在教學過程中,教案起著指導和規(guī)范的作用,能夠提高教師的教學效果和學生的學習效果。為了編寫一份完美的教案,我們需要事先對教學內(nèi)容和教學目標進行充分的了解和分析。名師精心編寫的教案范文,能夠幫助教師更好地理解教學要求和內(nèi)容,提供教學思路和方法。
七年級下二元一次方程組的教案設計篇一
知識與技能。
(2)掌握二元一次方程組和對應的兩條直線之間的關系;
(2)通過“做一做”引入例1,進一步發(fā)展學生數(shù)形結合的意識和能力。
(1)在探究二元一次方程和一次函數(shù)的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神。
(2)在經(jīng)歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力。
數(shù)形結合和數(shù)學轉(zhuǎn)化的思想意識。
教具:多媒體課件、三角板。
學具:鉛筆、直尺、練習本、坐標紙。
第一環(huán)節(jié):設置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)。
內(nèi)容:
1、方程x+y=5的解有多少個?是這個方程的解嗎?
2、點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3、在一次函數(shù)y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4、以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;
(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程。
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)。
內(nèi)容:
1、解方程組。
2、上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標系內(nèi)分別作出這兩個函數(shù)的圖像。
(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉(zhuǎn)化為求這兩條直線對應的函數(shù)表達式聯(lián)立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。
第三環(huán)節(jié)典型例題(10分鐘,學生獨立解決)。
探究方程與函數(shù)的相互轉(zhuǎn)化。
內(nèi)容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點坐標是。
第四環(huán)節(jié)反饋練習(10分鐘,學生解決全班交流)。
內(nèi)容:
1、已知一次函數(shù)與的圖像的交點為,則。
2、已知一次函數(shù)與的圖像都經(jīng)過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。
(a)4(b)5(c)6(d)7。
3、求兩條直線與和軸所圍成的三角形面積。
4、如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
第五環(huán)節(jié)課堂小結(5分鐘,師生共同總結)。
內(nèi)容:以“問題串”的形式,要求學生自主總結有關知識、方法:
1、二元一次方程和一次函數(shù)的圖像的'關系;
(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;
(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程。
2、方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
(1)代入消元法;
(2)加減消元法;
(3)圖像法,要強調(diào)的是由于作圖的不準確性,由圖像法求得的解是近似解。
第六環(huán)節(jié)作業(yè)布置。
習題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。
附:板書設計。
七年級下二元一次方程組的教案設計篇二
(2)通過“做一做”引入例1,進一步發(fā)展學生數(shù)形結合的意識和能力.
(1)在探究二元一次方程和一次函數(shù)的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神.
(2)在經(jīng)歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力.
數(shù)形結合和數(shù)學轉(zhuǎn)化的思想意識.
教具:多媒體課件、三角板.
學具:鉛筆、直尺、練習本、坐標紙.
第一環(huán)節(jié):設置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)。
內(nèi)容:1.方程x+y=5的解有多少個?是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3.在一次函數(shù)y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;。
(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程.
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)。
內(nèi)容:1.解方程組。
2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標系內(nèi)分別作出這兩個函數(shù)的圖像.
(1)求二元一次方程組的.解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標;。
(2)求兩條直線的交點坐標可以轉(zhuǎn)化為求這兩條直線對應的函數(shù)表達式聯(lián)立的二元一次方程組的解.
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組.
第三環(huán)節(jié)典型例題(10分鐘,學生獨立解決)。
探究方程與函數(shù)的相互轉(zhuǎn)化。
內(nèi)容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點坐標是.
第四環(huán)節(jié)反饋練習(10分鐘,學生解決全班交流)。
內(nèi)容:1.已知一次函數(shù)與的圖像的交點為,則.
2.已知一次函數(shù)與的圖像都經(jīng)過點a(—2,0),且與軸分別交于b,c兩點,則的面積為().
(a)4(b)5(c)6(d)7。
3.求兩條直線與和軸所圍成的三角形面積.
4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
第五環(huán)節(jié)課堂小結(5分鐘,師生共同總結)。
內(nèi)容:以“問題串”的形式,要求學生自主總結有關知識、方法:
(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;。
(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程.
2.方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;。
(2)兩條直線的交點坐標是對應的方程組的解;。
(1)代入消元法;。
(2)加減消元法;。
(3)圖像法.要強調(diào)的是由于作圖的不準確性,由圖像法求得的解是近似解.
