教案的編寫要注意語言簡潔明了,有利于教學過程的順利展開。編寫教案要明確教學目標,確定教學重點和難點。以下是小編為大家收集的優(yōu)秀教案范例,供大家參考和借鑒。
式與方程教案篇一
一、基本練習(5分鐘)。
(1)某數(shù)的5倍加上它的2倍和是42,求這個數(shù)。
(2)x的5倍減去它的2倍差是1.2,求x。
(1)畫圖,找等量關(guān)系。
(2)列方程解應用題。
二、層次練習(15分鐘)。
(1)這道題與上題有哪些相同點和不同點?
(2)你會解答這道題嗎?試做。
(3)訂正:
解:設四年級植x棵,五年級植3x棵。
3x-x=300。
2x=300。
x=150。
3x=3150=450。
答:四年級植150棵,五年級植450棵。
2.試一試:媽媽的年齡是女兒的4倍,媽媽比女兒大27歲,媽媽和女兒各多少歲?
學生獨立做。
3.小結(jié):解答時,要抓住有倍的那句話設出未知數(shù)。看一看是求它們的和還是差,列出方程。
三、鞏固練習(15分鐘)。
1.看圖列方程125頁3題。
完成后交流。
2.對比練習。
獨立完成后交流。
四、總結(jié)交流(5分鐘)。
說說你有什么收獲?
式與方程教案篇二
教學目標:
1、使學生進一步認識用字母表示數(shù)及其作用,能正確地用含有字母的式子表示數(shù)量及數(shù)量關(guān)系、計算公式,培養(yǎng)學生抽象,概括的能力。
2、使學生加深對方程及相關(guān)概念的認識,掌握解簡易方程的步驟和方法,能正確地解簡易方程。
教學重點、難點:應用等式的性質(zhì),理解和較熟練掌握簡易方程的解法。
教學過程:
一、揭示課題。
我們在復習了整數(shù)、小數(shù)的概念,計算和應用題的基礎上,今天要復習解簡易方程,(板書課題)通過復習,要進一步明白字母可以表示數(shù)量、數(shù)量關(guān)系和計算公式,加深理解方程的概念,掌握解簡易方程的步驟、方法,能正確地解簡易方程。
二、復習用字母表示數(shù)。
1、用含有字母的式子表示:
(1)求路程的數(shù)量關(guān)系。
(2)乘法交換律。
(3)長方形的面積計算公式。
2、做“練一練”第1題。
讓學生做在課本上。指名口答結(jié)果,老師板書,結(jié)合提問怎樣求式子的值的。
3、做練習十四第1題。
指名學生口答。選擇兩道說說是怎樣想的。
1、復習方程概念。
提問:什么是方程?你能舉出方程的例子嗎?(老師板書出方程的例子)這里用字母表示等式里的什么?指出:字母還可以表示等式里的未知數(shù)。含有未知數(shù)的等式就叫方程。(板書定義)。
2、做“練一練”第2題。
(1)做“練一練”第3題第一組題。
(2)做“練一練”第3題后兩組題。
指名兩人板演,其余學生分兩組,分別做其中的一組題。集體訂正,并讓學生說說每組兩題有什么不同,解方程的過程有什么不同。強調(diào)一定要先看清題,按運算順序能先算的就先算出來,然后根據(jù)四則運算之間的關(guān)系求出方程的解。
(3)做“練一練”第4題。
讓學生列出方程。指名口答方程,老師板書。提問列方程的等量關(guān)系是什么。
四、課堂小結(jié)。
今天復習了哪些知識?你進一步明確了什么內(nèi)容?
五、布置作業(yè)。
課堂作業(yè);完成“練一練”第4題解方程;練習十四第2題,第3題后三題,第4題。
家庭作業(yè);練習十四第3題前三題、第5題。
式與方程教案篇三
教學內(nèi)容:教科書第13~14頁,“練習與應用”第5~7題,“探索與實踐”第8~9題及“與反思”。
教學目標:
1、通過練習與應用,使學生進一步掌握列方程解決實際問題的方法與步驟,提高列方程解決實際問題的意識和能力。
2、通過小組合作,進一步培養(yǎng)學生探索的意識,發(fā)展思維能力。
3、通過與反思,使學生養(yǎng)成良好的學習習慣,獲得成功體驗,增強學好數(shù)學的信心。
教學過程:
一、練習與應用。
1、談話引入這節(jié)課我們繼續(xù)對列方程解決實際問題進行練習。板書課題。
2、指導練習。獨立完成5~7題。展示交流。集體評講。你是根據(jù)什么等量關(guān)系列出方程的?在解方程時要注意什么?(步驟、格式、檢驗)。
二、探索與實踐。
1、完成第8題。理解題意,完成填寫。小組中交流第一個問題。匯報自己發(fā)現(xiàn)。把得到的和分別除以3,看看可以發(fā)現(xiàn)什么?可以得出什么結(jié)論?獨立解答第二個問題。你是怎么解答第二個問題的?指導解答第三個問題。試著連續(xù)寫出5個奇數(shù),看看有什么發(fā)現(xiàn)?怎樣求n的值呢?5個連續(xù)偶數(shù)的和有這樣的規(guī)律嗎?試試看。
三、與反思。
在小組中說說自己對每次指標的理解。自我反思與。說說自己的優(yōu)點與不足。
四、閱讀“你知道嗎”可以再查找資料,詳細了解。
五、課堂這節(jié)課我們復習了哪些內(nèi)容?你有了哪些收獲?
式與方程教案篇四
通過練習,使學生進一步理解數(shù)量關(guān)系,掌握用方程解應用題的方法,能正確運用方程解答應用題。
培養(yǎng)學生分析問題、解答問題的能力。
培養(yǎng)學生認真細致的學習習慣。
理解數(shù)量關(guān)系,掌握用方程解應用題的方法,能正確運用方程解答應用題。
理解數(shù)量關(guān)系。
一、基本練習(5分鐘)。
(1)某數(shù)的5倍加上它的2倍和是42,求這個數(shù)。
(2)x的5倍減去它的2倍差是1.2,求x。
(1)畫圖,找等量關(guān)系。
(2)列方程解應用題。
二、層次練習(15分鐘)。
(1)這道題與上題有哪些相同點和不同點?
(2)你會解答這道題嗎?試做。
(3)訂正:
解:設四年級植x棵,五年級植3x棵。
3x-x=300。
2x=300。
x=150。
3x=3150=450。
答:四年級植150棵,五年級植450棵。
2.試一試:媽媽的年齡是女兒的4倍,媽媽比女兒大27歲,媽媽和女兒各多少歲?
學生獨立做。
3.小結(jié):解答時,要抓住有倍的那句話設出未知數(shù)。看一看是求它們的和還是差,列出方程。
三、鞏固練習(15分鐘)。
1.看圖列方程125頁3題。
完成后交流。
2.對比練習。
獨立完成后交流。
四、總結(jié)交流(5分鐘)。
說說你有什么收獲?
