教案要注重培養(yǎng)學生的創(chuàng)造力和實踐能力。其次,教案應選擇適當?shù)慕虒W方法,根據(jù)學生的學習特點和教學內(nèi)容進行靈活運用。以下是一些成功教案的特點,希望對您的教學設計有所啟發(fā)。
三角函數(shù)的教案設計篇一
2.借助單位圓理解任意角三角函數(shù)(正弦、余弦、正切)的定義;。
3.能利用三角函數(shù)線解決一些簡單的三角函數(shù)問題。
2.讓學生從所學知識基礎(chǔ)上發(fā)現(xiàn)新問題,并加以解決,提高學生抽象概括、分析歸納、數(shù)學表述等基本數(shù)學思維能力.
1.通過學生之間、師生之間的交流合作,實現(xiàn)共同探究獲取知識.
教學難點:利用與單位圓有關(guān)的有向線段,將任意角的正弦、余弦、正切函數(shù)值分別用它們的幾何形式表示出來.
三角函數(shù)的教案設計篇二
本節(jié)課是銳角三角形這章的第一節(jié)課,是學生在學了直角三角形及勾股定理基礎(chǔ)上再來研究直角三角形邊與角的關(guān)系的內(nèi)容,本章的知識通過解直角三角形與實際問題中的坡度、方向角方位角建立聯(lián)系,解決問題。本章是中考必考的知識點,特別是特殊角的三角函數(shù)值,一定要熟記。本節(jié)課雖考慮到本班學生自從分班以后,學習氛圍不濃,而基礎(chǔ)又較差,因而必須將難度降低想辦法調(diào)動學生的學習積極性;但在引入時,既用了直角三角形在數(shù)學中的重要地位,用:“黑夜給了我一個黑色的眼睛,我用它來尋找光明”類比數(shù)學中的“上帝給了我一雙黑色的眼睛,我用它來尋找直角三角形”說明尋找直角三角形對解決數(shù)學問題的重要性;然后又引入用學生最近反應學習苦,學習累和不愛護公共財物的情況,從引入課桌要到了到其他貧困地區(qū)孩子午休誰桌子下的情況引入愛護公共財物,今兒從而引出本節(jié)課相關(guān)的知識。雖然大家都在說這節(jié)課的亮點就是將德育與數(shù)學知識結(jié)合起來,注重學科之間的聯(lián)系。但我始終覺得這樣的結(jié)合不免顯得優(yōu)點牽強,下來我將在思考如何讓本節(jié)課的引入與內(nèi)容結(jié)合得更好。
還有一個問題就是我在設計教學時,想到學生函數(shù)的基礎(chǔ)不好,很怕函數(shù),沒有考慮到和函數(shù)的定義聯(lián)系起來,而學生雖然會計算一個銳角的三角函數(shù)了,但對為什么把這些值成為這個銳角的三角函數(shù)并不清楚,在教學中我忽視了這一細節(jié),也沒有一個學生提出疑問,這說明學生只停留在定義的表面,并沒有深入思考。因此,在下次教學時,我要設計這么一個問題:“為什么把它們成為函數(shù)值?”來啟發(fā)學生。
三角函數(shù)的教案設計篇三
1、下列命題中正確的是()。
a、第一象限角一定不是負角b、負角是第四象限角。
c、鈍角一定是第二象限角d、第二象限角一定是鈍角。
e、銳角是小于的角f、第一象限角一定是銳角。
g、第二象限角比第一象限角大h、終邊相同的角一定相等。
2、集合的關(guān)系是()。
a、b、c、d、以上都不對。
3、若三角形的兩內(nèi)角、滿足,則此三角形形狀是()。
a、銳角三角形b、鈍角三角形c、直角三角形d、不能確定。
4、若,且,則為第_______象限角。
5、已知角終邊經(jīng)過點,且=,則=_________。
6、化簡:(1)(2)。
例1、已知與角的終邊相同,判斷和是第幾象限角。
變:已知是第三象限角,判斷和是第幾象限角。
例2、已知扇形的周長為,圓心角為,則扇形的弧長和面積為多少?
