作為一名默默奉獻(xiàn)的教育工作者,通常需要用到教案來(lái)輔助教學(xué),借助教案可以讓教學(xué)工作更科學(xué)化。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?又該怎么寫(xiě)呢?以下是小編為大家收集的教案范文,僅供參考,大家一起來(lái)看看吧。
26.1.1反比例函數(shù)教學(xué)設(shè)計(jì) 反比例函數(shù)教案設(shè)計(jì)人教版篇一
1、理解反比例函數(shù),并能從實(shí)際問(wèn)題中抽象出反比例關(guān)系的函數(shù)解析式;
2、會(huì)畫(huà)出反比例函數(shù)的圖象,并結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);
3、滲透數(shù)形結(jié)合的數(shù)學(xué)思想及普遍聯(lián)系的辨證唯物主義思想;
4、體會(huì)數(shù)學(xué)從實(shí)踐中來(lái)又到實(shí)際中去的研究、應(yīng)用過(guò)程;
5、培養(yǎng)學(xué)生的觀察能力,及數(shù)學(xué)地發(fā)現(xiàn)問(wèn)題,解決問(wèn)題的能力.
結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);
教學(xué)難點(diǎn):描點(diǎn)畫(huà)出反比例函數(shù)的圖象
直尺
教學(xué)方法:小組合作、探究式
1、從實(shí)際引出反比例函數(shù)的概念
我們?cè)谛W(xué)學(xué)過(guò)反比例關(guān)系.例如:當(dāng)路程s一定時(shí),時(shí)間t與速度v成反比例
即vt=s(s是常數(shù));
當(dāng)矩形面積s一定時(shí),長(zhǎng)a與寬b成反比例,即ab=s(s是常數(shù))
從函數(shù)的觀點(diǎn)看,在運(yùn)動(dòng)變化的過(guò)程中,有兩個(gè)變量可以分別看成自變量與函數(shù),寫(xiě)成:
(s是常數(shù))
(s是常數(shù))
一般地,函數(shù) (k是常數(shù) )叫做反比例函數(shù).
如上例,當(dāng)路程s是常數(shù)時(shí),時(shí)間t就是v的反比例函數(shù).當(dāng)矩形面積s是常數(shù)時(shí),長(zhǎng)a是寬b的反比例函數(shù).
在現(xiàn)實(shí)生活中,也有許多反比例關(guān)系的例子.可以組織學(xué)生進(jìn)行討論.下面的例子僅供
2、列表、描點(diǎn)畫(huà)出反比例函數(shù)的圖象
例1、畫(huà)出反比例函數(shù) 與 的圖象
解:列表
說(shuō)明:由于學(xué)生第一次接觸反比例函數(shù),無(wú)法推測(cè)出它的大致圖象.取點(diǎn)的時(shí)候最好多取幾個(gè),正負(fù)可以對(duì)稱著取分別畫(huà)點(diǎn)描圖
一般地反比例函數(shù) (k是常數(shù), )的圖象由兩條曲線組成,叫做雙曲線.
3、觀察圖象,歸納、總結(jié)出反比例函數(shù)的性質(zhì)
前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的程度或展開(kāi)全面的討論,或在老師的引導(dǎo)下完成知識(shí)的學(xué)習(xí).
顯示這兩個(gè)函數(shù)的圖象,提出問(wèn)題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證.(下列答案僅供參考)
(1) 的圖象在第一、三象限.可以擴(kuò)展到k 0時(shí)的情形,即k0時(shí),雙曲線兩支各在第一和第三象限.從解析式中,也可以得出這個(gè)結(jié)論:xy=k,即x與y同號(hào),因此,圖象在第一、三象限.
的討論與此類似.
抓住機(jī)會(huì),說(shuō)明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結(jié)合的數(shù)學(xué)思想方法.體現(xiàn)了由特殊到一般的研究過(guò)程.
(2)函數(shù) 的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小;
從圖象中可以看出,當(dāng)x從左向右變化時(shí),圖象呈下坡趨勢(shì).從列表中也可以看出這樣的變化趨勢(shì).有理數(shù)除法說(shuō)明了同樣的道理,被除數(shù)一定時(shí),若除數(shù)大于零,除數(shù)越大,商越小;若除數(shù)小于零,同樣是除數(shù)越大,商越小.由此可歸納出,當(dāng)k0時(shí),函數(shù) 的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小.