親情方程式作文。
九年級上冊化學方程式課件。
提高學生化學方程式學習效率初探論文。
對不確定系數(shù)化學方程式的探討論文。
虛位移原理到拉格朗日方程-物理學畢業(yè)論文。
式與方程教案篇五
教科書第13~14頁,“練習與應用”第5~7題,“探索與實踐”第8~9題及“與反思”。
1、通過練習與應用,使學生進一步掌握列方程解決實際問題的方法與步驟,提高列方程解決實際問題的意識和能力。
2、通過小組合作,進一步培養(yǎng)學生探索的意識,發(fā)展思維能力。
3、通過與反思,使學生養(yǎng)成良好的學習習慣,獲得成功體驗,增強學好數(shù)學的信心。
1、談話引入這節(jié)課我們繼續(xù)對列方程解決實際問題進行練習。板書課題。
2、指導練習。獨立完成5~7題。展示交流。集體評講。你是根據(jù)什么等量關(guān)系列出方程的?在解方程時要注意什么?(步驟、格式、檢驗)。
1、完成第8題。理解題意,完成填寫。小組中交流第一個問題。匯報自己發(fā)現(xiàn)。把得到的和分別除以3,看看可以發(fā)現(xiàn)什么?可以得出什么結(jié)論?獨立解答第二個問題。你是怎么解答第二個問題的?指導解答第三個問題。試著連續(xù)寫出5個奇數(shù),看看有什么發(fā)現(xiàn)?怎樣求n的值呢?5個連續(xù)偶數(shù)的和有這樣的規(guī)律嗎?試試看。
在小組中說說自己對每次指標的理解。自我反思與。說說自己的優(yōu)點與不足。
式與方程教案篇六
【考點及要求】:
1.掌握直線方程的各種形式,并會靈活的應用于求直線的方程.
2.理解直線的平行關(guān)系與垂直關(guān)系,理解兩點間的距離和點到直線的距離.
【基礎知識】:
1.直線方程的五種形式。
名稱方程適用范圍。
點斜式不含直線x=x1。
斜截式不含垂直于x=軸的直線。
兩點式不含直線x=x1(x1x2)和直線y=y1(y1y2)。
截距式不含垂直于坐標軸和過原點的直線。
一般式平面直角坐標系內(nèi)的直線都適用。
2.兩條直線平行與垂直的判定。
3.點a、b間的距離:=.
4.點p到直線:ax+bx+c=0的距離:d=.
【基本訓練】:
1.過點且斜率為2的直線方程為,過點且斜率為2的直線方程為,過點和的直線方程為,過點和的直線方程為.
2.過點且與直線平行的直線方程為.
3.點和的距離為.
4.若原點到直線的距離為,則.
【典型例題講練】。
例1.一條直線經(jīng)過點,且在兩坐標軸上的截距和是6,求該直線的方程.
練習.直線與兩坐標軸所圍成的三角形的面積不大于1,求的取值范圍.
例2.已知直線與互相垂直,垂足為,求的值.
練習.求過點且與原點距離最大的直線方程.
【課堂小結(jié)】。
【課堂檢測】。
1.直線過定點.
2.過點,且在兩坐標軸上的截距互為相反數(shù)的直線方程是.
3.點到直線的距離不大于3,則的取值范圍為.
式與方程教案篇七
1.探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并用方程進行描述,進而讓學生初步體驗方程是刻畫現(xiàn)實世界的一種有效模型。
2.通過觀察所列的方程的特點,掌握一元一次方程的概念并能夠熟練識別一元一次方程。
3.進一步培養(yǎng)學生觀察、思考、分析問題、解決問題的能力,滲透建模的數(shù)學思想。
4.感受數(shù)學與生活的緊密聯(lián)系,體會數(shù)學的價值,激發(fā)學生學習數(shù)學的興趣。
分析與確定問題中的等量關(guān)系,能用方程來描述和刻畫事物間的等量關(guān)系。
問題一:
如果設面值為1元的郵票買了x張,那么面值為2元的郵票買了_______張.
買面值為1元的郵票的錢+買面值為2元的郵票的錢=50元.
可得方程____________________。
1、學生自主歸納:如何從問題到方程?
2、自主歸納一元一次方程的特點,并舉例說明。
根據(jù)實際問題的意義列出方程。
3.一個長方形足球場的周長是300m,它的長比寬多30m,求這個足球場的長.
1、從實際問題到方程,一般要經(jīng)歷哪些過程?
2、列方程的關(guān)鍵是什么?
班級姓名學號。
1.下列方程是一元一次方程的是()。
a.b.c.d.
2.根據(jù)下列條件能列出方程的是()。
a.一個數(shù)的與另一個數(shù)的的和b.與1的差的4倍是8。
c.和的60%d.甲的3倍與乙的差的2倍。
3.七年級二班共有學生48人,已知男生比女生少2人,問七年級二班男生、女生各有多少人?設七年級二班男生有男生x人,則下列方程中錯誤的是()。
a.b.c.d.
4.課外興趣小組的女生人數(shù)占全組人數(shù)的,再加入6名女生后,女生人數(shù)就占原來人數(shù)的一半,課外興趣小組原有多少人?若設原有x人,則下列方程正確的是()。
a.b.c.d.
5.根據(jù)“x的5倍比它的35%少28”列出方程為________.
6.一年三班55人,一年八班29人,因植樹需要從三班中抽出x人到八班,使得兩班人數(shù)相同,則根據(jù)題意可列方程為_____________.
9.三個連續(xù)奇數(shù)的和為57,求這三個數(shù)。
12.議一議:育紅學校七年級學生步行到郊外旅行,1班的學生組成前隊,步行的速度為4千米/小時,2班的學生組成后隊,速度為6千米/小時,前隊出發(fā)1小時后,后隊出發(fā),同時后隊派一名聯(lián)絡員騎自行車在兩隊之間不間斷地來回進行聯(lián)絡,他騎車的速度為12千米/小時。
問題1:后隊追上前隊用了多長時間?
問題2:后隊追上前隊時聯(lián)絡員行了多少路程?
問題3:聯(lián)絡員第一次追上前隊時用了多長時間?
問題4:當后隊追上前隊時,他們已經(jīng)行進了多少路程?
你能根據(jù)題意再提出兩個問題嗎?和你的同學交流一下。
式與方程教案篇八
教科書第12~13頁,“回顧與”、“練習與應用”第1~4題。
1、通過回顧與,使學生進一步加深等式與方程的意義,等式的性質(zhì)的理解。幫助學生理清知識的脈絡,建立合理的認知結(jié)構(gòu)。
2、通過練習與運用,使學生進一步掌握方程的方法和一般步驟,會列方程解決簡單實際問題。
一、回顧與。
1、談話引入。
本單元我們學習了哪些內(nèi)容?
你能說說什么是等式的性質(zhì)嗎?什么是方程?什么是解方程呢?
在小組中互相說說。
2、組織討論。
(1)出示討論題。
(2)小組交流,巡視指導。
(3)匯報交流。
你是怎么獲得這個知識的?我們在學習這個知識時運用了什么方法?
