教案能夠幫助教師提前預(yù)測(cè)學(xué)生可能遇到的問(wèn)題,并制定相應(yīng)的解決方案。編寫(xiě)一個(gè)完整的教案需要考慮教學(xué)方法和策略的運(yùn)用。以下是小編為大家收集的教案范文,僅供參考,大家一起來(lái)看看吧。
高中高一數(shù)學(xué)教案篇一
教學(xué)目的:
(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法。
(2)使學(xué)生初步了解“屬于”關(guān)系的意義。
(3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義。
教學(xué)重點(diǎn):集合的基本概念及表示方法。
教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示。
一些簡(jiǎn)單的集合。
授課類(lèi)型:新授課。
課時(shí)安排:1課時(shí)。
教具:多媒體、實(shí)物投影儀。
內(nèi)容分析:
高中高一數(shù)學(xué)教案篇二
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來(lái)公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。通過(guò)不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學(xué)地提出、分析和解決問(wèn)題(包括簡(jiǎn)單的實(shí)際問(wèn)題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹(shù)立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。 6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹(shù)立辯證唯物主義和歷史唯物主義世界觀。
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)(a版)》,它在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):
1.親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2.問(wèn)題性:以恰時(shí)恰點(diǎn)的問(wèn)題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問(wèn)題意識(shí),孕育創(chuàng)新精神。
3.科學(xué)性與思想性:通過(guò)不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類(lèi)比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問(wèn)題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4.時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。
1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語(yǔ)言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。
2. 通過(guò)觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
3. 在教學(xué)中強(qiáng)調(diào)類(lèi)比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
兩個(gè)班一個(gè)普高一個(gè)職高,學(xué)習(xí)情況良好,但學(xué)生自覺(jué)性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺(jué)性。班級(jí)存在的最大問(wèn)題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭(zhēng)取每一堂課落實(shí)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹(shù)立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說(shuō)明抽象的知識(shí);注意從已有的`知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問(wèn)題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問(wèn)題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問(wèn)題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
俗話說(shuō)的好,好的教學(xué)計(jì)劃是教學(xué)成功的一半,作為一名優(yōu)異的教師,做好一定的教學(xué)計(jì)劃很有必要。
總結(jié):制定教學(xué)計(jì)劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵(lì)學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。希望上面的,能受到大家的歡迎!
高中高一數(shù)學(xué)教案篇三
一、指導(dǎo)思想:
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來(lái)公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。通過(guò)不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
高一下學(xué)期數(shù)學(xué)教學(xué)計(jì)劃3.提高數(shù)學(xué)地提出、分析和解決問(wèn)題(包括簡(jiǎn)單的實(shí)際問(wèn)題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹(shù)立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹(shù)立辯證唯物主義和歷史唯物主義世界觀。
二、
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)(a版)》,它在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):
1.親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2.問(wèn)題性:以恰時(shí)恰點(diǎn)的問(wèn)題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問(wèn)題意識(shí),孕育創(chuàng)新精神。
3.科學(xué)性與思想性:通過(guò)不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類(lèi)比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問(wèn)題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4.時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的.素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。
1)選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語(yǔ)言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。
2)通過(guò)觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
3)在教學(xué)中強(qiáng)調(diào)類(lèi)比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
1、基本情況:12班共66人,男生22人,女生44人;本班相對(duì)而言,數(shù)學(xué)尖子約3人,中上等生約10人,中等生約11人,中下生約20人,后進(jìn)生約12人。13班共59人,男生39人,女生20人;本班相對(duì)而言,數(shù)學(xué)尖子約12人,中上等生約12人,中等生約21人,中下生約7人,后進(jìn)生約7人。
2、兩個(gè)班均屬普高班,學(xué)習(xí)情況良好,但學(xué)生自覺(jué)性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺(jué)性。班級(jí)存在的最大問(wèn)題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭(zhēng)取每一堂課落實(shí)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。
a)激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹(shù)立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
b)注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說(shuō)明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
c)加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問(wèn)題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問(wèn)題的習(xí)慣,進(jìn)行辨證唯物主義教育。
d)抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問(wèn)題的能力。
e)自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法。
高中高一數(shù)學(xué)教案篇四
(1)通過(guò)實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類(lèi)。
(3)會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
(4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類(lèi)。
(1)讓學(xué)生通過(guò)直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周?chē)鰪?qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實(shí)物模型、投影儀四、教學(xué)思路。
1、教師提出問(wèn)題:在我們生活周?chē)杏胁簧儆刑厣慕ㄖ?,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過(guò)觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類(lèi)嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類(lèi),分辯棱柱、圓柱、棱錐。
3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個(gè)面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5、提出問(wèn)題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類(lèi)?