例3、已知,求,的值。
例4、已知2,求下列各式的值:
(1)(2)。
例5、已知點在角的終邊上,且,求的值。
例6、已知sin=,求的值。
班級:高一()班姓名__________。
1、若角與角的`終邊相同,則。
2、若是第二象限角,則是第象限角,是第象限角。
3、在半徑為的輪子上有一點,輪子按順時針方向旋轉(zhuǎn)二周半,則圓心與點的連線所轉(zhuǎn)過的角的弧度數(shù)為_________,點經(jīng)過的路程為_________。
4、若,則______________。
5、若,則_________________。
6、已知2,求下列各式的值:
(1)(2)。
7、已知,求下列各式的值:
(1)(2)(3)。
8、已知,且,求的值。
9、化簡:(3)(4)。
10、設,求的值。
三角函數(shù)的教案設計篇四
1、教材的地位和作用:
同角三角函數(shù)的基本關(guān)系這一節(jié)的內(nèi)容選自人民教育出版社普通高中課程標準實驗教科書a版必修4第一章第二節(jié)第二課時,是學生學習了任意角和弧度值,任意角的三角函數(shù)后,安排的一節(jié)繼續(xù)深入學習的內(nèi)容,是求三角函數(shù)值、化簡三角函數(shù)式、證明三角恒等式的基本工具,是整個三角函數(shù)的基礎(chǔ),在教材中起著承上啟下的作用。同時,它體現(xiàn)的數(shù)學思想與方法在整個中學數(shù)學學習中都有著重要的作用。所以本節(jié)課的重點是同角三角函數(shù)基本關(guān)系式及在求值中的應用。
2、教學目標。
根據(jù)教學大綱的要求和學生的實際水平,確定了本次課的教學目標:
(1)知識與技能:讓學生理解公式的推導過程,熟練掌握同角三角函數(shù)的基本關(guān)系,并能在已知某角的一個三角函數(shù)值的情況下,求出其他三角函數(shù)值。
(2)過程與方法:通過公式的推導、證明和應用,培養(yǎng)學生邏輯推理能力;通過例題與練習的教學提高學生運算能力和分析解決問題的能力。
(3)情感態(tài)度與價值觀:培養(yǎng)學生積極參與大膽探索的精神;讓學生通過自主學習體驗學習的成就感,培養(yǎng)學生學習數(shù)學的興趣和信心。
3、教學重點和難點。
(1)教學重點:同角三角函數(shù)的基本關(guān)系。
(2)教學難點:三角函數(shù)值的符號的確定,同角三角函數(shù)的基本關(guān)系式的變式運用。
二、學情分析。
為本節(jié)課的學習奠定了良好的思想基礎(chǔ)和能力基礎(chǔ),但在探究問題的能力,合作交流的意識等方面還有待加強。所以同角三角函數(shù)關(guān)系式在解題中的靈活選取,及使用公式時由函數(shù)值正負號的選取而導致的角的范圍的分類討論是本節(jié)課的一個難點。
三、教法分析。
本節(jié)課主要采用自主探究式教學方法.充分利用已學過的知識,盡可能地增加教學過程的趣味性、實踐性.在教師的啟發(fā)指導下,強調(diào)學生的主動參與,讓學生自己去分析、探索,在探索過程中研究和領(lǐng)悟得出的結(jié)論,從而達到使學生既獲得知識又發(fā)展智能的目的。通過教師在教學過程中的點撥,啟發(fā)學生通過主動觀察、主動思考、動手操作、自主探究來達到對知識的發(fā)現(xiàn)和接受。
四、學法指導。
在引導分析時,留出學生的思考空間,讓學生去聯(lián)想、探索,同時鼓勵學生大膽質(zhì)疑,圍繞中心各抒己見,通過合作交流、共同探索來尋求解決問題的方法。
五、教學方法:
引導發(fā)現(xiàn)法、啟發(fā)法。
三角函數(shù)的教案設計篇五
2結(jié)合的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期。
3會用代數(shù)方法求等函數(shù)的周期。
4理解周期性的幾何意義。
周期函數(shù)的概念,周期的`求解。