(等式與方程都是等式;等式不一定是方程,方程一定是等式。)。
(含有未知數(shù)的等式是方程。)。
(等式性質(zhì):)。
(求方程中未知數(shù)的值的過程叫做解方程。)。
3、。
同學們對這一單元的知識點掌握得很好,我們不僅要理解概念和意義,還要會熟練地運用。
二、練習與應用。
1、完成第1題。
(1)獨立完成計算。
(2)匯報與展示,說說錯誤的原因及改正的方法。
2、完成第2題。
(1)學生獨立完成。
(2)你用怎樣的方法連線的?(解方程求出未知數(shù)的值;把x的值代入方程。)。
3、完成第3題。
(1)列出方程,不解答。
(2)你是怎樣列的?怎么想的?大家同意嗎?
(3)完成計算。
4、完成第4題。
單價、數(shù)量、總價之間有怎樣的數(shù)量關(guān)系?
指出:抓住基本關(guān)系列方程,y也可以表示未知數(shù)。
三、課堂。
通過回顧與,大家共同復習了有關(guān)方程的知識,你還有什么疑問嗎?
式與方程教案篇九
1、知識與技能。
(1)理解直線方程的點斜式、斜截式的形式特點和適用范圍;
(2)能正確利用直線的點斜式、斜截式公式求直線方程。
(3)體會直線的斜截式方程與一次函數(shù)的關(guān)系.
2、過程與方法。
在已知直角坐標系內(nèi)確定一條直線的幾何要素——直線上的一點和直線的傾斜角的基礎上,通過師生探討,得出直線的點斜式方程;學生通過對比理解“截距”與“距離”的區(qū)別。
3、情態(tài)與價值觀。
通過讓學生體會直線的斜截式方程與一次函數(shù)的關(guān)系,進一步培養(yǎng)學生數(shù)形結(jié)合的思想,滲透數(shù)學中普遍存在相互聯(lián)系、相互轉(zhuǎn)化等觀點,使學生能用聯(lián)系的觀點看問題。
直線的點斜式方程和斜截式方程。
問題。
設計意圖。
師生活動。
1、在直線坐標系內(nèi)確定一條直線,應知道哪些條件?
使學生在已有知識和經(jīng)驗的基礎上,探索新知。
學生回顧,并回答。然后教師指出,直線的方程,就是直線上任意一點的坐標滿足的關(guān)系式。
2、直線經(jīng)過點,且斜率為。設點是直線上的任意一點,請建立與之間的關(guān)系。
培養(yǎng)學生自主探索的能力,并體會直線的方程,就是直線上任意一點的坐標滿足的關(guān)系式,從而掌握根據(jù)條件求直線方程的方法。
學生根據(jù)斜率公式,可以得到,當時,即(1)教師對基礎薄弱的學生給予關(guān)注、引導,使每個學生都能推導出這個方程。
3、(1)過點,斜率是的直線上的點,其坐標都滿足方程(1)嗎?
使學生了解方程為直線方程必須滿兩個條件。
學生驗證,教師引導。
問題。
設計意圖。
師生活動。
(2)坐標滿足方程(1)的點都在經(jīng)過,斜率為的直線上嗎?
使學生了解方程為直線方程必須滿兩個條件。
學生驗證,教師引導。然后教師指出方程(1)由直線上一定點及其斜率確定,所以叫做直線的點斜式方程,簡稱點斜式(pointslopeform).
4、直線的點斜式方程能否表示坐標平面上的所有直線呢?
使學生理解直線的點斜式方程的適用范圍。
學生分組互相討論,然后說明理由。
5、(1)軸所在直線的方程是什么?軸所在直線的方程是什么?
(2)經(jīng)過點且平行于軸(即垂直于軸)的直線方程是什么?
(3)經(jīng)過點且平行于軸(即垂直于軸)的直線方程是什么?
進一步使學生理解直線的點斜式方程的適用范圍,掌握特殊直線方程的表示形式。
教師學生引導通過畫圖分析,求得問題的解決。
6、例1的教學。(教材93頁)。
學會運用點斜式方程解決問題,清楚用點斜式公式求直線方程必須具備的.兩個條件:(1)一個定點;(2)有斜率。同時掌握已知直線方程畫直線的方法。
教師引導學生分析要用點斜式求直線方程應已知那些條件?題目那些條件已經(jīng)直接給予,那些條件還有待已去求。在坐標平面內(nèi),要畫一條直線可以怎樣去畫。
7、已知直線的斜率為,且與軸的交點為,求直線的方程。
引入斜截式方程,讓學生懂得斜截式方程源于點斜式方程,是點斜式方程的一種特殊情形。
學生獨立求出直線的方程:
(2)。
再此基礎上,教師給出截距的概念,引導學生分析方程(2)由哪兩個條件確定,讓學生理解斜截式方程概念的內(nèi)涵。
8、觀察方程,它的形式具有什么特點?
深入理解和掌握斜截式方程的特點?
學生討論,教師及時給予評價。
問題。
設計意圖。
師生活動。
9、直線在軸上的截距是什么?
使學生理解“截距”與“距離”兩個概念的區(qū)別。
學生思考回答,教師評價。
體會直線的斜截式方程與一次函數(shù)的關(guān)系.
學生思考、討論,教師評價、歸納概括。
11、例2的教學。(教材94頁)。
掌握從直線方程的角度判斷兩條直線相互平行,或相互垂直;進一步理解斜截式方程中的幾何意義。
教師引導學生分析:用斜率判斷兩條直線平行、垂直結(jié)論。思考(1)時,有何關(guān)系?(2)時,有何關(guān)系?在此由學生得出結(jié)論:
且;
12、課堂練習第95頁練習第1,2,3,4題。
鞏固本節(jié)課所學過的知識。
學生獨立完成,教師檢查反饋。
13、小結(jié)。
使學生對本節(jié)課所學的知識有一個整體性的認識,了解知識的來龍去脈。
14、布置作業(yè):第106頁第1題的(1)、(2)、(3)和第3、5題。
鞏固深化。
學生課后獨立完成。
例3.如果直線沿x軸負方向平移3個單位,再沿y軸正方向平移1個單位后,又回到原來的位置,求直線l的斜率.
作業(yè)布置:第100頁第1題的(1)、(2)、(3)和第3、5題。
課后記:。
式與方程教案篇十
1、學會根據(jù)一個數(shù)的幾分之幾是多少用乘法來列方程解分數(shù)除法的文字題,能正確地解分數(shù)方程。
2、認識分數(shù)除法里商的大小規(guī)律和分數(shù)乘法里積的大小規(guī)律,培養(yǎng)學生的計算能力。
教學重難點。
能正確地解分數(shù)方程,并。
認識分數(shù)除法里商的大小規(guī)律和分數(shù)乘法里積的'大小規(guī)律,培養(yǎng)學生的計算能力。
教學準備。
教學過程設計。
教學內(nèi)容。
師生活動。
備注。
六、復習鋪墊。
七、教學新課。
八、鞏固練習。
九、課堂小結(jié)。
十、作業(yè)。
1、口答列式。
(1)24的是多少?
(2)的是多少?
問:為什么用乘法?
2、引入新課。
這節(jié)課,我們就根據(jù)求一個數(shù)的幾分之幾是多少可以列成乘法算式的知識來學習解分數(shù)方程。
問:這道題已知什么?要求什么?你能否用一個數(shù)量關(guān)系表示這句話的意思?
1、做練一練。
指出:由于一個數(shù)的幾分之幾是多少要用乘法式子來表示,因此,按照題意就可以設這個數(shù)為x,列出方程來解答。
2、做練習八第13題。
問:觀察前面兩列,你們發(fā)現(xiàn)了什么?
