除d.二次根式的乘除

【設計意圖】鞏固二次根式的性質,利用積的算術平方根的性質正確化簡二次根式。

二次根式數學教案篇十五

教學過程。

一、復習引入。

1.把下列各根式化簡,并說出化簡的根據:

2.引導學生觀察考慮:

化簡前后的根式,被開方數有什么不同?

化簡前的被開方數有分數,分式;化簡后的被開方數都是整數或整式,且被開方數中開得盡方的因數或因式,被移到根號外。

3.啟發(fā)學生回答:

二次根式,請同學們考慮一下被開方數符合什么條件的二次根式叫做最簡二次根式?

二、講解新課。

1.總結學生回答的內容后,給出最簡二次根式定義:

滿足下列兩個條件的二次根式叫做最簡二次根式:

(1)被開方數的因數是整數,因式是整式;

(2)被開方數中不含能開得盡的因數或因式。

最簡二次根式定義中第(1)條說明被開方數不含有分母;分母是1的例外。第(2)條說明被開方數中每個因式的指數小于2;特別注意被開方數應化為因式連乘積的形式。

2.練習:

下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

3.例題:

4.總結。

把二次根式化成最簡二次根式的根據是什么?應用了什么方法?

當被開方數為整數或整式時,把被開方數進行因數或因式分解,根據積的算術平方根的性質,把開得盡方的因數或因式用它的算術平方根代替移到根號外面去。

當被開方數是分數或分式時,根據分式的'基本性質和商的算術平方根的性質化去分母。

此方法是先根據分式的基本性質把被開方數的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

三、鞏固練習。

2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

四、小結。

本節(jié)課學習了最簡二次根式的定義及化簡二次根式的方法。同學們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據積的算術平方根和商的算術平方根的性質把一個根式化成最簡二次根式,特別注意當被開方數為多項式時要進行因式分解,被開方數為兩個分數的和則要先通分,再化簡。

五、布置作業(yè)。

二次根式數學教案篇十六

(2)會用公式化簡二次根式.

(1)學生能通過計算發(fā)現規(guī)律并對其進行一般化的推廣,得出乘法法則的內容;

(2)學生能利用二次根式的乘法法則和積的算術平方根的性質,化簡二次根式.

教學問題診斷分析

本節(jié)課的學習中,學生在得出乘法法則和積的算術平方根的性質后,對于何時該選用何公式簡化運算感到困難.運算習慣的養(yǎng)成與符號意識的養(yǎng)成、運算能力的形成緊密相關,由于該內容與以前學過的實數內容有較多的聯系,例如,整式中的乘法公式在二次根式的運算中也成立,在教學中,要多從聯系性上下力氣.,培養(yǎng)學生良好的運算習慣.

在教學時,通過實例運算,對于將一個二次根式化為最簡二次根式,一般有兩種情況:

(2)如果被開方數不含分母,可以先將它分解因數或分解因式,然后吧開得盡方的因數或因式開出來,從而將式子化簡.

本節(jié)課的教學難點為:二次根式的性質及乘法法則的正確應用和二次根式的化簡.

教學過程設計

1.復習引入,探究新知

我們前面已經學習了二次根式的概念和性質,本節(jié)課開始我們要學習二次根式的乘除.本節(jié)課先學習二次根式的乘法.

問題1什么叫二次根式?二次根式有哪些性質?

師生活動學生回答。

【設計意圖】乘法運算和二次根式的化簡需要用到二次根式的性質.

問題2教材第6頁“探究”欄目,計算結果如何?有何規(guī)律?

師生活動學生計算、思考并嘗試歸納,引導學生用自己的語言描述乘法法則的內容.

【設計意圖】學生在自主探究的過程中發(fā)現規(guī)律,運用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學生用數學語言和文字分別描述法則,以培養(yǎng)學生的符號意識.

2.觀察比較,理解法則

問題3簡單的根式運算.

師生活動學生動手操作,教師檢驗.

問題4二次根式的乘除成立的條件是什么?等式反過來有什么價值?

師生活動 學生回答,給出正確答案后,教師給出積的算術平方根的性質.

【設計意圖】讓學生運用法則進行簡單的二次根式的乘法運算,以檢驗法則的掌握情況.乘法法則反過來就是積的算術平方根的性質,性質是為運算服務的,積的算術平方根的性質將積的算術平方根分解成幾個因數或因式的算術平方根的積,利用整式的運算法則、乘法公式等可以簡化二次根式,培養(yǎng)學生的運算能力.

3.例題示范,學會應用

例1 化簡:(1)二次根式的乘除; (2)二次根式的乘除.

師生活動提問:你是怎么理解例(1)的?

師生合作回答上述問題.對于根式運算的最后結果,一般被開方數中有開得盡方的因數或因式,應依據二次根式的性質二次根式的乘除將其移出根號外.

再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?

【設計意圖】通過運算,培養(yǎng)學生的運算能力,明確二次根式化簡的方向.積的算術平方根的性質可以進行二次根式的化簡.

例2 計算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

師生活動學生計算,教師檢驗.

(3)例(3)的運算是選學內容.讓學有余力的學生學到“根號下為字母的二次根式”的運算.本題先利用積的算術平方根的性質,得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外.