6、以類(lèi)似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類(lèi)以及表示。
7、讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8、引導(dǎo)學(xué)生以類(lèi)似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9、教師指出圓柱和棱柱統(tǒng)稱(chēng)為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱(chēng)為臺(tái)體,圓錐與棱錐統(tǒng)稱(chēng)為錐體。
1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明,如圖)。
2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3、課本p8,習(xí)題1.1a組第1題。
5、棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容六、布置作業(yè)。
課本p8練習(xí)題1.1b組第1題。
課外練習(xí)課本p8習(xí)題1.1b組第2題。
高中高一數(shù)學(xué)教案篇五
2結(jié)合的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期。
3會(huì)用代數(shù)方法求等函數(shù)的周期。
4理解周期性的幾何意義。
“周期函數(shù)的概念”,周期的求解。
1、是周期函數(shù)是指對(duì)定義域中所有都有,即應(yīng)是恒等式。
2、周期函數(shù)一定會(huì)有周期,但不一定存在最小正周期。
例1、若鐘擺的高度與時(shí)間之間的函數(shù)關(guān)系如圖所示。
(1)求該函數(shù)的周期;
(2)求時(shí)鐘擺的高度。
例2、求下列函數(shù)的周期。
(1)(2)。
總結(jié):(1)函數(shù)(其中均為常數(shù),且的周期t=xx)。
(2)函數(shù)(其中均為常數(shù),且的周期t=xx)。
例3、求證:的周期為。
且
總結(jié):函數(shù)(其中均為常數(shù),且的周期t=。
例5、(1)求的周期。
(2)已知滿足,求證:是周期函數(shù)。
課后思考:能否利用單位圓作函數(shù)的圖象。
高中高一數(shù)學(xué)教案篇六
數(shù)學(xué)是一門(mén)培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過(guò)程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問(wèn)題情境——提出數(shù)學(xué)問(wèn)題——嘗試解決問(wèn)題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類(lèi)比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問(wèn)題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(人教a版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六)。本節(jié)是第一課時(shí),教學(xué)內(nèi)容為公式(二)、(三)、(四)。教材要求通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對(duì)稱(chēng)思想發(fā)現(xiàn)任意角、終邊的對(duì)稱(chēng)關(guān)系,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四)。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位。
本節(jié)課的授課對(duì)象是本校高一(x)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動(dòng)手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容。
(1)基礎(chǔ)知識(shí)目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過(guò)程,掌握正弦、余弦、正切的誘導(dǎo)公式;
(4)個(gè)性品質(zhì)目標(biāo):通過(guò)誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀。
1、教學(xué)重點(diǎn):理解并掌握誘導(dǎo)公式。
2、教學(xué)難點(diǎn):正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡(jiǎn)三角函數(shù)式。
“授人以魚(yú)不如授之以魚(yú)”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實(shí)現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究。下面我從教法、學(xué)法、預(yù)期效果等三個(gè)方面做如下分析。
數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動(dòng)的教學(xué),而不僅僅是數(shù)學(xué)活動(dòng)的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識(shí),更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì)。
在本節(jié)課的教學(xué)過(guò)程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類(lèi)比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問(wèn)題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”,由易到難,由特殊到一般,盡力營(yíng)造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂(lè)和成功的喜悅。
“現(xiàn)代的文盲不是不識(shí)字的人,而是沒(méi)有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識(shí)點(diǎn),卻忽略了學(xué)生接受知識(shí)需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情。如何能讓學(xué)生程度的消化知識(shí),提高學(xué)習(xí)熱情是教者必須思考的問(wèn)題。
在本節(jié)課的教學(xué)過(guò)程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問(wèn)題、共同探討、解決問(wèn)題簡(jiǎn)單應(yīng)用、重現(xiàn)探索過(guò)程、練習(xí)鞏固。讓學(xué)生參與探索的全部過(guò)程,讓學(xué)生在獲取新知識(shí)及解決問(wèn)題的方法后,合作交流、共同探索,使之由被動(dòng)學(xué)習(xí)轉(zhuǎn)化為主動(dòng)的自主學(xué)習(xí)。
本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過(guò)程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡(jiǎn)單的化簡(jiǎn)問(wèn)題。
高中高一數(shù)學(xué)教案篇七
2、實(shí)際問(wèn)題中的有關(guān)術(shù)語(yǔ)、名稱(chēng):
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見(jiàn)的`如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問(wèn)題的常見(jiàn)題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問(wèn)題、物理問(wèn)題等;
2、實(shí)際問(wèn)題中的有關(guān)術(shù)語(yǔ)、名稱(chēng):
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見(jiàn)的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問(wèn)題的常見(jiàn)題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問(wèn)題、物理問(wèn)題等;
一、知識(shí)歸納
2、實(shí)際問(wèn)題中的有關(guān)術(shù)語(yǔ)、名稱(chēng):
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見(jiàn)的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問(wèn)題的常見(jiàn)題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問(wèn)題、物理問(wèn)題等;
二、例題討論
一)利用方向角構(gòu)造三角形
四)測(cè)量角度問(wèn)題
例4、在一個(gè)特定時(shí)段內(nèi),以點(diǎn)e為中心的7海里以?xún)?nèi)海域被設(shè)為警戒水域.點(diǎn)e正北55海里處有一個(gè)雷達(dá)觀測(cè)站a.某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)a北偏東。
高中高一數(shù)學(xué)教案篇八
本節(jié)的重點(diǎn)是二次根式的化簡(jiǎn).本章自始至終圍繞著二次根式的化簡(jiǎn)與計(jì)算進(jìn)行,而二次根式的化簡(jiǎn)不但涉及到前面學(xué)習(xí)過(guò)的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對(duì)值以及各種非負(fù)數(shù)、因式分解等知識(shí),在應(yīng)用中常常需要對(duì)字母進(jìn)行分類(lèi)討論.