指出:在乘法里,一個數(shù)乘的數(shù)小于1,積小于這一個數(shù);一個數(shù)乘的數(shù)大于1,積大于這一個數(shù)。在除法里,除數(shù)小于1,商大于被除數(shù);除數(shù)大于1,商小于被除數(shù)。
這節(jié)課學會了什么?
練習八11、12。
板書:
一個數(shù)=。
課后感受。
本節(jié)課內(nèi)容較簡單,學生們對這一知識有一定的基礎,所以本節(jié)課基本上是放手讓學生自己做,自己討論發(fā)現(xiàn)規(guī)律.整個課堂的學習氛圍不錯.
式與方程教案篇十一
教科書第12~13頁,“回顧與整理”、“練習與應用”第1~4題。
1、通過回顧與整理,使學生進一步加深等式與方程的意義,等式的性質(zhì)的理解。幫助學生理清知識的脈絡,建立合理的認知結(jié)構(gòu)。
2、通過練習與運用,使學生進一步掌握方程的方法和一般步驟,會列方程解決簡單實際問題。
一、回顧與整理。
1、談話引入。本單元我們學習了哪些內(nèi)容?你能說說什么是等式的性質(zhì)嗎?什么是方程?什么是解方程呢?在小組中互相說說。
2、組織討論。
(1)出示討論題。
(2)小組交流,巡視指導。
(3)匯報交流。
你是怎么獲得這個知識的?我們在學習這個知識時運用了什么方法?
3、小結(jié)。同學們對這一單元的知識點掌握得很好,我們不僅要理解概念和意義,還要會熟練地運用。
二、練習與應用。
1、完成第1題。
(1)獨立完成計算。
(2)匯報與展示,說說錯誤的原因及改正的方法。
2、完成第2題。
(1)學生獨立完成。
(2)你用怎樣的方法連線的?(解方程求出未知數(shù)的值;把x的值代入方程。)。
3、完成第3題。
(1)列出方程,不解答。
(2)你是怎樣列的?怎么想的?大家同意嗎?
(3)完成計算。
4、完成第4題。單價、數(shù)量、總價之間有怎樣的數(shù)量關(guān)系?指出:抓住基本關(guān)系列方程,y也可以表示未知數(shù)。
三、課堂總結(jié)。
通過回顧與整理,大家共同復習了有關(guān)方程的知識,你還有什么疑問嗎?
親情方程式作文。
九年級上冊化學方程式課件。
提高學生化學方程式學習效率初探論文。
對不確定系數(shù)化學方程式的探討論文。
虛位移原理到拉格朗日方程-物理學畢業(yè)論文。
式與方程教案篇十二
教學內(nèi)容:
p53――54練習十一1,2,3。
教學目標:
1、通過觀察天平演示,使學生初步理解方程的意義;
2、使學生能夠判斷一個式子是不是方程,并能解決簡單的實際問題;
3、培養(yǎng)學生觀察、描述、分類、抽象、概括、應用等能力。
教學重點:
判斷一個式子是不是方程;初步理解方程的意義。
課前準備:
課件,習題板。
教學過程:
一、復習舊知,激趣導入。
同學們,我們上節(jié)課學了用含有字母的式子表示一些數(shù)量關(guān)系,現(xiàn)在老師要考考你們,已知我們學校有88位同學,再加上所有老師,你能用一個式子來表示師生一共有多少人嗎?(板書:88+x)。學得真不錯,今天我們要進一步來研究這些含有未知數(shù)的式子所隱藏的數(shù)學奧秘,想知道嗎?請你用飽滿的姿態(tài)告訴老師!
二、出示學習目標。
1、初步理解方程的意義,會判斷一個式子是否是方程。
2、按要求用方程表示出數(shù)量關(guān)系,培養(yǎng)學生觀察、比較、分析概括的能力。
(一)認識天平。
(二)新課學習。
自學指導(一)。
自學p53,分別說一說圖1,圖2,,顯示的信息。
圖1天平兩邊平衡,一個空杯重100克。
圖2在空杯里加一杯水后天平不平衡了。
再看圖3說說圖3顯示的信息。
天平1杯子和里面的水比200克法碼重。
天平2杯子和里面的水比300克法碼輕。
請用算式表示圖3數(shù)量關(guān)系。
天平1、100+x200。
天平2、100+x300。
再看圖4說說圖4顯示的信息,請用算式表示圖4數(shù)量關(guān)系。
100+x=250。
觀察比較下列算式說說你的發(fā)現(xiàn)。
觀察比較。
100+x200。
100+x300。
100+x=250。
前面兩個算式兩邊不相等,后面一個算式兩邊是相等的。
教師總結(jié):像這樣兩邊相等的算式我們把它叫做等式。(板書)。
寫出幾個等式。
請學生把這里的等式分類,并說說你們是如何分類的?
20+30=50。
20+χ=100。
50×2=100。
14―8=6。
3y=180。
78×3=234。
100+2y=3×50。
學生匯報后讓學生說出分類的理由。(有的含有未知數(shù),有的沒有未知數(shù))。
教師總結(jié):含有未知數(shù)的等式,稱為方程。(板書)。
請大家寫出幾個方程。
四、小結(jié):回答什么是方程?
式與方程教案篇十三
第12冊p92—93“練習與實踐”7—9題。
1.使學生進一步理解商品打折出售的含義,進一步掌握分析數(shù)量關(guān)系的方法,熟練掌握列方程解答稍復雜的百分數(shù)實際問題的方法,理解不同形式的打折問題之間的聯(lián)系,并能熟練解答。注重知識間的聯(lián)系與融會貫通。
2.在分析問題、解決問題的活動中,發(fā)展學生的數(shù)學思考能力,提高用方程表示數(shù)量關(guān)系的能力,進一步積累解決問題的經(jīng)驗,增強數(shù)學應用意識。
3.讓學生在學習和游戲中獲得成功體驗,提高學生的學習興趣和愛好。
課件。
第二課時。
1.出示習題。一種圖書打八折后售價是20元,這種圖書原價是多少元?
2.學生練習、交流、檢驗。
3.練習p93第7、8兩題。指導學生理解“降價10%”的含義。第8題提醒學生注意:兩種襯衫的原價是相同的,但由于打的折扣不同所以現(xiàn)在售價是不同的;所花的108元是兩種襯衣現(xiàn)價的和。
4.練習p93第9題。
學生通過自主探索和合作探索發(fā)現(xiàn)規(guī)律,并運用規(guī)律求出所框的4個數(shù)。
式與方程教案篇十四
教科書第12~13頁,“回顧與整理”、“練習與應用”第1~4題。
1、通過回顧與整理,使學生進一步加深等式與方程的意義,等式的性質(zhì)的理解。幫助學生理清知識的脈絡,建立合理的認知結(jié)構(gòu)。
2、通過練習與運用,使學生進一步掌握方程的方法和一般步驟,會列方程解決簡單實際問題。
一、回顧與整理
1、談話引入。本單元我們學習了哪些內(nèi)容?你能說說什么是等式的性質(zhì)嗎?什么是方程?什么是解方程呢?在小組中互相說說。
2、組織討論。
(1)出示討論題。
(2)小組交流,巡視指導。
(3)匯報交流。
你是怎么獲得這個知識的?我們在學習這個知識時運用了什么方法?