第六環(huán)節(jié)作業(yè)布置。
習題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。
附:板書設計。
六、教學反思。
七年級下二元一次方程組的教案設計篇三
(學生活動)解下列方程:
(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)。
老師點評:(1)配方法將方程兩邊同除以2后,x前面的系數(shù)應為12,12的一半應為14,因此,應加上(14)2,同時減去(14)2.(2)直接用公式求解。
(學生活動)請同學們口答下面各題。
(老師提問)(1)上面兩個方程中有沒有常數(shù)項?
(2)等式左邊的各項有沒有共同因式?
(學生先答,老師解答)上面兩個方程中都沒有常數(shù)項;左邊都可以因式分解。
因此,上面兩個方程都可以寫成:
(1)x(2x+1)=0(2)3x(x+2)=0。
因為兩個因式乘積要等于0,至少其中一個因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實現(xiàn)降次的?)。
因此,我們可以發(fā)現(xiàn),上述兩個方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個一次式的乘積等于0的形式,再使這兩個一次式分別等于0,從而實現(xiàn)降次,這種解法叫做因式分解法。
例1解方程:
思考:使用因式分解法解一元二次方程的條件是什么?
解:略(方程一邊為0,另一邊可分解為兩個一次因式乘積。)。
c.(x+2)2+4x=0,∴x1=2,x2=-2。
d.x2=x,兩邊同除以x,得x=1。
教材第14頁練習1,2.
本節(jié)課要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應用。
(2)因式分解法要使方程一邊為兩個一次因式相乘,另一邊為0,再分別使各一次因式等于0.
教材第17頁習題6,8,10,11。
七年級下二元一次方程組的教案設計篇四
相對前面兩課內(nèi)容來說,這一課的內(nèi)容較為容易理解,再加上有前面兩課的基礎,學生應該好學習些。因此,這一課我在以下兩個方面要求學生做好,圖形解方程組的畫圖規(guī)范,利用圖形進一步理解前一課的內(nèi)容:“當x為何值時,y1<y2,y1=y(tǒng)2,y1>y2的題目類型”。
在課堂上,學生能夠結合例題,總結出利用函數(shù)的圖象解二元一次方程組的解題步驟:變形、畫圖、標交點、得結論。利用足夠充分的時間讓學生畫圖象解方程組,學生標交點的工作做得還不是很好,為此,提出了怎樣才確保是實實在在可以看出是由圖象得到交點坐標,得到方程組的解的,學生討論的結果還是讓我們滿意的,不但由交點畫垂線,在數(shù)軸上標出交的橫坐標和縱坐標,而且把交點坐標在圖上寫出來,做到雙保險。
利用函數(shù)的圖象復習了上一課的學習難點,學生理解的人數(shù)更多了,在利用函數(shù)的增減性認識和理解,確實效果會更好些,需要注意的是利用函數(shù)的增減性理解須從交點出發(fā)向左或者向右變化來理解。
要動員學生議論或爭論起來,這才是最有效的手段,個別輔導時,有同學在我的辦公桌前進行爭執(zhí),我看到了學生因相互的討論而掌握,學生自己能夠真正動起來,這是最好的,我希望學生是學習的主人,課堂上要努力讓他們成為課堂的主人。
七年級下二元一次方程組的教案設計篇五
一。教學目標:
1.認知目標:
2.能力目標:
1)滲透把實際問題抽象成數(shù)學模型的思想。
2)通過嘗試求解,培養(yǎng)學生的探索能力。
3.情感目標:
1)培養(yǎng)學生細致,認真的學習習慣。
2)在積極的教學評價中,促進師生的情感交流。
二。教學重難點。
難點:用列表嘗試的方法求出方程組的解。
三。教學過程。
(一)創(chuàng)設情景,引入課題。
1.本班共有40人,請問能確定男_各幾人嗎?為什么?
(1)如果設本班男生x人,_y人,用方程如何表示?(x+y=40)。
(2)這是什么方程?根據(jù)什么?
2.男生比_多了2人。設男生x人,_y人。方程如何表示?x,y的值是多少?
3.本班男生比_多2人且男_共40人。設該班男生x人,_y人。方程如何表示?
兩個方程中的x表示什么?類似的兩個方程中的y都表示?