1、是周期函數(shù)是指對定義域中所有都有。
即應是恒等式。
2、周期函數(shù)一定會有周期,但不一定存在最小正周期。
例1、若鐘擺的高度與時間之間的函數(shù)關(guān)系如圖所示。
(2)求時鐘擺的高度。
(1)(2)。
總結(jié):(1)函數(shù)(其中均為常數(shù),且。
的周期t=。
(2)函數(shù)(其中均為常數(shù),且。
的周期t=。
例3、求證:的周期為。
例4、(1)研究和函數(shù)的圖象,分析其周期性。
(2)求證:的周期為(其中均為常數(shù),
且
總結(jié):函數(shù)(其中均為常數(shù),且。
的周期t=。
例5、(1)求的周期。
(2)已知滿足,求證:是周期函數(shù)。
課后思考:能否利用單位圓作函數(shù)的圖象。
六、作業(yè):
七、自主體驗與運用。
a、b、c、d、
a、b、c、d、
a、b、c、d、
a、b、c、d、
5、設是定義域為r,最小正周期為的函數(shù),
若,則的值等于()。
a、1b、c、0d、
7、已知函數(shù)的最小正周期不大于2,則正整數(shù)。
的最小值是。
8、求函數(shù)的最小正周期為t,且,則正整數(shù)。
的最大值是。
9、已知函數(shù)是周期為6的奇函數(shù),且則。
10、若函數(shù),則。
11、用周期的定義分析的周期。
12、已知函數(shù),如果使的周期在內(nèi),求。
正整數(shù)的值。
13、一機械振動中,某質(zhì)子離開平衡位置的位移與時間之間的。
函數(shù)關(guān)系如圖所示:
(2)求時,該質(zhì)點離開平衡位置的位移。
14、已知是定義在r上的函數(shù),且對任意有。
成立,
(1)證明:是周期函數(shù);。
(2)若求的值。
三角函數(shù)的教案設計篇六
本節(jié)課是第一輪初三中考總復習有關(guān)銳角三角函數(shù)的復習課,根據(jù)現(xiàn)在的中考特點及考綱要求,進行相應的復習和鞏固。現(xiàn)就本節(jié)課的課堂教學評價如下:
1、正確分析現(xiàn)在中考命題的方向、熱點及考綱要求,得出有關(guān)銳角三角函數(shù)考點的知識要點及各種題型,通過課堂教學在銳角三角函數(shù)的基本概念及運算等基礎(chǔ)知識和基本技能得到相應的發(fā)展。
2、本節(jié)課采用分階段,分層次歸類復習。
(1)基本概念領(lǐng)會階段。學生對概念,公式,定義的理解與掌握。
(2)基本方法學習階段。使學生對有關(guān)基本技能訓練,掌握課本例題類型,能舉一反三,觸類旁通。
(3)針對練習階段。檢查學生對基本概念,基本技能的掌握情況。
3、本節(jié)課選題方面有以下幾個特點。
(1)有針對性,突出重要的知識點和思想方法。
(2)具有一定的應用性,即能考察學生的數(shù)學基礎(chǔ)知識,又能考察學生的數(shù)學應用能力。
(3)富有一定的思考性。有幾個例題,有分類思想方法,能鍛煉學生思維的靈活性。
(4)有計劃地設置練習中的思維障礙,使練習具有合適的梯度,提高訓練的效率。
4、本節(jié)課教師能夠充分調(diào)動學生上課興趣,從而使學生復習數(shù)學的積極性,主動性發(fā)揮出來,這樣做到以學生為主,教師起主導作用。
三角函數(shù)的教案設計篇七
一、弄清對鄰斜。
銳角三角函數(shù)是定義在直角三角形中的研究邊角之間的關(guān)系。而銳角三角函數(shù)值實質(zhì)上就是邊與邊之間的'一種比值,它能溝通了邊與角之間的聯(lián)系,為解直角三角形提供了角邊關(guān)系的根據(jù)。不管角怎樣變,斜邊是固定的,直角邊或是某一銳角的對邊或是某一銳角的鄰邊。不要死記硬背a,b,c的比值。記清對鄰斜兩者之比。
三、應用公式變形解決實際問題。
三角函數(shù)的教案設計篇八
教學反思:
銳角三角函數(shù)在解決現(xiàn)實問題中有著重要的作用,但是銳角三角函數(shù)首先是放在直角三角形中研究的,顯示的是邊角之間的關(guān)系。銳角三角函數(shù)值是邊與邊之間的比值,銳角三角函數(shù)溝通了邊與角之間的聯(lián)系,它是解直角三角形最有力的工具之一。
在今后教學過程中,自己還要多注意以下兩點:
(1)還要多下點工夫在如何調(diào)動課堂氣氛,使語言和教態(tài)更加生動上。初中學生的.注意力還是比較容易分散的,興趣也比較容易轉(zhuǎn)移,因此,越是生動形象的語言,越是寬松活潑的氣氛,越容易被他們接受。如何找到適合自己適合學生的教學風格?或嚴謹有序,或生動活潑,或詼諧幽默,或詩情畫意,或春風細雨潤物細無聲,或激情飛揚,每一種都是教學魅力和人格魅力的展現(xiàn)。我將不斷摸索,不斷實踐。
(2)我將盡我可能站在學生的角度上思考問題,設計好教學的每一個細節(jié),上課前多揣摩。讓學生更多地參與到課堂的教學過程中,讓學生體驗思考的過程,體驗成功的喜悅和失敗的挫折,舍得把課堂讓給學生,讓學生做課堂這個小小舞臺的主角。而我將盡我最大可能在課堂上投入更多的情感因素,豐富課堂語言,使課堂更加鮮活,充滿人性魅力,下課后多反思,做好反饋工作,不斷總結(jié)得失,不斷進步。只有這樣,才能真正提高課堂教學效率。
三角函數(shù)的教案設計篇九
這是一節(jié)初三總復習課,內(nèi)容是銳角三角函數(shù)。王老師以基礎(chǔ)知識的復習、基本技能的訓練為主,緊跟教學大綱,選擇了幾個典型例題,開拓了學生的知識面,豐富了學生的題型結(jié)構(gòu)。同時向?qū)W生進行了一題多種解法思想的滲透,這樣活躍了學生的思維,豐富了學生的知識內(nèi)涵。老師對教材,教學大綱理解得非常透徹,對課堂把握能力強,反應很快,能積極跟上學生的思維,因時制宜的調(diào)整教學節(jié)奏,語速快而清晰,教態(tài)、板書也能給學生有積極的影響,富有感染力。例題的選擇合理、新穎且有難度,即有常見的基本計算與證明,也有一定難度的探索型、操作型問題,更有對于知識點綜合應用的綜合題,層次鮮明,滿足了不同奮斗目標學生的不同要求。教學上多媒體的運用,較直觀地了解題意,提高解答的準確率,課堂上充分發(fā)揮了學生的主體性,以學生的發(fā)展為本,通過小組合作,增強了學生的合作意識,又取長補短,互相競爭,營造了良好的教學氛圍,而教師知識組織者,只是參與、啟發(fā)、點撥、糾偏,培養(yǎng)了學生的創(chuàng)造能力和發(fā)散思維能力。
三角函數(shù)的教案設計篇十
《同角三角函數(shù)關(guān)系式》是人教版高中新教材必修4第一章第二節(jié)的第二課。本節(jié)內(nèi)容是同角三角函數(shù)關(guān)系式的運用,三種題型“知值求值”“弦化切”“函數(shù)思想的應用”。
二、學生情況分析。
本課時研究的是同角三角函數(shù)關(guān)系式的運用、逆用及變形,因此在教學過程中要發(fā)展學生的已有認知,發(fā)揮知識遷移。
知識目標:
1、掌握同角三角函數(shù)關(guān)系式的運用、逆用及變形;
2、掌握同角三角函數(shù)關(guān)系式的三種題型。
能力目標:
滲透分類討論思想、方程思想。
情感、態(tài)度、價值觀目標:
發(fā)展學生研究問題、解決問題的能力。
四、教學重難點。
重點:
同角三角函數(shù)關(guān)系式的運用、逆用及變形;
難點:
2、靈活運用公式做運算。
五、教學方法與策略。
教學中注意用新課程理念處理教材,采用學生自主探索、動手實踐、合作交流、師生互動,教師發(fā)揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質(zhì)、經(jīng)歷過程。根據(jù)本節(jié)課內(nèi)容、高一學生認知特點,本節(jié)課采用“啟發(fā)探索、講練結(jié)合”的方法組織教學。
三角函數(shù)的教案設計篇十一