3、小結(jié)。同學們對這一單元的知識點掌握得很好,我們不僅要理解概念和意義,還要會熟練地運用。
二、練習與應用
1、完成第1題。
(1)獨立完成計算。
(2)匯報與展示,說說錯誤的原因及改正的方法。
2、完成第2題。
(1)學生獨立完成。
(2)你用怎樣的方法連線的?(解方程求出未知數(shù)的值;把x的值代入方程。)
3、完成第3題。
(1)列出方程,不解答。
(2)你是怎樣列的?怎么想的?大家同意嗎?
(3)完成計算。
4、完成第4題。單價、數(shù)量、總價之間有怎樣的數(shù)量關(guān)系?指出:抓住基本關(guān)系列方程,y也可以表示未知數(shù)。
三、課堂總結(jié)
通過回顧與整理,大家共同復習了有關(guān)方程的知識,你還有什么疑問嗎?
式與方程教案篇十五
1.知識與技能。
能掌握解分式方程的步驟,會如何解分式方程。
2.過程與方法。
通過一步步引導,使學生掌握解分式方程其實是轉(zhuǎn)化為整式方程求解后驗證解是否成立個一個過程。
3.情感、態(tài)度與價值觀。
探求新知是一個將新知與舊知如何建模鏈接的過程,邊探索,邊完成這個過程。
二、重點與難點。
1.重點。
2、難點。
分式方程轉(zhuǎn)化整式方程時的理論依據(jù)及具體步驟。
三、學情分析及課前反思。
本節(jié)課的學習前,學生已經(jīng)熟練掌握解整式方程的求解,等式的基本性質(zhì),分式的運算。因此只需要點一下,應該就可以順利過渡。教師的任務是如何能恰當?shù)攸c一下,并讓學生知其所以然。
四、重難點突破。
1、前面復習時復習分式的性質(zhì)要詳盡并板書。
2、不按照傳統(tǒng)的順序,給出題目后馬上給出整式方程,引起學生的學習興趣。
五、課前反思。
此引入部分不宜太長,也不能忽視等式基本性質(zhì)的復習。最終需要達到的目的就是在課堂前10分鐘內(nèi)學生要掌握解分式方程是轉(zhuǎn)化成一個整式方程求解的過程。經(jīng)過多年實踐,在環(huán)節(jié)三中,很多學生會理解成所謂的交叉相乘,必須予以及時糾正,否則出現(xiàn)有常數(shù)項時會產(chǎn)生混亂。二是在環(huán)節(jié)四后直接板書完整過程,學生容易漏掉檢驗這一步驟。所以等到學生在做題后,試誤后予以引導,強化效果更好。
六、教學過程。
教學環(huán)節(jié)。
教學活動。
教師活動。
學生活動。
設計意圖。
環(huán)節(jié)一:復習引入。
提問:1、方程的定義2、等式的基本性質(zhì)。
提問并板書的方程定義,既然加上補充成分式方程的定義;板書等式的基本性質(zhì)1,等式兩邊同時加或減同一個數(shù)或式子,等式仍然成立,等式的性質(zhì)2,等式左右兩邊同時乘或除不等于0的數(shù)或式子,等式仍然成立。
1、全體口答。
環(huán)節(jié)二:
以舊帶新;觸類旁通。
板書90/(30+x)=60/(30-x)。
提問能解嗎?
隔行后板書:
90(30-x)=60(30+x)并提問:能接嗎?
問題1有點遲疑,部分有提前學的同學回答能解;問題2異口同聲回答能解。
環(huán)節(jié)三:
明確依據(jù);強化新知。
提示:注意觀察兩個方程,發(fā)現(xiàn)他們的聯(lián)系嗎?再引導學生看剛才復習過的`等式基本性質(zhì)。
稍作思考后回答:交叉相乘。引導后知道應該是運用等式的性質(zhì)二。
引導學生將未知轉(zhuǎn)化為已知,分式方程可以通過轉(zhuǎn)化成我們已經(jīng)很熟練的整式方程求解。
環(huán)節(jié)四:
板書步驟;規(guī)范格式。
按照書本的規(guī)范格式作為示范板書,給學生一個規(guī)范。
補上剛才留空的一行:方程左右兩邊同時乘以兩個分式的最簡公分母(30-x)(30+x),去分母得。強調(diào)這一步就是去分母,是將分式方程化為整式方程的關(guān)鍵一步。
看老師板書。
環(huán)節(jié)五:
留白過程,滿下伏筆。
后面整式方程的解題過程已經(jīng)檢驗過程都留空,為一下強調(diào)檢驗過程鋪墊。
提問:以下過程大家都懂了吧,那我就不詳細下了。
認真聽課。
環(huán)節(jié)六:
先做后教,加深印象。
板書另外四道解分式方程的題目作練習,根據(jù)完成情況再評講。
板書四道題目:
(1)5/x=7/(x-2)。
(2)2/(x+3)=1/(x-1)。
(3)1/(x-5)=10/(x2-25)。
(4)x/(x-1)-1=3/(x-1)(x+2)。
堂上練習本完成練習。
學生解題后,引導學生回顧等式的性質(zhì)中除為什么要強調(diào)不為0,是否這5道題的值都符合原方程。(4)(5)兩個方程是無解的,因為解代入分母中為0。這時再強調(diào)分式方程接完后必須要檢驗。
七、板書設計。
等式的性質(zhì)。
課題。
例題(1)練習(2)~(5)。
八、課后反思。
效果還是不錯的,學生基本能掌握分式方程求解過程關(guān)鍵是運用等式的基本性質(zhì)去分母。需要后面多一個課時才能達到熟練程度。
式與方程教案篇十六
教學目標:
1.知識與技能:結(jié)合具體的問題,使同學們學會用解方程和用方程解決具體的問題。
2.過程與方法:結(jié)合課本內(nèi)容和實際問題來使同學們形成用方程解決問題的觀念。
3.情感態(tài)度價值觀:在學習方程解決問題的過程中培養(yǎng)同學們對于學習數(shù)學的興趣,培養(yǎng)同學們克服困難的品質(zhì),培養(yǎng)同學們探索新知的勇氣和信心。
教學過程:
一、回顧與交流。
1.復習方程概念。
什么是方程?你能舉出方程的例子嗎?(老師板書出方程的例子)這里用字母表示等式里的什么?指出:字母還可以表示等式里的未知數(shù)。含有未知數(shù)的等式就叫方程。(板書定義)。
判斷下面是不是方程:
3x+5。
6+8=14。
6x=15。
7x+315。
(通過這個教學使學生充分理解方程的定義)。
讓學生先獨立解課本p61.t1.兩道解方程的題目再讓學生說說是怎樣解的。
通過這里的兩道練習復習小學所學習的解方程的方法(即根據(jù)等式的性質(zhì)來解。)。
復習61頁第二題。
首先讓學生找出這三個題的等量關(guān)系,讓學生分小組討論討論,在小組內(nèi)說一說怎樣找的等量關(guān)系。然后請學生在班內(nèi)匯報一下。再請三位同學演板,并請演板的同學解釋自己的做法。
(在這個過程中,讓學生首先學會找出題目的等量關(guān)系,再根據(jù)等量關(guān)系去列方程,使學生養(yǎng)成用方程解決問題的時候,要懂得方程是根據(jù)等量關(guān)系列出的。)。
集體訂正:解(1)方程是怎樣想的,檢查解方程時每一步依據(jù)什么做的。(2)方程與(1)有什么不同,解方程時有什么不同?師生共同小結(jié)解方程的一般步驟(略)。怎樣檢驗方程的解對不對?增加找數(shù)量關(guān)系練習。
1.六一班有50人,其中男生有28人,女生有多少人?