本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式.這個(gè)公式的表達(dá)形式對(duì)學(xué)生來(lái)說(shuō),比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對(duì)字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯(cuò)誤.
教法建議
1.性質(zhì)的引入方法很多,以下2種比較常用:
(1)設(shè)計(jì)問(wèn)題引導(dǎo)啟發(fā):由設(shè)計(jì)的問(wèn)題
1)、、各等于什么?
2)、、各等于什么?
啟發(fā)、引導(dǎo)學(xué)生猜想出
(2)從算術(shù)平方根的意義引入.
2.性質(zhì)的鞏固有兩個(gè)方面需要注意:
(1)注意與性質(zhì)進(jìn)行對(duì)比,可出幾道類(lèi)型不同的題進(jìn)行比較;
(2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時(shí)要注意細(xì)分層次加以鞏固,如單個(gè)數(shù)字,單個(gè)字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等.
(第1課時(shí))
1.掌握二次根式的性質(zhì)
2.能夠利用二次根式的性質(zhì)化簡(jiǎn)二次根式
3.通過(guò)本節(jié)的學(xué)習(xí)滲透分類(lèi)討論的數(shù)學(xué)思想和方法
對(duì)比、歸納、總結(jié)
1.重點(diǎn):理解并掌握二次根式的性質(zhì)
2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡(jiǎn)有關(guān)的二次根式.
1課時(shí)
五、教b具學(xué)具準(zhǔn)備
投影儀、膠片、多媒體
復(fù)習(xí)對(duì)比,歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主
一、導(dǎo)入新課
我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.
問(wèn):式子的意義是什么?被開(kāi)方數(shù)中的表示的是什么數(shù)?
答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).
二、新課
計(jì)算下列各題,并回答以下問(wèn)題:
(1);(2);(3);
1.各小題中被開(kāi)方數(shù)的冪的底數(shù)都是什么數(shù)?
2.各小題的結(jié)果和相應(yīng)的被開(kāi)方數(shù)的冪的底數(shù)有什么關(guān)系?
3.用字母表示被開(kāi)方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語(yǔ)言敘述你的結(jié)論.
高中高一數(shù)學(xué)教案篇九
1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過(guò)程.
2.通過(guò)函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
3.通過(guò)對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂(lè)于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí).教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫(huà)它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒(méi)有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來(lái)解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái).在這個(gè)過(guò)程中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來(lái).
(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開(kāi)始,逐漸讓在數(shù)軸上動(dòng)起來(lái),觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫(xiě)出來(lái).經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較容易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱(chēng)的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱(chēng)性,同時(shí)還可以借助圖象說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱(chēng)只是函數(shù)具備奇偶性的必要條件而不是充分條件.
高中高一數(shù)學(xué)教案篇十
(2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;。
(3)能用邏輯聯(lián)結(jié)詞和簡(jiǎn)單命題構(gòu)成不同形式的復(fù)合命題;。
(4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡(jiǎn)單命題;。
(5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;。
(6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能.
二、教學(xué)重點(diǎn)難點(diǎn):
重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解.
三、教學(xué)過(guò)程。
1.新課導(dǎo)入。
在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開(kāi)邏輯.具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯(cuò)誤.其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的知識(shí).
初一平面幾何中曾學(xué)過(guò)命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子.(板書(shū):命題.)。
(從初中接觸過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)。
學(xué)生舉例:平行四邊形的對(duì)角線互相平.……(1)。
兩直線平行,同位角相等.…………(2)。
教師提問(wèn):“……相等的角是對(duì)頂角”是不是命題?……(3)。
(同學(xué)議論結(jié)果,答案是肯定的.)。
教師提問(wèn):什么是命題?
(學(xué)生進(jìn)行回憶、思考.)。
概念總結(jié):對(duì)一件事情作出了判斷的語(yǔ)句叫做命題.
(教師肯定了同學(xué)的回答,并作板書(shū).)。
由于判斷有正確與錯(cuò)誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
(教師利用投__,和學(xué)生討論以下問(wèn)題.)。
例1判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:
命題一定要對(duì)一件事情作出判斷,(3)、(4)沒(méi)有對(duì)一件事情作出判斷,所以它們不是命題.
初中所學(xué)的命題概念涉及邏輯知識(shí),我們今天開(kāi)始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡(jiǎn)易邏輯的知識(shí).
2.講授新課。
(片刻后請(qǐng)同學(xué)舉手回答,一共講了四個(gè)問(wèn)題.師生一道歸納如下.)。
(1)什么叫做命題?
可以判斷真假的語(yǔ)句叫做命題.