數(shù)學的大題是由小題堆積起來的,只是增加了邏輯過程;難題是由易題延伸出來的,只是將定義與概念以及原理隱藏的更深而已。所以,三角函數(shù)的學習,更加注重對定義域概念的學習和深刻的理解。在平時的學習中,更應立足教材,學好用好教材,深入地鉆研定義與概念,切忌眼高手低,偏重難題,搞題海戰(zhàn)術(shù)!比如,弧度制下角的概念,六種三角函數(shù)的定義,所有的公式來源,三角函數(shù)圖像的平移與放縮,等等。說句狠話:弄不懂概念,你就別做題!你做了題,就要弄明白你是在使用什么概念什么定義什么公式!不要追求方法與技巧,因為方法與技巧來源于概念與定義。
2、記住公式不是靠背。
任何一種學習活動,都是先有理解,再有記憶,而后是靈變與應用。面對眾多的三角公式,很多同學采用錯誤的做法:死記硬背!其結(jié)果是仍然會用錯,仍然記不住。與其花費大量的時間稀里糊涂做題,不如花點時間先從最原始的定義與概念推到公式!我曾經(jīng)有過一種比較極端然而卻非常有效的做法,讓一位一想到三角函數(shù)公式就暈就錯的學生先不做題,先整理理論,用定義與概念相互說明,用公式與公式相互推導。理論系統(tǒng)明白了,解題的思路和方法技巧也就順理成章了。
3、學會反思與整合。
建構(gòu)主義學習觀認為知識并不是簡單的由教師或者其他人傳授給學生的,而只能由學生依據(jù)自身已有的知識、經(jīng)驗,主動地加以建構(gòu)。建構(gòu)一詞包含有兩重含義,一是悟,二是創(chuàng)造。一個批判、選擇、和存疑的過程,一個充滿想象、探索和體驗的過程。你不想學,老師強行的逼迫是不容易的或者說是作用不大,俗話說“強扭的瓜不甜”嘛!數(shù)學學習不但要對概念、結(jié)論和技能進行記憶,積累和模仿,而且還要動手實踐,自主探索,并且在獲得知識的基礎(chǔ)上進行反思與整合。所以我們在平時學習中要注意反思,只有這樣才能使內(nèi)容得到鞏固,知識的得到拓展,能力得到提高,思維得到優(yōu)化,創(chuàng)新能力得到真正的發(fā)展,希望大能夠讓數(shù)學反思與整合成為我們的自然的習慣!
三角函數(shù)的教案設計篇十二
3.探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系.
利用誘導公式(二),口答下列三角函數(shù)值.
(1).;(2).;(3)..
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.
由sin300=出發(fā),用三角的定義引導學生求出sin(-300),sin1500值,讓學生聯(lián)想若已知sin=,能否求出sin(),sin()的值.
1.探究任意角與的三角函數(shù)又有什么關(guān)系;。
2.探究任意角與的三角函數(shù)之間又有什么關(guān)系.
遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學生無形中鼓舞了氣勢,增強了自信,加大了挑戰(zhàn).而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進步.
誘導公式(三)、(四)。
給出本節(jié)課的課題。
標題的后出,讓學生在經(jīng)歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經(jīng)輕松掌握,同時也是對本節(jié)課內(nèi)容的小結(jié).
的三角函數(shù)值,等于的同名函數(shù)值,前面加上一個把看成銳角時原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)。
設計意圖。
簡便記憶公式.
設計意圖。
本練習的設置重點體現(xiàn)一題多解,讓學生不僅學會靈活運用應用三角函數(shù)的誘導公式,還能養(yǎng)成靈活處理問題的良好習慣.這里還要給學生指出課本中的“負角”化為“正角”是針對具體負角而言的.
學生練習。
化簡:.