同樣可以推出 的圖象的性質(zhì).
(3)函數(shù) 的圖象不經(jīng)過(guò)原點(diǎn),且不與x軸、y軸交.從解析式中也可以看出, .如果x取值越來(lái)越大時(shí),y的值越來(lái)越小,趨近于零;如果x取負(fù)值且越來(lái)越小時(shí),y的值也越來(lái)越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子.同理,抽象出 圖象的性質(zhì).
函數(shù) 的圖象性質(zhì)的討論與次類似.
4、小結(jié):
本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的概念及其圖象的性質(zhì).大家展開(kāi)了充分的討論,對(duì)函數(shù)的概念,函數(shù)的圖象的性質(zhì)有了進(jìn)一步的認(rèn)識(shí).數(shù)學(xué)學(xué)習(xí)要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學(xué)地發(fā)現(xiàn)問(wèn)題,并能運(yùn)用已有的數(shù)學(xué)知識(shí),給以一定的解釋.即數(shù)學(xué)是世界的一個(gè)部分,同時(shí)又隱藏在世界中.
26.1.1反比例函數(shù)教學(xué)設(shè)計(jì) 反比例函數(shù)教案設(shè)計(jì)人教版篇二
本節(jié)課是在學(xué)習(xí)了反比例函數(shù)的概念,反比例函數(shù)的圖像和性質(zhì)等相關(guān)知識(shí)的基礎(chǔ)上引入的。首先創(chuàng)設(shè)問(wèn)題情境,展示反比例函數(shù)在實(shí)際生活中的應(yīng)用情況,激發(fā)學(xué)生的求知欲和濃厚的學(xué)習(xí)興趣。接下來(lái)主要討論了反比例函數(shù)在體積、面積這樣的實(shí)際問(wèn)題中的應(yīng)用。分析實(shí)際問(wèn)題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問(wèn)題。
知識(shí)與技能
1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問(wèn)題。
2.能綜合利用幾何、方程、反比例函數(shù)的知識(shí)解決一些實(shí)際問(wèn)題。
過(guò)程與方法
1.經(jīng)歷分析實(shí)際問(wèn)題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問(wèn)題。
2.體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問(wèn)題的能力。
情感態(tài)度與價(jià)值觀
體驗(yàn)反比例函數(shù)是有效地描述現(xiàn)實(shí)世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問(wèn)題和進(jìn)行交流的重要工具。
重點(diǎn):掌握從實(shí)際問(wèn)題中建構(gòu)反比例函數(shù)模型。
難點(diǎn):從實(shí)際問(wèn)題中尋找變量之間的關(guān)系。關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析實(shí)際情況,建立函數(shù)模型,教學(xué)時(shí)注意分析過(guò)程,滲透數(shù)形結(jié)合的思想。
26.1.1反比例函數(shù)教學(xué)設(shè)計(jì) 反比例函數(shù)教案設(shè)計(jì)人教版篇三
理解和領(lǐng)會(huì)反比例函數(shù)的概念.
領(lǐng)悟反比例的概念.
一、創(chuàng)設(shè)情境,導(dǎo)入新課
活動(dòng)1
問(wèn)題:下列問(wèn)題中,變量間的對(duì)應(yīng)關(guān)系可用怎樣的函數(shù)關(guān)系式表示?這些函數(shù)有什么共同特點(diǎn)?
(1)京滬線鐵路全程為1463km,乘坐某次列車所用時(shí)間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;
(2)某住宅小區(qū)要種植一個(gè)面積為1000m2的矩形草坪,草坪的長(zhǎng)為y隨寬x的變化;
(3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積s(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.
師生行為:
先讓學(xué)生進(jìn)行小組合作交流,再進(jìn)行全班性的問(wèn)答或交流.學(xué)生用自己的語(yǔ)言說(shuō)明兩個(gè)變量間的關(guān)系為什么可以看著函數(shù),了解所討論的函數(shù)的表達(dá)形式.
教師組織學(xué)生討論,提問(wèn)學(xué)生,師生互動(dòng).
在此活動(dòng)中老師應(yīng)重點(diǎn)關(guān)注學(xué)生:
①能否積極主動(dòng)地合作交流.
②能否用語(yǔ)言說(shuō)明兩個(gè)變量間的關(guān)系.
③能否了解所討論的函數(shù)表達(dá)形式,形成反比例函數(shù)概念的具體形象.