判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看這語(yǔ)句有沒(méi)有對(duì)一件事情作出了判斷,疑問(wèn)句、祈使句都不是命題.有些語(yǔ)句中含有變量,如中含有變量,在不給定變量的值之前,我們無(wú)法確定這語(yǔ)句的真假(這種含有變量的語(yǔ)句叫做“開(kāi)語(yǔ)句”).
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.
“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.
對(duì)“或”的理解,可聯(lián)想到集合中“并集”的概念.中的“或”,它是指“”、“”中至少一個(gè)是成立的,即且;也可以且;也可以且.這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.
對(duì)“且”的理解,可聯(lián)想到集合中“交集”的概念.中的“且”,是指“”、“這兩個(gè)條件都要滿足的意思.
對(duì)“非”的理解,可聯(lián)想到集合中的“補(bǔ)集”概念,若命題對(duì)應(yīng)于集合,則命題非就對(duì)應(yīng)著集合在全集中的補(bǔ)集.
命題可分為簡(jiǎn)單命題和復(fù)合命題.
不含邏輯聯(lián)結(jié)詞的命題叫做簡(jiǎn)單命題.簡(jiǎn)單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.
由簡(jiǎn)單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡(jiǎn)單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.
(4)命題的表示:用,,,,……來(lái)表示.
(教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開(kāi).)。
我們接觸的復(fù)合命題一般有“或”、“且”、“非”、“若則”等形式.
給出一個(gè)含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說(shuō)出構(gòu)成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡(jiǎn)單命題,寫(xiě)出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.
對(duì)于給出“若則”形式的復(fù)合命題,應(yīng)能找到條件和結(jié)論.
在判斷一個(gè)命題是簡(jiǎn)單命題還是復(fù)合命題時(shí),不能只從字面上來(lái)看有沒(méi)有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無(wú)“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無(wú)“或”,但它們都是復(fù)合命題.
3.鞏固新課。
例2判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡(jiǎn)單命題.
(1);。
(2)0.5非整數(shù);。
(3)內(nèi)錯(cuò)角相等,兩直線平行;。
(4)菱形的對(duì)角線互相垂直且平分;。
(5)平行線不相交;。
(6)若,則.
(讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)。
例3寫(xiě)出下表中各給定語(yǔ)的否定語(yǔ)(用課件打出來(lái)).
若給定語(yǔ)為。
等于。
大于。
是
都是。
至多有一個(gè)。
至少有一個(gè)。
至多有#formatimgid_0#個(gè)。
其否定語(yǔ)分別為。
分析:“等于”的否定語(yǔ)是“不等于”;。
“大于”的否定語(yǔ)是“小于或者等于”;。
“是”的否定語(yǔ)是“不是”;。
“都是”的否定語(yǔ)是“不都是”;。
“至多有一個(gè)”的否定語(yǔ)是“至少有兩個(gè)”;。
“至少有一個(gè)”的否定語(yǔ)是“一個(gè)都沒(méi)有”;。
“至多有個(gè)”的否定語(yǔ)是“至少有個(gè)”.
(如果時(shí)間寬裕,可讓學(xué)生討論后得出結(jié)論.)。
置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時(shí)間作適當(dāng)?shù)谋嫖雠c展開(kāi).)。
4.課堂練習(xí):第26頁(yè)練習(xí)1,2.
5.課外作業(yè):第29頁(yè)習(xí)題1.61,2.
高中高一數(shù)學(xué)教案篇十一
(6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能.。
重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解.。
1.新課導(dǎo)入。
初一平面幾何中曾學(xué)過(guò)命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子.(板書(shū):命題.)。
(從初中接觸過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)。
學(xué)生舉例:平行四邊形的對(duì)角線互相平.……(1)。
兩直線平行,同位角相等.…………(2)。
教師提問(wèn):“……相等的角是對(duì)頂角”是不是命題?……(3)。
(同學(xué)議論結(jié)果,答案是肯定的.)。
教師提問(wèn):什么是命題?
(學(xué)生進(jìn)行回憶、思考.)。
概念總結(jié):對(duì)一件事情作出了判斷的語(yǔ)句叫做命題.。
(教師肯定了同學(xué)的回答,并作板書(shū).)。
(教師利用投影片,和學(xué)生討論以下問(wèn)題.)。
例1判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:
2.講授新課。
(片刻后請(qǐng)同學(xué)舉手回答,一共講了四個(gè)問(wèn)題.師生一道歸納如下.)。
(1)什么叫做命題?