設計意圖。
1.小結(jié)使用誘導公式化簡任意角的三角函數(shù)為銳角的步驟.
2.體會數(shù)形結(jié)合、對稱、化歸的思想.
3.“學會”學習的習慣.
1.課本p-27,第1,2,3小題;。
2.附加課外題略.
設計意圖。
加強學生對三角函數(shù)的誘導公式的記憶及靈活應用,附加題的'設置有利于有能力的同學“更上一樓”.
八.課后反思。
對本節(jié)內(nèi)容在進行教學設計之前,本人反復閱讀了課程標準和教材,針對教材的內(nèi)容,編排了一系列問題,讓學生親歷知識發(fā)生、發(fā)展的過程,積極投入到思維活動中來,通過與學生的互動交流,關(guān)注學生的思維發(fā)展,在逐漸展開中,引導學生用已學的知識、方法予以解決,并獲得知識體系的更新與拓展,收到了一定的預期效果,尤其是練習的處理,讓學生通過個人、小組、集體等多種解難釋疑的嘗試活動,感受“觀察——歸納——概括——應用”等環(huán)節(jié),在知識的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學生的主體作用,也提高了學生主體的合作意識,達到了設計中所預想的目標。
然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認為,教師的干預(講解)還是太多。
在以后的教學中,對于一些較簡單的內(nèi)容,應放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內(nèi)容等教學因素,都在不斷更新,作為數(shù)學教師要更新教學觀念,從學生的全面發(fā)展來設計課堂教學,關(guān)注學生個性和潛能的發(fā)展,使教學過程更加切合《課程標準》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。
三角函數(shù)的教案設計篇十三
本課教學雖然是復習課,但是學生興趣盎然,通過本節(jié)課的學習把學生學習的三角形單元的各個零散的知識點進行系統(tǒng)梳理,形成知識網(wǎng)絡.還通過解決一些實際問題加深對所學知識的理解和運用,還通過一些題組練習區(qū)別學生容易混淆的知識點。這樣一邊整理知識點,一邊應用這些知識點解決實際問題,使學生在不知不覺中把三角形的不同知識點有機的聯(lián)系起來,形成一個完整的知識網(wǎng)絡。
1.探索與實踐環(huán)節(jié)。
設計目的是讓學生感受到復習課,不僅是已學知識的整理復習,同時還是所學知識的延續(xù),更是探索新知的起點。我設計的題目是應用三角形的內(nèi)角和來探索n邊形的內(nèi)角和,同時也想滲透一點完全歸納法的思想,當然并不是要讓學生知道完全歸納法。
2.數(shù)學的發(fā)展史環(huán)節(jié)。
主要是讓學生了解三角形知識的發(fā)展史,既是數(shù)學的發(fā)展史。通過神秘的金字塔中三角形知識的運用,讓學生體會到數(shù)學歷史以及學習數(shù)學的快樂,增強學習數(shù)學濃厚興趣。
3.評價與反思環(huán)節(jié)。
設計目的是讓學生初步感受更深層次的數(shù)學學習評價,讓學生逐漸明白學習數(shù)學不僅僅只有通過單元測試卷這種書面的形式來評價自己的學習能力和水平,還有更多的評價方法和評價標準,特別是要提醒學生,評價自己是否掌握了學習數(shù)學的方法往往比做對了一道題更為重要。
本課重視建構(gòu)知識網(wǎng)絡,發(fā)展了學生觀察、推理的能力,使學生在復習整理舊知識的同時還能有所獲有所得,真正體現(xiàn)了新課提出的練中獲得新知,提高了學生的分析綜合能力。但是本節(jié)課在教學中還沒有完全讓學生自主回顧、有效參與舊知的整理。
三角函數(shù)的教案設計篇十四