2.六一班有22名女生,男生比女生的2倍少16人,男生有多少人?
首先讓學生獨立找出題目中的等量關(guān)系,然后讓同桌2人互相說一說,然后再解答。
二、鞏固與應用。
引導學生做課本鞏固練習題。
1.解方程。組織學生獨立完成,然后讓學生上去講一講解題的方法。
2.看圖列出方程,并求出方程的解。首先讓學生在小組內(nèi)說一說解決的方法,再請學生匯報交流。
3.看圖理解題意,引導學生分析數(shù)量關(guān)系,再列方程解答。請學生演板,演板后組織學生討論。
4.理解文字題,根據(jù)數(shù)量關(guān)系列出方程并求解。請學生找出題中的等量關(guān)系,再讓學生完成。
三、總結(jié)提高。
通過這節(jié)課的學習,你解決了那些問題,還有那些困惑?
(通過學生的匯報,查漏補缺,找出這節(jié)課可能沒有涉及到的問題加以解決。)。
四、習題設計。
1.課本62頁第5題。這里的兩個小題,第1小題是用字母表示,學生要想用字母表示出來,必須先找出題目的等量關(guān)系。第2小題是用方程解決問題,除了要找出等量關(guān)系外還要列出方程并解答。
2.課本62頁第6題。這是一道拓展性的習題,是數(shù)與形的結(jié)合,通過這道題的練習,除了鍛煉學生用方程解決問題的能力,同時也復習了有關(guān)幾何的知識。
式與方程教案篇十七
教科書p17第9~15題。思考題。
1.通過練習,使學生進一步掌握列方程解決實際問題的思考方法,提高列方程解決問題的能力。
2.在練習中,使學生進一步感受方程的思想方法和應用價值,獲得成功的體驗,進一步樹立學好數(shù)學的自信心,產(chǎn)生對數(shù)學的興趣。
掌握列方程解決實際問題的基本思考方法。
根據(jù)情境,學生自己提出問題、解決問題。
一、基本練習。
1.先設要求的數(shù)為x,再列出方程。(口答且不解答)。
(1)一個數(shù)的12倍是84,求這個數(shù)。
(2)2.9比什么數(shù)少1.5?
(3)什么數(shù)與2.4和是6?
2.根據(jù)題意說出等量關(guān)系式并列方程。
(1)果園里有124棵梨樹和桃樹,梨樹是桃樹棵數(shù)的3倍。桃樹梨樹各有多少棵?
(2)書架上層有36本書,比下層少8本。書架下層有多少本書?
提問:每一題的數(shù)量關(guān)系式分別根據(jù)哪一個條件列的?
師生交流。
二、指導練習。
1.p17第9題。
(1)引導學生說一說數(shù)量關(guān)系式。
天鵝只數(shù)+丹頂鶴只數(shù)=960。
(2)根據(jù)關(guān)系式列方程。
x+2.2x=960。
2.p17第10題。
(1)引導學生說一說數(shù)量關(guān)系式。
六年級植樹棵數(shù)-五年級植樹棵樹=24。
(2)根據(jù)關(guān)系式列方程。
1.5x-x=24。
3.p17第13題。
(1)引導學生說一說數(shù)量關(guān)系式。
歷史故事總價+森林歷險記總價=83。
(2)根據(jù)關(guān)系式列方程。
7x+124=83。
三、綜合練習。
1.p17第11~12題。
(1)學生先說一說數(shù)量關(guān)系式。
(2)根據(jù)關(guān)系式列方程。
(5)集體評講。
四、思考題。
(1)引導學生說一說等量關(guān)系式。
速度差追擊時間=路程差。
甲路程-乙路程=路程差。
(280-240)x=400。
280x-240x=400。
五、課堂小結(jié)。
今天這節(jié)課是練習課,有誰來簡單總結(jié)一下呢?還有什么問題嗎?
板書設計:
列方程解決實際問題練習課。
天鵝只數(shù)+丹頂鶴只數(shù)=960六年級植樹棵數(shù)-五年級植樹棵樹=24。
x+2.2x=9601.5x-x=24。
歷史故事總價+森林歷險記總價=83速度差追擊時間=路程差甲路程-乙路程=路程差。
7x+124=83(280-240)x=400280x-240x=400。
式與方程教案篇十八
1.滲透數(shù)學中的語感訓練,使學生能熟練找出問題中相等關(guān)系的量,根據(jù)其數(shù)量關(guān)系列出方程。
2.使學生掌握應用等式的性質(zhì)解兩步解的方程。
3.注重聯(lián)系生活實際,獲得成功體驗。
學生能熟練根據(jù)其數(shù)量關(guān)系列出方程。
注重聯(lián)系生活實際,獲得成功體驗。
找出下列句中的數(shù)量關(guān)系。
松樹和楊樹一共56棵。
學校的建筑面積是總面積的一半。
底樓高3.4米,其余三層平均每層高2.8米,這幢樓高多少米?
小亮現(xiàn)在的身高比出生時的3倍高0.04米。
三瓶墨水的價錢比一個文件夾便宜2.8元。
1.練習二第9題。
指名板演,其余生獨立完成在自備本上后集體校對。
說說注意點和解兩步方程的步驟。
2.練習二第10題。
先要求學生只列出方程,校對所列方程根據(jù)的等量關(guān)系后再解方程。
3.練習二第11題。
生理解題意,找出數(shù)量關(guān)系,獨立列方程解答,集體交流。
4.練習二第12題。
生理解題意,并獨立完成在自備本上。校對,說說題目的意思,注意要求兩問。
5.練習二第13題。
生理解題意,讓學生找準對應的量,提醒學生有2問。集體交流。
6.練習二第14題。
生獨立完成后校對,其中12題的物品有“文件夾”和“墨水”,各一個與12瓶,總價25.10元。
7.練習二第15題。
學生利用公式獨立列式計算,集體交流時讓學生說說是怎樣計算的?
師:今天在解方程的過程中,你有哪些進步?
補充習題。
式與方程教案篇十九
1.通過求做勻速圓周運動的質(zhì)點的參數(shù)方程,掌握求一般曲線的參數(shù)方程的基本步驟.
2.熟悉圓的參數(shù)方程,進一步體會參數(shù)的.意義。
1.在直角坐標系中圓的標準方程和一般方程是什么?
探究新知(預習教材p12~p16,找出疑惑之處)。
如圖:設圓的半徑是,
即
應用示例。
例1.圓的半徑為2,是圓上的動點,是軸上的定點,是的中點,當點繞作勻速圓周運動時,求點的軌跡的參數(shù)方程.