可以判斷真假的語(yǔ)句叫做命題.。
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.。
命題可分為簡(jiǎn)單命題和復(fù)合命題.。
(4)命題的表示:用p,q,r,s,……來(lái)表示.。
(教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開(kāi).)。
對(duì)于給出“若p則q”形式的復(fù)合命題,應(yīng)能找到條件p和結(jié)論q.。
3.鞏固新課。
(1)5;
(2)0.5非整數(shù);
(3)內(nèi)錯(cuò)角相等,兩直線平行;
(4)菱形的對(duì)角線互相垂直且平分;
(5)平行線不相交;
(6)若ab=0,則a=0.。
(讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)。
高中高一數(shù)學(xué)教案篇十二
所謂三維目標(biāo)是是指:“知識(shí)與技能”,“過(guò)程和方法”、“情感、態(tài)度、價(jià)值觀”。
知識(shí)與技能:既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。我們?cè)诮虒W(xué)過(guò)程中,需要學(xué)生掌握什么,哪些些問(wèn)題需要重點(diǎn)掌握,哪些只需簡(jiǎn)單理解;技能是會(huì)與不會(huì)的問(wèn)題。屬顯性范疇,具有可測(cè)性,大都采用定量分析與評(píng)價(jià)、知識(shí)與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國(guó)傳統(tǒng)教育教學(xué)的優(yōu)勢(shì),應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚(yáng)。新課改不是不要雙基,而是不要過(guò)度的強(qiáng)調(diào)雙基,而舍棄弱化其它有價(jià)值的東西,導(dǎo)致非全面、不和藹的發(fā)展。
過(guò)程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)?!斑^(guò)程和方法”維度的目標(biāo)立足于讓學(xué)生會(huì)學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的過(guò)程的體驗(yàn)、方法的選擇,是在知識(shí)與能力目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)的進(jìn)一步開(kāi)發(fā)。過(guò)程與方法是一個(gè)體驗(yàn)的過(guò)程、發(fā)現(xiàn)的過(guò)程,不但可以讓學(xué)生體驗(yàn)到科學(xué)發(fā)展的過(guò)程,我們更多地要讓學(xué)生掌握過(guò)程,不一定要統(tǒng)一的結(jié)果。
情感、態(tài)度與價(jià)值觀:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動(dòng)力系統(tǒng)?!扒楦?、態(tài)度和價(jià)值觀”,目標(biāo)立足于讓學(xué)生樂(lè)學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的情感體驗(yàn)、態(tài)度形成、價(jià)值觀的體現(xiàn),是在知識(shí)與能力、過(guò)程與方法目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)深層次的開(kāi)拓,只有學(xué)生充分的認(rèn)識(shí)到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會(huì)有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來(lái)回報(bào)社會(huì)。
三維目標(biāo)不是三個(gè)目標(biāo),也不是三種目標(biāo),是一個(gè)問(wèn)題的三個(gè)方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。
高中高一數(shù)學(xué)教案篇十三
2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
3、能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡(jiǎn)單的實(shí)際問(wèn)題。
1、焦點(diǎn)在x軸上,虛軸長(zhǎng)為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
3、雙曲線的漸進(jìn)線方程為、
4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是、
探究1、類(lèi)比橢圓的幾何性質(zhì)寫(xiě)出雙曲線的幾何性質(zhì),畫(huà)出草圖并,說(shuō)出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
練習(xí):已知雙曲線經(jīng)過(guò),且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
(1)過(guò)點(diǎn),離心率、
(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、
例3(理)求離心率為,且過(guò)點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
4、設(shè)雙曲線的半焦距為,直線過(guò)、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率、
將本文的word文檔下載到電腦,方便收藏和打印。
高中高一數(shù)學(xué)教案篇十四
3.能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡(jiǎn)單的實(shí)際問(wèn)題。
一、預(yù)習(xí)檢查。
1、焦點(diǎn)在x軸上,虛軸長(zhǎng)為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為.
2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為.
3、雙曲線的漸進(jìn)線方程為.
4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是.
二、問(wèn)題探究。
探究1、類(lèi)比橢圓的幾何性質(zhì)寫(xiě)出雙曲線的幾何性質(zhì),畫(huà)出草圖并,說(shuō)出它們的不同.
探究2、雙曲線與其漸近線具有怎樣的關(guān)系.
練習(xí):已知雙曲線經(jīng)過(guò),且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是.
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程.
(1)過(guò)點(diǎn),離心率.
(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為.
例2已知雙曲線,直線過(guò)點(diǎn),左焦點(diǎn)到直線的距離等于該雙曲線的虛軸長(zhǎng)的,求雙曲線的離心率.
例3(理)求離心率為,且過(guò)點(diǎn)的雙曲線標(biāo)準(zhǔn)方程.
三、思維訓(xùn)練。
1、已知雙曲線方程為,經(jīng)過(guò)它的右焦點(diǎn),作一條直線,使直線與雙曲線恰好有一個(gè)交點(diǎn),則設(shè)直線的斜率是.
2、橢圓的離心率為,則雙曲線的離心率為.
3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=.
4、(理)設(shè)是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點(diǎn),若,則.
四、知識(shí)鞏固。
1、已知雙曲線方程為,過(guò)一點(diǎn)(0,1),作一直線,使與雙曲線無(wú)交點(diǎn),則直線的斜率的集合是.
2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點(diǎn),相應(yīng)的焦點(diǎn)為,若以為直徑的圓恰好過(guò)點(diǎn),則離心率為.
3、已知雙曲線的左,右焦點(diǎn)分別為,點(diǎn)在雙曲線的右支上,且,則雙曲線的離心率的值為.
4、設(shè)雙曲線的半焦距為,直線過(guò)、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率.