角三角函數(shù)是定義在直角三角形中的研究邊角之間的關(guān)系,而銳角三角函數(shù)值實質(zhì)上就是邊與邊之間的一種比值,它能溝通了邊與角之間的聯(lián)系,為解直角三角形提供了角邊關(guān)系的根據(jù)。
本節(jié)課重難點就是對比值的理解,可以從以下幾方面著手研究:
(1)討論角的任意性(從特殊到一般)(2)運用相似三角形性質(zhì),讓學生領(lǐng)悟到:在直角三角形中,對于固定角,無論直角三角形大小怎么樣改變,都影響不到其對邊與斜邊的比值。
采用激趣設疑方法,從修建揚水站鋪設水管問題入手,讓學生參與問題討論,喚起學生學習興趣和求知欲。再根據(jù)從特殊到一般的學習方法,利用特殊角來探究銳角的三角函數(shù),通畫圖,找出邊的長度、角的度數(shù),計算相關(guān)方面進行探究,學生發(fā)現(xiàn):特殊角的三角函數(shù)值可以用勾股定理求出相關(guān)邊的長度,然后就問:三角函數(shù)與直角三角形的邊、角有什么關(guān)系,三角函數(shù)與三角形的形狀大小有關(guān)系嗎?整堂課都在愉快的氛圍中進行。多數(shù)學生都能積極動腦積極參與思考。教學中,要關(guān)注學生的情感態(tài)度,對那些積極動腦,熱情參與的同學,都給予了鼓勵和表揚,促使學生的情感和興趣始終保持最佳狀態(tài),從而保證施教活動的有效性。
在以后教學中,還要多注意以下兩點:
(1)要多花點時間來研究如何調(diào)控課堂氣氛。學生的注意力是比較容易分散的,興趣也比較容易轉(zhuǎn)移,因此,越是生動形象的語言,越是寬松活潑的氣氛,越容易被他們接受。要不斷摸索,不斷實踐找到合適的教學風格,每一種個性教學都是教學魅力和人格魅力的展現(xiàn)。
(2)要學會換位思考,站在學生的'角度上思考問題,設計好教學的每一個細節(jié),上課前多揣摩。讓學生更多地參與到課堂的教學過程中,讓學生體驗思考的過程,體驗成功的喜悅和失敗的挫折,學會真正把課堂還給學生,讓學生來做課堂的主角。
(3)下課后多反思,做好反饋工作,不斷總結(jié)得失,不斷進步。只有這樣,才能真正提高課堂教學效率。
三角函數(shù)的教案設計篇十五
1、銳角三角形中,任意兩個內(nèi)角的和都屬于區(qū)間,且滿足不等式:。
即:一角的正弦大于另一個角的余弦。
2、若,則,。
3、的圖象的對稱中心為(),對稱軸方程為。
4、的圖象的對稱中心為(),對稱軸方程為。
5、及的圖象的對稱中心為()。
6、常用三角公式:。
有理公式:;。
降次公式:,;。
萬能公式:,,(其中)。
7、輔助角公式:,其中。輔助角的位置由坐標決定,即角的終邊過點。
8、時,。
9、。
其中為內(nèi)切圓半徑,為外接圓半徑。
特別地:直角中,設c為斜邊,則內(nèi)切圓半徑,外接圓半徑。
10、的圖象的圖象(時,向左平移個單位,時,向右平移個單位)。
11、解題時,條件中若有出現(xiàn),則可設,。
則。
12、等腰三角形中,若且,則。
13、若等邊三角形的邊長為,則其中線長為,面積為。
14、;。
三角函數(shù)的教案設計篇十六
這是一節(jié)初三的復習課,王老師在教案中講到在近幾年中考數(shù)學試題中,在銳角三角函數(shù)這節(jié)命題多以填空題,選擇題的形式出現(xiàn),主要考察三角函數(shù)的計算,三角函數(shù)的定義,三角函數(shù)的增減性,同角三角函數(shù)關(guān)系,互余三角函數(shù)關(guān)系。圍繞著這個目標,王老師先讓學生明白他們應該掌握什么,必須掌握什么,并精心設計了很多練習,從學生的反映中來看,大多數(shù)同學都掌握的比較好,基本達到了黃老師事先所制定的教學目標。
王老師教學基本功比較扎實,板書非常清晰,教態(tài)和語言有一定的號召力。對教學內(nèi)容非常熟悉。我想如果把這節(jié)課分為兩節(jié)課,那效果會更加好。
三角函數(shù)的教案設計篇十七