【設計意圖】引導學生及時總結,強調利用運算律進行運算,利用乘法公式簡化運算.讓學生認識到,二次根式是一類特殊的實數,因此滿足實數的運算律,關于整式運算的公式和方法也適用.

教材中雖然指明,如未特別說明,本章中所有的字母都表示正數,但仍應強調,看到根號就要注意被開方數的符號.可以根據二次根式的概念對字母的符號進行判斷,在移出根號時正確處理符號問題.

4.鞏固概念,學以致用

練習:教科書第7頁練習第1題. 第10頁習題16.2第1題.

【設計意圖】鞏固性練習,同時檢驗乘法法則的掌握情況.

5.歸納小結,反思提高

師生共同回顧本節(jié)課所學內容,并請學生回答以下問題:

(1)你能說明二次根式的乘法法則是如何得出的嗎?

(2)你能說明乘法法則逆用的意義嗎?

(3)化簡二次根式的基本步驟是怎樣?一般對最后結果有何要求?

6.布置作業(yè):教科書第7頁第2、3題.習題16.2第1,6題.

五、目標檢測設計

1.下列各式中,一定能成立的是( )

a.二次根式的乘除 b.二次根式的乘除

c.二次根式的乘除 d.二次根式的乘除

【設計意圖】考查二次根式的概念和性質,這是進行二次根式的乘法運算的基礎.

2.化簡二次根式的乘除 ______________________________。

【設計意圖】二次根式是特殊的實數,實數的相關運算法則也適用于二次根式.

3.已知二次根式的乘除,化簡二次根式二次根式的乘除的結果是()

a.二次根式的乘除 b.二次根式的乘除 c.二次根式的乘除 d.二次根式的乘除

【設計意圖】鞏固二次根式的性質,利用積的算術平方根的性質正確化簡二次根式.

二次根式數學教案篇十七

2.會運用積和商的算術平方根的性質,把一個二次根式化為最簡二次根式。

一個二次根式化成最簡二次根式的方法。

1.把下列各根式化簡,并說出化簡的根據:

2.引導學生觀察考慮:

化簡前后的根式,被開方數有什么不同?

化簡前的被開方數有分數,分式;化簡后的被開方數都是整數或整式,且被開方數中開得盡方的因數或因式,被移到根號外。

3.啟發(fā)學生回答:

二次根式,請同學們考慮一下被開方數符合什么條件的二次根式叫做最簡二次根式?

1.總結學生回答的內容后,給出最簡二次根式定義:

滿足下列兩個條件的二次根式叫做最簡二次根式:

(1)被開方數的因數是整數,因式是整式;。

(2)被開方數中不含能開得盡的.因數或因式。

最簡二次根式定義中第(1)條說明被開方數不含有分母;分母是1的例外。第(2)條說明被開方數中每個因式的指數小于2;特別注意被開方數應化為因式連乘積的形式。

2.練習:

下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

3.例題:

例1把下列各式化成最簡二次根式:

例2把下列各式化成最簡二次根式:

4.總結。

把二次根式化成最簡二次根式的根據是什么?應用了什么方法?

當被開方數為整數或整式時,把被開方數進行因數或因式分解,根據積的算術平方根的性質,把開得盡方的因數或因式用它的算術平方根代替移到根號外面去。

當被開方數是分數或分式時,根據分式的基本性質和商的算術平方根的性質化去分母。

此方法是先根據分式的基本性質把被開方數的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

1.把下列各式化成最簡二次根式:

2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

本節(jié)課學習了最簡二次根式的定義及化簡二次根式的方法。同學們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據積的算術平方根和商的算術平方根的性質把一個根式化成最簡二次根式,特別注意當被開方數為多項式時要進行因式分解,被開方數為兩個分數的和則要先通分,再化簡。

二次根式數學教案篇十八

(3)了解代數式的概念.。

(2)學生能靈活運用二次根式的性質進行二次根式的化簡;

(3)學生能從已學過的各種式子中,體會其共同特點,得出代數式的概念.。

二次根式的性質是二次根式化簡和運算的重要基礎.學生根據二次根式的概念和算術平方根的意義,由特殊到一般地得出二次根式的性質后,重在能靈活運用二次根式的性質進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質,對二次根式性質的靈活運用存在一定的困難,突破這一難點需要教師精心設計好每一道習題,讓學生在練習中進一步掌握二次根式的性質,培養(yǎng)其靈活運用的能力.

本節(jié)課的教學難點為:二次根式性質的靈活運用.

1.探究性質1。

問題1你能解釋下列式子的含義嗎?

師生活動:教師引導學生說出每一個式子的含義.。

二次根式數學教案篇十九

2.會運用積和商的算術平方根的性質,把一個二次根式化為最簡二次根式,數學教案-最簡二次根式 教學設計示例2。

最簡二次根式的定義。

一個二次根式化成最簡二次根式的方法。

1.把下列各根式化簡,并說出化簡的根據:

2.引導學生觀察考慮:

化簡前后的根式,被開方數有什么不同?