象這樣,同一個未知數(shù)表示相同的量,我們就應用大括號把它們連起來組成一個方程組。
[設計意圖:從學生身邊取數(shù)據(jù),讓他們感受到生活中處處有數(shù)學]。
(二)探究新知,練習鞏固。
(1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。
[讓學生看書,引起他們對教材重視。找關鍵詞,加深他們對概念的了解。]。
x+y=3,x+y=200,。
2x-3=7,3x+4y=3。
y+z=5,x=y+10,。
2y+1=5,4x-y2=2。
學生作出判斷并要說明理由。
(1)由學生給出引例的答案,教師指出這就是此方程組的解。
(2)練習:把下列各組數(shù)的題序填入圖中適當?shù)奈恢茫?/p>
x=1;x=-2;x=;-x=。
y=0;y=2;y=1;y=。
方程x+y=0的解,方程2x+3y=2的解,方程組x+y=0的解。
2x+3y=2。
(3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。
(4)練習:已知x=0是方程組x-b=y的解,求a,b的值。
y=0.55x+2a=2y。
(三)合作探索,嘗試求解。
現(xiàn)在我們一起來探索如何尋找方程組的解呢?
1.已知兩個整數(shù)x,y,試找出方程組3x+y=8的解。
2x+3y=10。
學生兩人一小組合作探索。并讓已經(jīng)找出方程組解的學生利用實物投影,講明自己的解題思路。
提煉方法:列表嘗試法。
一般思路:由一個方程取適當?shù)膞y的值,代到另一個方程嘗試。
2.據(jù)了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。
(1)設該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據(jù)問題中的條件列出關于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。
由學生獨立完成,并分析講解。
(四)課堂小結,布置作業(yè)。
1.這節(jié)課學哪些知識和方法?(二元一次方程組及解概念,列表嘗試法)。
2.你還有什么問題或想法需要和大家交流?
3.作業(yè)本。
教學設計說明:
1.本課設計主線有兩條。其一是知識線,內(nèi)容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。
2.“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數(shù)據(jù),得出結果,再讓他們在積極嘗試后進行講解,實現(xiàn)生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。
3.本課在設計時對教材也進行了適當改動。例題方面考慮到數(shù)_時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。
七年級下二元一次方程組的教案設計篇六
(2)通過“做一做”引入例1,進一步發(fā)展學生數(shù)形結合的意識和能力。
(1)在探究二元一次方程和一次函數(shù)的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神。
(2)在經(jīng)歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力。
(1)二元一次方程和一次函數(shù)的關系;
(2)二元一次方程組和對應的兩條直線的關系。
數(shù)形結合和數(shù)學轉(zhuǎn)化的思想意識。
教具:多媒體課件、三角板。
學具:鉛筆、直尺、練習本、坐標紙。
第一環(huán)節(jié):設置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)。
內(nèi)容:
1、方程x+y=5的解有多少個?是這個方程的解嗎?
2、點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3、在一次函數(shù)y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4、以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;
(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程。
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)。
內(nèi)容:
1、解方程組。
2、上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標系內(nèi)分別作出這兩個函數(shù)的圖像。
(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉(zhuǎn)化為求這兩條直線對應的函數(shù)表達式聯(lián)立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。
第三環(huán)節(jié)典型例題(10分鐘,學生獨立解決)。
探究方程與函數(shù)的相互轉(zhuǎn)化。
內(nèi)容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點坐標是。
第四環(huán)節(jié)反饋練習(10分鐘,學生解決全班交流)。
內(nèi)容:
1、已知一次函數(shù)與的圖像的交點為,則。
2、已知一次函數(shù)與的圖像都經(jīng)過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。
(a)4(b)5(c)6(d)7。
3、求兩條直線與和軸所圍成的三角形面積。
4、如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
第五環(huán)節(jié)課堂小結(5分鐘,師生共同總結)。
內(nèi)容:以“問題串”的形式,要求學生自主總結有關知識、方法:
1、二元一次方程和一次函數(shù)的圖像的關系;
(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;
(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程。
2、方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
(1)代入消元法;
(2)加減消元法;
(3)圖像法,要強調(diào)的是由于作圖的不準確性,由圖像法求得的解是近似解。
第六環(huán)節(jié)作業(yè)布置。
習題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。
附:板書設計。
六、教學反思。
七年級下二元一次方程組的教案設計篇七
2、進一步理解解方程組的消元思想,滲透轉(zhuǎn)化思想。
3、增強克服困難的勇力,提高學習興趣。
教學重點。
把方程組變形后用加減法消元。
教學難點。
根據(jù)方程組特點對方程組變形。
教學過程。
一、復習引入。
用加減消元法解方程組。
二、新課。
1、思考如何解方程組(用加減法)。
先觀察方程組中每個方程x的系數(shù),y的系數(shù),是否有一個相等?;蚧橄喾磾?shù)?