《同角三角函數(shù)關(guān)系式》是人教版高中新教材必修4第一章第二節(jié)的第二課。本節(jié)內(nèi)容是同角三角函數(shù)關(guān)系式的運用,三種題型“知值求值”“弦化切”“函數(shù)思想的應用”。
本課時研究的是同角三角函數(shù)關(guān)系式的運用、逆用及變形,因此在教學過程中要發(fā)展學生的已有認知,發(fā)揮知識遷移。
知識目標:
1、掌握同角三角函數(shù)關(guān)系式的運用、逆用及變形;
2、掌握同角三角函數(shù)關(guān)系式的三種題型。
能力目標:
滲透分類討論思想、方程思想。
情感、態(tài)度、價值觀目標:
發(fā)展學生研究問題、解決問題的能力。
重點:
同角三角函數(shù)關(guān)系式的運用、逆用及變形;
難點:
2、靈活運用公式做運算。
教學中注意用新課程理念處理教材,采用學生自主探索、動手實踐、合作交流、師生互動,教師發(fā)揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質(zhì)、經(jīng)歷過程。根據(jù)本節(jié)課內(nèi)容、高一學生認知特點,本節(jié)課采用“啟發(fā)探索、講練結(jié)合”的方法組織教學。
引入(課件中:)。
兩個公式。
新課。
例1練習1(課件中)。
意圖:加強學生對公式的理解,讓學生學會知值求值,能注意角的取值范圍,正確判斷函數(shù)值符號。
例2練習1(課件中)。
意圖:讓學生掌握齊次式分子分母同除余弦化正切。
例3練習3(課件中)。
意圖:讓學生理解掌握方程思想的應用。
小結(jié)(課件中)。
作業(yè)(課件中)。
三角函數(shù)的教案設計篇十八
1.近幾年高考對三角變換的考查要求有所降低,而對本章的內(nèi)容的考查有逐步加強的趨勢,主要表現(xiàn)在對三角函數(shù)的圖象與性質(zhì)的考查上有所加強。
(3)應用同角變換和誘導公式,求三角函數(shù)值及化簡和等式證明的問題;
(4)與周期有關(guān)的問題。
3.基本的解題規(guī)律為:觀察差異(或角,或函數(shù),或運算),尋找聯(lián)系(借助于熟知的公式、方法或技巧),分析綜合(由因?qū)Ч驁?zhí)果索因),實現(xiàn)轉(zhuǎn)化。解題規(guī)律:在三角函數(shù)求值問題中的解題思路,一般是運用基本公式,將未知角變換為已知角求解;在最值問題和周期問題中,解題思路是合理運用基本公式將表達式轉(zhuǎn)化為由一個三角函數(shù)表達的形式求解。
4.立足課本、抓好基礎(chǔ)。從前面敘述可知,我們已經(jīng)看到近幾年高考已逐步拋棄了對復雜三角變換和特殊技巧的考查,而重點轉(zhuǎn)移到對三角函數(shù)的圖象與性質(zhì)的考查,對基礎(chǔ)知識和基本技能的考查上來,所以在復習中首先要打好基礎(chǔ)。在考查利用三角公式進行恒等變形的同時,也直接考查了三角函數(shù)的性質(zhì)及圖象的變換,可見高考在降低對三角函數(shù)恒等變形的要求下,加強了對三角函數(shù)性質(zhì)和圖象的考查力度。
三角函數(shù)的教案設計篇十九
(2)能熟練運用正弦函數(shù)的性質(zhì)解題。
2、過程與方法。
通過正弦函數(shù)在r上的圖像,讓學生探索出正弦函數(shù)的性質(zhì);講解例題,總結(jié)方法,鞏固練習。
3、情感態(tài)度與價值觀。
通過本節(jié)的學習,培養(yǎng)學生創(chuàng)新能力、探索歸納能力;讓學生體驗自身探索成功的喜悅感,培養(yǎng)學生的自信心;使學生認識到轉(zhuǎn)化“矛盾”是解決問題的有效途經(jīng);培養(yǎng)學生形成實事求是的科學態(tài)度和鍥而不舍的鉆研精神。
【本文地址:http://mlvmservice.com/zuowen/17574903.html】