(教材p24例2)。
式與方程教案篇二十
四年級(下冊)用字母表示數(shù)教學含有字母的式子,學生初步學會了寫式子的方法。五年級(下冊)方程教學了方程的意義、用等式的性質(zhì)解一步計算的方程,學生能夠列方程解答簡單的實際問題。本單元繼續(xù)教學方程,要解類似于axb=c、axbx=c的方程,并用于解決稍復雜的實際問題。教學內(nèi)容的編排有以下特點。
第一,把解方程和列方程解決實際問題的教學融為一體,同步進行,這是和以前教材的不同編排。在例1里,解2x-22=64這個方程是新知識,用它解答實際問題也是新知識。在例2里,解方程x+3x=290是新授內(nèi)容,解決的實際問題也是新授內(nèi)容。這兩道例題,既教學解方程的思路與方法,又教學列方程的相等關(guān)系和技巧。這樣編排,能較好地體現(xiàn)數(shù)學內(nèi)容和現(xiàn)實生活的聯(lián)系。一方面分析實際問題里的數(shù)量關(guān)系,抽象成方程,形成知識與技能的教學內(nèi)容;另一方面,利用方程解決實際問題,使知識技能的教學具有現(xiàn)實意義,成為數(shù)學思考、解決問題、情感態(tài)度有效發(fā)展的載體。
第二,突出思想方法,通過舉一反三培養(yǎng)能力。全單元編排的兩道例題、兩個練習,涵蓋了很寬的知識面。先看解方程。例 1教學ax-b=c這樣的方程,練習一里還要解ax+b=c、a+bx=c這些形式的方程。從例題到習題,雖然方程的結(jié)構(gòu)變了,但應用等式的性質(zhì)解方程是不變的。也就是說,解方程的策略是一致的,知識與方法的具體應用是靈活的。再看列方程。例1把一個數(shù)比另一個數(shù)的2倍少22作為相等關(guān)系,練一練和練習一里陸續(xù)出現(xiàn)一個數(shù)比另一個數(shù)的幾倍多幾、三角形的面積計算公式以及其他的相等關(guān)系。實際問題變了,尋找相等關(guān)系是解題的關(guān)鍵步驟始終不變。在例2和練習二里也有類似的安排。無論教學解方程還是列方程,例題講的是思想方法,以不變的思想方法應對多變的實際情況,有利于形成解決問題的策略,培養(yǎng)創(chuàng)新精神和實踐能力。
全單元內(nèi)容分成三部分,例1和練習一教學一般的分兩步解的方程;例2和練習二教學特殊的需兩步解的方程;整理與練習回憶、整理、應用全單元的教學內(nèi)容,反思、評價教學過程和效果。
兩道例題里的方程都要分兩步解,通過第一步運算,把稍復雜的方程轉(zhuǎn)化成五年級(下冊)里教學的簡單方程,使新知識植根于已有經(jīng)驗和能力的基礎上?;瘡碗s為簡單、變未知為已知是人們解決新穎問題的常用策略。這兩道例題突出轉(zhuǎn)化的過程,不僅使學生掌握解稍復雜的方程的方法,還讓他們充分體驗轉(zhuǎn)化思想,發(fā)展解決問題的策略。
1. 從各個方程的特點出發(fā),使用不同的轉(zhuǎn)化方法。
解形如axb=c的方程,一般根據(jù)等式兩邊同時加上或減去同一個數(shù),結(jié)果仍然是等式的性質(zhì)化簡。例1在列出方程2x-22=64以后,教材里寫出了解這個方程的第一步: 2x-22+22=64+22。教學要讓學生理解為什么等號的兩邊都加上22,體會這樣做是應用了等式的性質(zhì),感受這樣做的目的是把稍復雜的方程化簡。過去教材里強調(diào)把ax看成一個數(shù),是為了應用加、減法中各部分的關(guān)系解方程,新教材應用等式的性質(zhì)解方程,突出轉(zhuǎn)化的思想和方法。
解形如axbx=c的方程,一般應用運算律或相應的知識化簡。axbx可以改寫成
(ab)x,這已經(jīng)在四年級(下冊)用字母表示數(shù)時掌握了,現(xiàn)在只要計算ab,就能實現(xiàn)化簡原方程的目的。教學時仍然要讓學生理解為什么可以這樣改寫,以及這樣改寫的目的。
2. 轉(zhuǎn)化后的簡單方程,教法不同。
例1讓學生算出2x=?,并求出x的值。這是因為學生具有解2x=86這個方程的能力。教學這樣安排,是把轉(zhuǎn)化思想和方法放在突出位置上,促進新舊知識的銜接,有效地使用教學資源。把求得的x的值代入原方程進行檢驗,在五年級(下冊)已經(jīng)教學。例1提出檢驗的要求,不僅是培養(yǎng)良好的習慣,還要通過結(jié)果是正確的,確認解稍復雜方程的策略和方法是正確的。
例2把原方程化簡成4x=290,沒有讓學生接著解。教材寫出x=72.5并繼續(xù)算出3x=217.5,是因為72.5米和217.5米是實際問題的兩個答案。學生以往解答的問題,一般只有一個問題,這道例題有兩個問題,需要完整呈現(xiàn)解題過程,在步驟、書寫格式上作出示范,便于學生掌握。另外,檢驗的思路也有拓展。由于題目的.特點,不能局限于對解方程的檢驗,還要聯(lián)系實際問題里的數(shù)量關(guān)系,檢驗算得的陸地面積和水面面積是不是一共290公頃,水面面積是不是陸地面積的3倍。教學時要注意到這一點,既保障解方程是正確的,更保障列出的方程符合實際問題里的數(shù)量關(guān)系。
3. 加強解方程的練習。
前面曾經(jīng)說到,例1和例2都有列方程和解方程兩個教學內(nèi)容,列出的方程必須正確地解,才可能得到正確的答案。因此,兩個練習的第1題都安排了解方程。練習一在例1解方程的基礎上向兩個方向擴展,一是引出了a+bx=c、ax-b=c等結(jié)構(gòu)與例題不完全相同的方程,二是把小數(shù)及運算納入了方程。只要體會了例題里解方程的轉(zhuǎn)化思想和轉(zhuǎn)化方法,會進行小數(shù)四則計算,就能夠適應這兩個方面的擴展。要注意的是,小學階段不要求解形如a-bx=c的方程。因為解這個方程,如果等式的兩邊都減a,就會出現(xiàn)-bx=c-a,不但等號左邊是負數(shù),而且右邊c比a??;如果等式的兩邊都加bx,就出現(xiàn)a=c+bx,這些都是現(xiàn)在難以解決的問題。練習二在例2解方程的基礎上帶出形如ax-bx=c的方程,解方程涉及的除法計算都控制在三位數(shù)除以兩位數(shù)以及相應的小數(shù)除法范圍內(nèi),學生一般不會有困難。
還有一點要提及,整理與練習中安排小組討論像3.4x+1.8=8.6、5x-x=24這樣的方程各應怎樣解,表明教材十分重視引導學生組建認知結(jié)構(gòu)。如果既從兩個方程的特點回顧解法的不同,又從策略角度進行整理,對學生是有好處的。練習中出現(xiàn)的方程15x2=60,是為應用三角形面積公式解決實際問題服務的。