5、(理)雙曲線的焦距為,直線過(guò)點(diǎn)和,且點(diǎn)(1,0)到直線的距離與點(diǎn)(-1,0)到直線的距離之和.求雙曲線的離心率的取值范圍.
高中高一數(shù)學(xué)教案篇十五
教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號(hào)及術(shù)語(yǔ)。
教學(xué)過(guò)程:
一、閱讀下列語(yǔ)句:
1)全體自然數(shù)0,1,2,3,4,5,
2)代數(shù)式.
3)拋物線上所有的點(diǎn)。
4)今年本校高一(1)(或(2))班的全體學(xué)生。
5)本校實(shí)驗(yàn)室的所有天平。
6)本班級(jí)全體高個(gè)子同學(xué)。
7)著名的科學(xué)家。
上述每組語(yǔ)句所描述的對(duì)象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個(gè)數(shù)分,可分為1)__________2)_________。
三、集合中元素的'三個(gè)性質(zhì):
四、元素與集合的關(guān)系:1)____________2)____________。
五、特殊數(shù)集專(zhuān)用記號(hào):
4)有理數(shù)集______5)實(shí)數(shù)集_____6)空集____。
六、集合的表示方法:
1)。
2)。
3)。
七、例題講解:
例1、中三個(gè)元素可構(gòu)成某一個(gè)三角形的三邊長(zhǎng),那么此三角形一定不是()。
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形。
例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑希缓笳f(shuō)出它們是有限集還是無(wú)限集?
1)地球上的四大洋構(gòu)成的集合;。
2)函數(shù)的全體值的集合;。
3)函數(shù)的全體自變量的集合;。
4)方程組解的集合;。
5)方程解的集合;。
6)不等式的解的集合;。
7)所有大于0且小于10的奇數(shù)組成的集合;。
8)所有正偶數(shù)組成的集合;。
例3、用符號(hào)或填空:
1)______q,0_____n,_____z,0_____。
2)______,_____。
3)3_____,
4)設(shè),,則。
例4、用列舉法表示下列集合;。
1.
2.
3.
4.
例5、用描述法表示下列集合。
1.所有被3整除的數(shù)。
2.圖中陰影部分點(diǎn)(含邊界)的坐標(biāo)的集合。
課堂練習(xí):。
例7、已知:,若中元素至多只有一個(gè),求的取值范圍。
思考題:數(shù)集a滿足:若,則,證明1):若2,則集合中還有另外兩個(gè)元素;2)若則集合a不可能是單元素集合。
小結(jié):
作業(yè)班級(jí)姓名學(xué)號(hào)。
1.下列集合中,表示同一個(gè)集合的是()。
a.m=,n=b.m=,n=。
c.m=,n=d.m=,n=。
2.m=,x=,y=,,.則()。
a.b.c.d.
3.方程組的解集是____________________.
4.在(1)難解的題目,(2)方程在實(shí)數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點(diǎn),(4)很多多項(xiàng)式。能夠組成集合的序號(hào)是________________.
5.設(shè)集合a=,b=,
c=,d=,e=。
其中有限集的個(gè)數(shù)是____________.
6.設(shè),則集合中所有元素的和為。
7.設(shè)x,y,z都是非零實(shí)數(shù),則用列舉法將所有可能的值組成的集合表示為。
8.已知f(x)=x2-ax+b,(a,br),a=,b=,。
若a=,試用列舉法表示集合b=。
9.把下列集合用另一種方法表示出來(lái):
(1)(2)。
(3)(4)。
10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說(shuō)明理由。
11.已知集合a=。
(1)若a中只有一個(gè)元素,求a的值,并求出這個(gè)元素;。
(2)若a中至多只有一個(gè)元素,求a的取值集合。
12.若-3,求實(shí)數(shù)a的值。
【總結(jié)】20xx年已經(jīng)到來(lái),新的一年數(shù)學(xué)網(wǎng)會(huì)為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來(lái)幫助!
高中高一數(shù)學(xué)教案篇十六
學(xué)習(xí)是一個(gè)潛移默化、厚積薄發(fā)的過(guò)程。編輯老師編輯了:數(shù)列,希望對(duì)您有所幫助!
1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫(xiě)出數(shù)列的前幾項(xiàng).
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫(xiě)出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫(xiě)出該數(shù)列的一個(gè)通項(xiàng)公式.
(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫(xiě)出數(shù)列的前幾項(xiàng).
2.通過(guò)對(duì)一列數(shù)的觀察、歸納,寫(xiě)出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
3.通過(guò)由求的過(guò)程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問(wèn)題引入,從中抽象出數(shù)列要研究的問(wèn)題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書(shū)中所給的例子,還有物品堆放個(gè)數(shù)的.計(jì)算等.
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類(lèi)似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項(xiàng)公式寫(xiě)出數(shù)列的前幾項(xiàng)是簡(jiǎn)單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫(xiě)通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫(xiě)通項(xiàng)公式提供幫助.