分析及解答:(1);(2);(3)
其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);
上面的函數(shù)關(guān)系式,都具有的形式,其中k是常數(shù).
二、聯(lián)系生活,豐富聯(lián)想
活動(dòng)2
下列問(wèn)題中,變量間的對(duì)應(yīng)關(guān)系可用這樣的函數(shù)式表示?
(1)一個(gè)游泳池的容積為2000m3,注滿游泳池所用的時(shí)間隨注水速度u的變化而變化;
(2)某立方體的體積為1000cm3,立方體的高h(yuǎn)隨底面積s的變化而變化;
(3)一個(gè)物體重100牛頓,物體對(duì)地面的壓力p隨物體與地面的接觸面積s的變化而變化.
師生行為
學(xué)生先獨(dú)立思考,在進(jìn)行全班交流.
教師操作課件,提出問(wèn)題,關(guān)注學(xué)生思考的過(guò)程,在此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:
(1)能否從現(xiàn)實(shí)情境中抽象出兩個(gè)變量的函數(shù)關(guān)系;
(2)能否積極主動(dòng)地參與小組活動(dòng);
(3)能否比較深刻地領(lǐng)會(huì)函數(shù)、反比例函數(shù)的概念.
分析及解答:(1);(2);(3)
概念:如果兩個(gè)變量x,y之間的關(guān)系可以表示成的`形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.
活動(dòng)3
做一做:
一個(gè)矩形的面積為20cm2,相鄰的兩條邊長(zhǎng)為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
師生行為:
學(xué)生先進(jìn)行獨(dú)立思考,再進(jìn)行全班交流.教師提出問(wèn)題,關(guān)注學(xué)生思考.此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:
①生能否理解反比例函數(shù)的意義,理解反比例函數(shù)的概念;
②學(xué)生能否順利抽象反比例函數(shù)的模型;
③學(xué)生能否積極主動(dòng)地合作、交流;
活動(dòng)4
問(wèn)題1:下列哪個(gè)等式中的y是x的反比例函數(shù)?
問(wèn)題2:已知y是x的反比例函數(shù),當(dāng)x=2時(shí),y=6
(1)寫(xiě)出y與x的函數(shù)關(guān)系式:
(2)求當(dāng)x=4時(shí),y的值.
師生行為:
學(xué)生獨(dú)立思考,然后小組合作交流.教師巡視,查看學(xué)生完成的情況,并給予及時(shí)引導(dǎo).在此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:
①學(xué)生能否領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念;
②學(xué)生能否積極主動(dòng)地參與小組活動(dòng).
分析及解答:
1.只有xy=123是反比例函數(shù).
2.分析:因?yàn)閥是x的反比例函數(shù),所以,再把x=2和y=6代入上式就可求出常數(shù)k的值.
解:(1)設(shè),因?yàn)閤=2時(shí),y=6,所以有解得k=12
三、鞏固提高
活動(dòng)5
1.已知y是x的反比例函數(shù),并且當(dāng)x=3時(shí),y=?8.
(1)寫(xiě)出y與x之間的函數(shù)關(guān)系式.
(2)求y=2時(shí)x的值.
2.y是x的反比例函數(shù),下表給出了x與y的一些值:
(1)寫(xiě)出這個(gè)反比例函數(shù)的表達(dá)式;
(2)根據(jù)函數(shù)表達(dá)式完成上表.
學(xué)生獨(dú)立練習(xí),而后再與同桌交流,上講臺(tái)演示,教師要重點(diǎn)關(guān)注“學(xué)困生”.
反比例函數(shù)概念形成的過(guò)程中,大家充分利用已有的生活經(jīng)驗(yàn)和背景知識(shí),注意挖掘問(wèn)題中變量的相依關(guān)系及變化規(guī)律,逐步加深理解.在概念的形成過(guò)程中,從感性認(rèn)識(shí)到理發(fā)認(rèn)識(shí)一旦建立概念,即已擺脫其原型成為數(shù)學(xué)對(duì)象.反比例函數(shù)具有豐富的數(shù)學(xué)含義,通過(guò)舉例、說(shuō)理、討論等活動(dòng),感知數(shù)學(xué)眼光,審視某些實(shí)際現(xiàn)象.