能否通過變形化成某個未知數(shù)的系數(shù)相等,或互為相反數(shù)?怎樣變形。
學生解方程組。
2、例1解方程組。
思考:能否使兩個方程中x(或y)的系數(shù)相等(或互為相反數(shù))呢?
學生討論,小組合作解方程組。
提問:用加減消元法解方程組有哪些基本步驟?
三、練習。
1、p40練習題(3)、(5)、(6)。
2、分別用加減法,代入法解方程組。
四、小結。
五、作業(yè)。
p33習題2.2a組第2題(3)~(6)。
b組第1題。
選作:閱讀信息時代小窗口,高斯消去法。
后記:
七年級下二元一次方程組的教案設計篇八
“解二元一次方程組”是“二元一次方程組”一章中很重要的知識,占有重要的地位。通過本節(jié)課的教學,使學生會用加減消元法解二元一次方程組,進一步了解“消元”的思想。加減法解二元一次方程組的基本思想與代入法相同,仍是“消元”化歸思想,通過代入法、加減法這些手段,使二元方程轉(zhuǎn)化為一元方程,從而使“消元”化歸這一轉(zhuǎn)化思想得以實現(xiàn)。因此在設計教學過程時,注重化歸意識的點撥與滲透,使學生在學習中逐步體會理解這種具有普遍意義的分析問題、解決問題的思想方法。
教學后發(fā)現(xiàn),大部分學生能夠通過加減消元法解二元一次方程組,教學一開始給出了一個二元一次方程組,先讓學生用代入法求解,既復習了舊知識,又引出了新課題,引發(fā)學生探究的興趣。通過學生的觀察、發(fā)現(xiàn),理解加減消元法的原理和方法,使學生明確使用加減法的條件,體會在一定條件下使用加減法的優(yōu)越性。之后,通過兩個例題來幫助學生規(guī)范書寫,同時明確用加減法解二元一次方程組的步驟。接下來,通過一系列的練習來鞏固加減消元法的應用,并在練習中摸索運算技巧,培養(yǎng)能力,訓練學生思維的靈活性及分析問題、解決問題的綜合能力。有個別同學在運算上比較容易出錯,運用的靈活性掌握得不太好,解答起來速度較慢,我想只要多加練習,一定會又快又準確的。
七年級下二元一次方程組的教案設計篇九
難點:尋找等量關系。
教學過程:
看一看:課本99頁探究2。
問題:1“甲、乙兩種作物的單位面積產(chǎn)量比是1:1、5”是什么意思?
2、“甲、乙兩種作物的總產(chǎn)量比為3:4”是什么意思?
3、本題中有哪些等量關系?
提示:若甲種作物單位產(chǎn)量是a,那么乙種作物單位產(chǎn)量是多少?
思考:這塊地還可以怎樣分?
練一練。
一、某農(nóng)場300名職工耕種51公頃土地,計劃種植水稻、棉花、和蔬菜,已知種植植物每公頃所需的勞動力人數(shù)及投入的設備獎金如下表:
農(nóng)作物品種每公頃需勞動力每公頃需投入獎金。
水稻4人1萬元。
棉花8人1萬元。
蔬菜5人2萬元。
問題:題中有幾個已知量?題中求什么?分別安排多少公頃種水稻、棉花、和蔬菜?
七年級下二元一次方程組的教案設計篇十
掌握二元一次方程和二元一次方程組及它們的解的概念,會用消元法解方程組。
過程與方法。
能根據(jù)方程組的特點選擇合適的方法解方程組;并能把相應問題轉(zhuǎn)化為解方程組。
情感、態(tài)度與價值觀。
培養(yǎng)學生分析問題,解決問題的能力,體驗學習數(shù)學的快樂。
掌握二元一次方程和二元一次方程組及它們的解的概念,會用消元法解方程組。
選擇合適的方法解方程組;并能把相應問題轉(zhuǎn)化為解方程組。
多媒體,小組評比。
設計意圖:知識回顧,掌握知識要點,為順利完成練習打下基礎。
教學手段與方法:每小組必答題,答對為小組的一分,調(diào)動學習的積極性。
基礎知識達標訓練。
教學手段與方法:
毎小組選代表講解為小組加分,充分調(diào)動學生的積極性。學生講解不到位的老師補充。
七年級下二元一次方程組的教案設計篇十一
(2)通過“做一做”引入例1,進一步發(fā)展學生數(shù)形結合的意識和能力.