(4)由數(shù)列的前幾項(xiàng)寫(xiě)出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來(lái)調(diào)整等.如果學(xué)生一時(shí)不能寫(xiě)出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.
(5)對(duì)每個(gè)數(shù)列都有求和問(wèn)題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問(wèn)題是重點(diǎn)問(wèn)題,可先提出一個(gè)具體問(wèn)題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問(wèn)題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡(jiǎn)單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問(wèn)題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的.
上述提供的:數(shù)列希望能夠符合大家的實(shí)際需要!
高中高一數(shù)學(xué)教案篇十七
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(人教b版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時(shí),教學(xué)內(nèi)容是公式(三)。教材要求通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。
通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類(lèi)比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問(wèn)題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式。
借助單位圓探究誘導(dǎo)公式。
能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。
誘導(dǎo)公式的應(yīng)用。
多媒體。
1. 誘導(dǎo)公式(一)(二)。
2. 角 (終邊在一條直線上)
3. 思考:下列一組角有什么特征?( )能否用式子來(lái)表示?
已知 由
可知
而 (課件演示,學(xué)生發(fā)現(xiàn))
所以
于是可得: (三)
設(shè)計(jì)意圖:結(jié)合幾何畫(huà)板的演示利用同一點(diǎn)的坐標(biāo)變換,導(dǎo)出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡(jiǎn)三角函數(shù)式。
設(shè)計(jì)意圖:結(jié)合學(xué)過(guò)的公式(一)(二),發(fā)現(xiàn)特點(diǎn),總結(jié)公式。
1. 練習(xí)
(1)
設(shè)計(jì)意圖:利用公式解決問(wèn)題,發(fā)現(xiàn)新問(wèn)題,小組研究討論,得到新公式。
(學(xué)生板演,老師點(diǎn)評(píng),用彩色粉筆強(qiáng)調(diào)重點(diǎn),引導(dǎo)學(xué)生總結(jié)公式。)
例3:求下列各三角函數(shù)值:
(1)
(2)
(3)
(4)
設(shè)計(jì)意圖:利用公式解決問(wèn)題。
練習(xí):
(1)
(2) (學(xué)生板演,師生點(diǎn)評(píng))
設(shè)計(jì)意圖:觀察公式特點(diǎn),選擇公式解決問(wèn)題。
四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學(xué)生分析問(wèn)題、解決問(wèn)題的能力,熟練應(yīng)用解決問(wèn)題。
很榮幸大家來(lái)聽(tīng)我的課,通過(guò)這課,我學(xué)習(xí)到如下的東西:
1.要認(rèn)真的研讀新課標(biāo),對(duì)教學(xué)的目標(biāo),重難點(diǎn)把握要到位
2.注意板書(shū)設(shè)計(jì),注重細(xì)節(jié)的東西,語(yǔ)速需要改正
3.進(jìn)一步的學(xué)習(xí)網(wǎng)頁(yè)制作,讓你的網(wǎng)頁(yè)更加的完善,學(xué)生更容易操作
5.上課的生動(dòng)化,形象化需要加強(qiáng)
1.評(píng)議者:網(wǎng)絡(luò)輔助教學(xué),起到了很好的效果;教態(tài)大方,作為新教師,開(kāi)設(shè)校際課,勇氣可嘉!建議:感覺(jué)到老師有點(diǎn)緊張,其實(shí)可以放開(kāi)點(diǎn)的,相信效果會(huì)更好的!重點(diǎn)不夠清晰,有引導(dǎo)數(shù)學(xué)時(shí),最好值有個(gè)側(cè)重點(diǎn);網(wǎng)絡(luò)設(shè)計(jì)上,網(wǎng)頁(yè)上公開(kāi)的推導(dǎo)公式為上,留有更大的空間讓學(xué)生來(lái)思考。
2.評(píng)議者:網(wǎng)絡(luò)教學(xué)效果良好,給學(xué)生自主思考,學(xué)習(xí)的空間發(fā)揮,教學(xué)設(shè)計(jì)得好;建議:課堂講課聲音,語(yǔ)調(diào)可以更有節(jié)奏感一些,抑揚(yáng)頓挫應(yīng)注意課堂例題練習(xí)可以多兩題。
3.評(píng)議者:學(xué)科網(wǎng)絡(luò)平臺(tái)的使用;建議:應(yīng)重視引導(dǎo)學(xué)生將一些唾手可得的有用結(jié)論總結(jié)出來(lái),并形成自我的經(jīng)驗(yàn)。
4.評(píng)議者:引導(dǎo)學(xué)生通過(guò)網(wǎng)絡(luò)進(jìn)行探究。
建議:課件制作在線測(cè)評(píng)部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測(cè)試;多提問(wèn)學(xué)生。
( 1)給學(xué)生思考的時(shí)間較長(zhǎng),語(yǔ)調(diào)相對(duì)平緩,總結(jié)時(shí),給學(xué)生一些激勵(lì)的語(yǔ)言更好
( 2)這樣子的教學(xué)可以提高上課效率,讓學(xué)生更多的時(shí)間思考
( 4)給學(xué)生答案,這個(gè)網(wǎng)頁(yè)要進(jìn)一步的修正,答案能否不要一點(diǎn)就出來(lái)
( 5)1.板書(shū)設(shè)計(jì)要進(jìn)一步的加強(qiáng),2.語(yǔ)速相對(duì)是比較快的3.練習(xí)量比較少
( 6)讓學(xué)生多探究,課堂會(huì)更熱鬧
( 7)注意引入的過(guò)程要帶有目的,帶著問(wèn)題來(lái)教學(xué),學(xué)生帶著問(wèn)題來(lái)學(xué)習(xí)
( 8)教學(xué)模式相對(duì)簡(jiǎn)單重復(fù)
( 9)思路較為清晰,規(guī)范化的推理
高中高一數(shù)學(xué)教案篇十八