26.1.1反比例函數(shù)教學(xué)設(shè)計(jì) 反比例函數(shù)教案設(shè)計(jì)人教版篇四
1.回顧反比例函數(shù)的概念.通過(guò)實(shí)際問(wèn)題,進(jìn)一步感受用反比例函數(shù)解決實(shí)際問(wèn)題的過(guò)程與方法,體會(huì)反比例函數(shù)是分析、解決實(shí)際問(wèn)題的一種有效的模型.
2.歸納總結(jié)反比例函數(shù)的圖象和性質(zhì),進(jìn)一步體會(huì)形數(shù)結(jié)合的數(shù)學(xué)思想方法.
1.回顧、梳理本章的知識(shí):
如同已經(jīng)學(xué)過(guò)的有關(guān)方程、函數(shù)的內(nèi)容一樣,本章內(nèi)容分為3塊:
(1)從生活到數(shù)學(xué):從問(wèn)題到反比例函數(shù),即建構(gòu)實(shí)際問(wèn)題的數(shù)學(xué)模型;
(2)數(shù)學(xué)研究:反比例函數(shù)的圖象與性質(zhì);
(3)用數(shù)學(xué)解決問(wèn)題:反比例函數(shù)的應(yīng)用.
2.可以設(shè)計(jì)一組問(wèn)題,重點(diǎn)歸納、整理反比例函數(shù)的圖象與性質(zhì),進(jìn)一步感受形數(shù)結(jié)合的數(shù)學(xué)思想方法.例如:
(1)由形到數(shù)——用待定系數(shù)法求反比例函數(shù)的關(guān)系式;由圖象的位置或圖象的部分確定函數(shù)的特征;
(2)由數(shù)到形――根據(jù)反比例函數(shù)關(guān)系式或反比例函數(shù)的性質(zhì),確定圖形的位置、趨勢(shì)等;
(3)形數(shù)結(jié)合——函數(shù)的圖象與性質(zhì)的綜合應(yīng)用
2例如:如圖,點(diǎn)p是反比例函數(shù)y?上的一點(diǎn),pd垂直x軸于點(diǎn)d,則△xpod的面積為_(kāi)_______
3.設(shè)計(jì)一個(gè)實(shí)際問(wèn)題,讓學(xué)生經(jīng)歷“問(wèn)題情境一建立模型一求解一解釋與應(yīng)用”的基本過(guò)程.
例如:為了預(yù)防“非典”,某學(xué)校對(duì)教室采用藥薰法進(jìn)行消毒.已知藥物燃燒時(shí).室內(nèi)每立方米空氣中的含藥量y(mg)與時(shí)間x(min)成正比例,藥物燃燒后,y與x成反比例(如圖).現(xiàn)測(cè)得藥物8min燃畢,此時(shí)室內(nèi)空氣中每立方米含藥量為6mg。
(1)寫(xiě)出藥物燃燒前、后y與x的函數(shù)關(guān)系式;
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時(shí),學(xué)生方可進(jìn)教室.那么從消毒開(kāi)始,至少需要多少時(shí)間,學(xué)生方能進(jìn)入教室?
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時(shí)間不少于10min時(shí),才能有效滅殺空氣中的病菌,那么這次消毒是否有效?
26.1.1反比例函數(shù)教學(xué)設(shè)計(jì) 反比例函數(shù)教案設(shè)計(jì)人教版篇五
反比例函數(shù)是初中階段所要學(xué)習(xí)的三種函數(shù)中的一種,是一類比較簡(jiǎn)單但很重要的函數(shù),現(xiàn)實(shí)生活中充滿了反比例函數(shù)的例子。因此反比例函數(shù)的概念與意義的教學(xué)是基礎(chǔ)。
由于之前學(xué)習(xí)過(guò)函數(shù),學(xué)生對(duì)函數(shù)概念已經(jīng)有了一定的認(rèn)識(shí)能力,另外在前一章我們學(xué)習(xí)過(guò)分式的知識(shí),因此為本節(jié)課的教學(xué)奠定的一定的基礎(chǔ)。
知識(shí)目標(biāo):理解反比例函數(shù)意義;能夠根據(jù)已知條件確定反比例函數(shù)的表達(dá)式.
解決問(wèn)題:能從實(shí)際問(wèn)題中抽象出反比例函數(shù)并確定其表達(dá)式.情感態(tài)度:讓學(xué)生經(jīng)歷從實(shí)際問(wèn)題中抽象出反比例函數(shù)模型的過(guò)程,體會(huì)反比例函數(shù)來(lái)源于實(shí)際.