列方程解決實際問題要找到相等關(guān)系,方程是依據(jù)相等關(guān)系列的。其實,某個實際問題為什么選擇列方程的方法解答,或者為什么選擇列算式的方法解答,經(jīng)常是由相等關(guān)系決定的。所以,兩道例題的教學,都是先找出相等關(guān)系。
相等關(guān)系是一種數(shù)學模型,它把數(shù)量關(guān)系表達成等式。列算式解決實際問題要分析數(shù)量關(guān)系,這時的分析著眼于挖掘已知條件之間的聯(lián)系,溝通已知與未知的聯(lián)系,通常把條件作為一個方面,問題作為另一個方面,因而用已知數(shù)量組成的算式求得問題的答案。實際問題里的相等關(guān)系也是數(shù)量間的關(guān)系,它的最大特點是將已知與未知有機聯(lián)系起來,通過已知數(shù)量和未知數(shù)量共同組成的等式,反映實際問題里最主要的數(shù)量關(guān)系。學生在五年級(下冊)初步感受了相等關(guān)系,能找出簡單問題的相等關(guān)系。本冊教學尋找較復雜問題的相等關(guān)系,就應充分利用學生已有的知識經(jīng)驗。
1. 靈活開展思維活動,找出相等關(guān)系。
較復雜的問題之所以復雜,在于它的數(shù)量關(guān)系錯綜復雜。例1里大雁塔的高度比小雁塔的2倍少22米,其中既有倍數(shù)關(guān)系,也有相差關(guān)系,是兩種關(guān)系的復合。例2里已知頤和園水面面積與陸地面積一共290公頃,還已知水面面積大約是陸地面積的3倍,這是兩個并列的條件。因此,尋找復雜問題的相等關(guān)系,要梳理數(shù)量關(guān)系,分清主次和先后。
尋找相等關(guān)系沒有固定的模式照搬、照套,教材從實際問題的結(jié)構(gòu)特點和學生的思維發(fā)展水平出發(fā),靈活設計尋找相等關(guān)系的教學方法。學生在二年級(下冊)已經(jīng)能解決類似紅花有10朵,求紅花朵數(shù)的2倍少4朵是幾朵的問題,對幾倍少幾這樣的數(shù)量關(guān)系已有初步的理解。因此,例1要求學生找出大雁塔與小雁塔高度之間的相等關(guān)系,讓他們利用已有的倍數(shù)概念和相差概念,通過推理,把比小雁塔的2倍少22米改寫成數(shù)學式子小雁塔高度2-22,從而得到相等關(guān)系。例1為什么提出還可以怎樣列方程,這是由于同一個幾倍少幾的關(guān)系,可以寫出不同的相等關(guān)系式,如小雁塔的高度2-大雁塔的高度=22、小雁塔的高度2=大雁塔的高度+22等。在小組里交流想法是尊重學生的思考,允許學生按自己的想法解題。要注意的是,這里不是要求學生一題多解。要組織學生對各種解法進行比較,體會它們在概念上是一致的,僅是表現(xiàn)形式不同;還要引導學生體會例題里呈現(xiàn)的等量關(guān)系,得出答案時的思考比較順,從而自覺應用這樣的等量關(guān)系。對于學生中未出現(xiàn)的相等關(guān)系,不必提及,以免搞亂思路。
怎樣合理利用例2里的兩個并列的已知條件?教材選擇了線段圖。先在表示水面面積的線段上填3x,再在線段圖的右邊括號里填290,在圖上感受水面面積和陸地面積之間的倍數(shù)關(guān)系和相并關(guān)系。然后通過填空寫出等量關(guān)系,體會水面面積和陸地面積一共290公頃是這個實際問題里的等量關(guān)系。
2. 加強寫式練習,進一步把握數(shù)量關(guān)系,為列方程打基礎。
含有字母的式子是方程的重要組成部分,根據(jù)數(shù)量關(guān)系列方程時,都要寫出含有字母的式子。是否具有用字母表示數(shù)的意識,能否順利寫出含有字母的式子,對列方程解答實際問題是至關(guān)重要的。因此,教材加強寫式的練習。
練習一第2題寫出表示梨樹棵數(shù)的式子3x+15,表示鳊魚尾數(shù)的式子4x-80,都是解答幾倍多幾、幾倍少幾實際問題所需要的基本技能。安排寫式練習,使學生進一步理解數(shù)量關(guān)系,養(yǎng)成順著梨樹比桃樹的3倍多15棵、鳊魚比鯽魚的4倍少80尾這些數(shù)量關(guān)系的表述進行思考,并轉(zhuǎn)化成數(shù)學式子的習慣,從而選擇最適當?shù)南嗟汝P(guān)系解決實際問題。所以,這道練習題既是寫式訓練,也是思路引導。
練習二第2題是和倍、差倍問題的專項訓練。根據(jù)黃花x朵和紅花朵數(shù)是黃花的3倍,先寫出紅花有3x朵,用含有字母的式子表示紅花的朵數(shù),再用x+3x(或4x)表示兩種花一共的朵數(shù),用3x-x(或2x)表示紅花比黃花多的朵數(shù),發(fā)展聯(lián)想能力。聯(lián)想到的式子,正是方程里等號左邊的部分,這道題也在寫式訓練的同時,進行思路引導。
3. 列方程解答新穎的問題,拓展等量關(guān)系。
本單元安排兩節(jié)練習課,分別教學練習一第6~13題、練習二第6~11題。著重解答一些與例題不同的實際問題,找到這些問題的等量關(guān)系是教學重點,也是難點,對發(fā)展數(shù)學思考非常有益。
練習一第7題起拓展等量關(guān)系的作用。第(1)小題畫出了三角形,學生看到圖上的高和底,就能想到三角形的面積計算公式,于是把底高2=三角形的面積作為解題時的等量關(guān)系。第(2)小題利用熟悉的括線表示19.8元的意思,形象顯示了3枝鉛筆的錢+1個文具盒的錢=一共的錢是問題里的等量關(guān)系。教材的意圖是通過這些題打開思路,讓學生體會不同的問題里有不同的等量關(guān)系,兩個部分數(shù)之和往往是可利用的等量關(guān)系。這就為繼續(xù)解答第8、9、12題作了有益的鋪墊。至于第13題,把兩種溫度的換算公式作為等量關(guān)系。公式在題中已經(jīng)揭示,只要在它上面體會已知華氏溫度求攝氏溫度,列方程解答比較好。反之,已知攝氏溫度求華氏溫度,依據(jù)公式能直接列出算式。
例2和練一練分別是典型的和倍、差倍問題,已知的總數(shù)或相差數(shù)是等量關(guān)系的生長點。練習二第7~11題的題材和例題不同,且各有特點。但是,等量關(guān)系的載體仍然是已知的總數(shù)與相差數(shù)。第7題用線段圖配合展示題意,便于學生發(fā)現(xiàn)小麗走的米數(shù)+小明走的米數(shù)=兩地相距的米數(shù)這一等量關(guān)系,并把這個經(jīng)驗遷移到解答后面的習題中去。
【本文地址:http://mlvmservice.com/zuowen/17635252.html】