1、掌握雙曲線的范圍、對(duì)稱(chēng)性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì)。
2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
3、能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡(jiǎn)單的實(shí)際問(wèn)題。
1、焦點(diǎn)在x軸上,虛軸長(zhǎng)為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
3、雙曲線的漸進(jìn)線方程為、
探究1、類(lèi)比橢圓的幾何性質(zhì)寫(xiě)出雙曲線的幾何性質(zhì),畫(huà)出草圖并,說(shuō)出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
(1)過(guò)點(diǎn),離心率、
(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、
例3(理)求離心率為,且過(guò)點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
高中高一數(shù)學(xué)教案篇十九
掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。
向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。
(一)主要知識(shí):
1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的`有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。
(二)例題分析:略。
1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的知識(shí)解決有關(guān)應(yīng)用問(wèn)題,
2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問(wèn)題的能力。
高中高一數(shù)學(xué)教案篇二十
(2)理解任意角的三角函數(shù)不同的定義方法;。
(4)掌握并能初步運(yùn)用公式一;。
(5)樹(shù)立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù).
初中學(xué)過(guò):銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個(gè)定義推廣到任意角,通過(guò)單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號(hào).最后主要是借助有向線段進(jìn)一步認(rèn)識(shí)三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).
任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn).過(guò)去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來(lái)定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對(duì)準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對(duì)應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對(duì)應(yīng)關(guān)系有沖突,而且“比值”需要通過(guò)運(yùn)算才能得到,這與函數(shù)值是一個(gè)確定的實(shí)數(shù)也有不同,這些都會(huì)影響學(xué)生對(duì)三角函數(shù)概念的理解.
本節(jié)利用單位圓上點(diǎn)的`坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù).這個(gè)定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對(duì)應(yīng)關(guān)系,也表明了這兩個(gè)函數(shù)之間的關(guān)系.
教學(xué)重難點(diǎn)。
重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));終邊相同的角的同一三角函數(shù)值相等(公式一).
難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));三角函數(shù)線的正確理解.
高中高一數(shù)學(xué)教案篇二十一
了解雙曲線的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡(jiǎn)單性質(zhì)。
漸近線方程是,離心率,若點(diǎn)是雙曲線上的點(diǎn),則,。
2、又曲線的左支上一點(diǎn)到左焦點(diǎn)的距離是7,則這點(diǎn)到雙曲線的右焦點(diǎn)的距離是
3、經(jīng)過(guò)兩點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程是。
4、雙曲線的漸近線方程是,則該雙曲線的離心率等于。
5、與雙曲線有公共的漸近線,且經(jīng)過(guò)點(diǎn)的雙曲線的方程為
1、雙曲線的離心率等于,且與橢圓有公共焦點(diǎn),求該雙曲線的方程。
2、已知橢圓具有性質(zhì):若是橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),當(dāng)直線的斜率都存在,并記為時(shí),那么之積是與點(diǎn)位置無(wú)關(guān)的定值,試對(duì)雙曲線寫(xiě)出具有類(lèi)似特性的性質(zhì),并加以證明。
3、設(shè)雙曲線的半焦距為,直線過(guò)兩點(diǎn),已知原點(diǎn)到直線的距離為,求雙曲線的離心率。
1、雙曲線上一點(diǎn)到一個(gè)焦點(diǎn)的距離為,則它到另一個(gè)焦點(diǎn)的距離為。
2、與雙曲線有共同的漸近線,且經(jīng)過(guò)點(diǎn)的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離是。
3、若雙曲線上一點(diǎn)到它的右焦點(diǎn)的距離是,則點(diǎn)到軸的距離是
4、過(guò)雙曲線的左焦點(diǎn)的直線交雙曲線于兩點(diǎn),若。則這樣的'直線一共有條。
1、已知雙曲線的焦點(diǎn)到漸近線的距離是其頂點(diǎn)到漸近線距離的2倍,則該雙曲線的離心率
2、已知雙曲線的焦點(diǎn)為,點(diǎn)在雙曲線上,且,則點(diǎn)到軸的距離為。
3、雙曲線的焦距為
4、已知雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離為,則
5、設(shè)是等腰三角形,,則以為焦點(diǎn)且過(guò)點(diǎn)的雙曲線的離心率為。
【本文地址:http://mlvmservice.com/zuowen/18077642.html】