化簡前的被開方數有分數,分式;化簡后的被開方數都是整數或整式,且被開方數中開得盡方的因數或因式,被移到根號外。

3.啟發(fā)學生回答:

二次根式,請同學們考慮一下被開方數符合什么條件的二次根式叫做最簡二次根式?

滿足下列兩個條件的二次根式叫做最簡二次根式:

(1)被開方數的因數是整數,因式是整式;

(2)被開方數中不含能開得盡的'因數或因式,初中數學教案《數學教案-最簡二次根式 教學設計示例2》。

最簡二次根式定義中第(1)條說明被開方數不含有分母;分母是1的例外。第(2)條說明被開方數中每個因式的指數小于2;特別注意被開方數應化為因式連乘積的形式。

下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

例1 把下列各式化成最簡二次根式:

例2 把下列各式化成最簡二次根式:

把二次根式化成最簡二次根式的根據是什么?應用了什么方法?

當被開方數為整數或整式時,把被開方數進行因數或因式分解,根據積的算術平方根的性質,把開得盡方的因數或因式用它的算術平方根代替移到根號外面去。

當被開方數是分數或分式時,根據分式的基本性質和商的算術平方根的性質化去分母。

此方法是先根據分式的基本性質把被開方數的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

1.把下列各式化成最簡二次根式:

2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

二次根式數學教案篇二十

2、能力目標:能熟練進行二次根式的加減運算,能通過二次根式的加減法運算解決實際問題。

3、情感態(tài)度:培養(yǎng)學生善于思考,一絲不茍的科學精神。

重點:能熟練進行二次根式的加減運算。

難點:正確合并被開方數相同的二次根式,二次根式加減法的實際應用。

教學關鍵:通過復習舊知識,運用類比思想方法,達到溫故知新的目的;運用創(chuàng)設問題激發(fā)學生求知欲;通過學生全面參與學習(分層次要求),達到每個學生在學習數學上有不同的發(fā)展。

運用教具:小黑板等。

問題與情景。

師生活動。

設計目的。

活動一:

情景引入,導學展示。

這道題是舊知識的回顧,老師可以找同學直接回答。對于問題,老師要關注:學生是否能熟練得到正確答案。教師傾聽學生的交流,指導學生探究。

問:什么樣的二次根式能進行加減運算,運算到那一步為止。

由此也可以看到只有通過找出被開方數相同的二次根式的途徑,才能進行加減。

加強新舊知識的聯系。通過觀察,初步認識同類二次根式。

3、a、b層同學自主學習15頁例1、例2、例3,c層同學至少完成例1、例2的學習。

例1.計算:

(1);

(2)-;

例2.計算:

1)。

2)。

活動二:分層練習,合作互助。

1、下列計算是否正確?為什么?

(1)。

(2);

(3)。

2、計算:

(1);

(2)。

(3)。

(4)。

3、(見課本16頁)。

補充:

活動三:分層檢測,反饋小結。

教材17頁習題:

a層、b層:2、3.

c層1、2.

小結:

這節(jié)課你學到了什么知識?你有什么收獲?

作業(yè):課堂練習冊第5、6頁。

自學的同時抽查部分同學在黑板上板書計算過程。抽2名c層同學在黑板上完成例1板書過程,學生在計算時若出現錯誤,抽2名b層同學訂正。抽2名b層同學在黑板上完成例2板書過程,若出現錯誤,再抽2名a層同學訂正。抽1名a層同學在黑板上完成例3板書過程,并做適當的分析講解。

此題是聯系實際的題目,需要學生先列式,再計算。并將結果精確到0.1m,學生考慮問題要全面,不能漏掉任何一段鋼材。

老師提示:

1)解決問題的方案是否得當;2)考慮的問題是否全面。3)計算是否準確。

a層同學完成16頁練習1、2、3;b層同學完成練習1、2,可選做第3題;c層同學盡量完成練習1、2。多數同學完成后,讓學生在小組內互相檢查,有問題時共同分析矯正或請教老師。也可以抽查部分同學。例如:抽3名c層同學口答練習1;抽4名b層或c層同學在黑板上板書練習第2題;抽1名a層或b層同學在黑板上板書練習第3題后再分析講解。

3)運算法則的運用是否正確。

先測試,再小組內互批,查找問題。學生反思本節(jié)課學到的知識,談自己的感受。

小結時教師要關注:

1)學生是否抓住本課的重點;

2)對于常見錯誤的認識。

把學習目標由高到低分為a、b、c三個層次,教學中做到分層要求。

學生學習經歷由淺到深的過程,可以提高學生能力,同時有利于激發(fā)學生的探索知識的欲望。

將運算融入實際問題中去,提高了學生的學習興趣和對數學知識的應用意識和能力。

小組成員互相檢查學生對于新的知識掌握的情況,鞏固學生剛掌握的知識能力。達到共同把關、合作互助的目的。

培養(yǎng)學生的計算的準確性,以培養(yǎng)學生科學的精神。

對課堂的問題及時反饋,使學生熟練掌握新知識。

每個學生對于知識的理解程度不同,學生回答時教師要多鼓勵學生。

【本文地址:http://mlvmservice.com/zuowen/18433415.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