(1)在探究二元一次方程和一次函數(shù)的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神.
(2)在經(jīng)歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力.
數(shù)形結合和數(shù)學轉(zhuǎn)化的思想意識.
教具:多媒體課件、三角板.
學具:鉛筆、直尺、練習本、坐標紙.
內(nèi)容:
1.方程x+y=5的解有多少個?是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3.在一次函數(shù)y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程.
內(nèi)容:
2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標系內(nèi)分別作出這兩個函數(shù)的圖像.
(2)求兩條直線的交點坐標可以轉(zhuǎn)化為求這兩條直線對應的函數(shù)表達式聯(lián)立的二元一次方程組的解.
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組.
探究方程與函數(shù)的相互轉(zhuǎn)化。
內(nèi)容:
例1用作圖像的方法解方程組。
例2如圖,直線與的交點坐標是.
內(nèi)容:
1.已知一次函數(shù)與的圖像的交點為,則.
2.已知一次函數(shù)與的圖像都經(jīng)過點a(—2,0),且與軸分別交于b,c兩點,則的面積為.
(a)4(b)5(c)6(d)7。
3.求兩條直線與和軸所圍成的三角形面積.
4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
內(nèi)容:以“問題串”的形式,要求學生自主總結有關知識、方法:
(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程.
2.方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;。
(2)兩條直線的交點坐標是對應的方程組的解;。
(1)代入消元法;。
(2)加減消元法;。
(3)圖像法.要強調(diào)的是由于作圖的不準確性,由圖像法求得的解是近似解.
習題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。
七年級下二元一次方程組的教案設計篇十二
本課內(nèi)容是《二元一次方程組》,本堂課主要兩個內(nèi)容:一個是二元一次方程組的概念并能在實際問題中找出相等關系列出方程組,另一個是二元一次方程組的解的概念。
以前上這節(jié)課,我的基本流程是(1)給出一個實際問題請同學們來分析題目,設出未知數(shù),尋找相等關系,列出方程,當然前提是設兩個未知數(shù),得到一個二元一次方程組,然后給出概念,提醒學生要注意概念中是含有兩個未知數(shù)的兩個一次方程所組成的,接下來就給出幾個判斷鞏固定義(2)給出二元一次方程組的解的定義,并舉幾個題目來鞏固(3)做書本上的習題。
這次備這節(jié)課時,我就想到以前上這課很沒有意思,學生覺得內(nèi)容很簡單很枯燥,因為昨天已經(jīng)學過二元一次方程,今天二元一次方程組的概念就很容易接受了,而且根據(jù)簡單的實際問題來列方程組對他們而言也不是難事。在備課時我就從學生的角度去看教材,既然內(nèi)容簡單那就讓學生來講。所以我今天上課的流程變成先復習昨天所學的二元一次方程以及二元一次方程的解的定義,然后直接給出本堂課的內(nèi)容:二元一次方程組以及二元一次方程組的解的概念,請同學們根據(jù)名稱思考什么是二元一次方程組以及二元一次方程組的解呢?請舉例說明。給他們幾分鐘時間思考以后,就請學生來當小老師,上黑板來講,也有同學覺得小老師講的不夠清楚,又上來重講的,一共請了3名同學上來講。下面的同學聽過以后提出他們的問題,有同學提出的`問題很簡單,也有同學提出了一個引起大家爭議的問題,就是x=3,x+y=4這樣的方程組是不是二元一次方程組,在大家爭論以后我給出了正確答案以及這個概念中的注意點。后來我又請學生根據(jù)小老師在黑板上列出的二元一次方程組編應用題。最后在請學生來總結今天所學到的主要內(nèi)容和注意點。
今天這節(jié)課結束以后,我覺得雖然課堂紀律不太好,但基本上所有學生都動了起來,注意力比較集中,對重點內(nèi)容也都能掌握,感覺比以前所上的這節(jié)課效果要好。所以我想無論什么樣的課只要在備課時能真正的將“備教材”“備學生”“用學生的眼光看教材”三者結合起來,那么我們就能將每一節(jié)課都上成學生不僅能學到知識,同時能主動參與其中的課,讓數(shù)學課不在枯燥,不在死板,讓學生在愉悅的心情中學到知識,成為學生喜愛的課。
【本文地址:http://mlvmservice.com/zuowen/17394056.html】