重點(diǎn):理解反比例函數(shù)意義,確定反比例函數(shù)的表達(dá)式.
難點(diǎn):反比例函數(shù)表達(dá)式的確立.
(1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的全程運(yùn)行時(shí)間t(單位:h)的變化而變化;
(2)某住宅小區(qū)要種植一個(gè)面積1000m2的矩形草坪,草坪的長(zhǎng)y(單位:m)隨寬x(單位:m)的變化而變化。
請(qǐng)同學(xué)們寫(xiě)出上述函數(shù)的表達(dá)式
14631000(2)y=txk可知:形如y=(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù),其中xx(1)v=是自變量,y是函數(shù)。
此過(guò)程的目的在于讓學(xué)生從實(shí)際問(wèn)題中抽象出反比例函數(shù)模型的過(guò)程,體會(huì)反比例函數(shù)來(lái)源于實(shí)際.由于是分式,當(dāng)x=0時(shí),分式無(wú)意義,所以x≠0。
當(dāng)y=中k=0時(shí),y=0,函數(shù)y是一個(gè)常數(shù),通常我們把這樣的函數(shù)稱為常函數(shù)。此時(shí)y就不是反比例函數(shù)了。
舉例:下列屬于反比例函數(shù)的是
(1)y=(2)xy=10(3)y=k—1x(4)y=—
此過(guò)程的目的是通過(guò)分析與練習(xí)讓學(xué)生更加了解反比例函數(shù)的概念問(wèn)已知y與x成反比例,y與x—1成反比例,y+1與x成反比例,y+1與x—1成反比例,將如何設(shè)其解析式(函數(shù)關(guān)系式)
已知y與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=
kx?1
k已知y+1與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1=xkxkxkxkx2x已知y與x—1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=
已知y+1與x—1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1=kx?1此過(guò)程的目的是為了讓學(xué)生更深刻的了解反比例函數(shù)的概念,為以后在求函數(shù)解析式做好鋪墊。
例:已知y與x2反比例,并且當(dāng)x=3時(shí)y=4
(1)求出y和x之間的函數(shù)解析式
(2)求當(dāng)x=1.5時(shí)y的值
解析:因?yàn)閥與x2反比例,所以設(shè)y?k,只要將k求出即可得到y(tǒng)x2
和x之間的函數(shù)解析式。之后引導(dǎo)學(xué)生書(shū)寫(xiě)過(guò)程。能從實(shí)際問(wèn)題中抽象出反比例函數(shù)并確定其表達(dá)式最后學(xué)生練習(xí)并布置作業(yè)
通過(guò)此環(huán)節(jié),加深對(duì)本節(jié)課所內(nèi)容的認(rèn)識(shí),以達(dá)到鞏固的目的。
本節(jié)課是在學(xué)生現(xiàn)有的認(rèn)識(shí)基礎(chǔ)上進(jìn)行講解,便于學(xué)生理解反比例函數(shù)的概念。而本節(jié)課的重點(diǎn)在于理解反比例函數(shù)意義,確定反比例函數(shù)的表達(dá)式.應(yīng)該對(duì)這一方面的內(nèi)容多練習(xí)鞏固。
26.1.1反比例函數(shù)教學(xué)設(shè)計(jì) 反比例函數(shù)教案設(shè)計(jì)人教版篇六
1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問(wèn)題.
2.能綜合利用幾何、方程、反比例函數(shù)的知識(shí)解決一些實(shí)際問(wèn)題.
1.經(jīng)歷分析實(shí)際問(wèn)題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問(wèn)題.
2.體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問(wèn)題的能力.
1.積極參與交流,并積極發(fā)表意見(jiàn).
2.體驗(yàn)反比例函數(shù)是有效地描述現(xiàn)實(shí)世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問(wèn)題和進(jìn)行交流的重要工具.
掌握從實(shí)際問(wèn)題中建構(gòu)反比例函數(shù)模型.
從實(shí)際問(wèn)題中尋找變量之間的關(guān)系.關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析實(shí)際情況,建立函數(shù)模型,教學(xué)時(shí)注意分析過(guò)程,滲透數(shù)形結(jié)合的思想.
1.教師準(zhǔn)備:課件(課本有關(guān)市煤氣公司在地下修建煤氣儲(chǔ)存室等).
2.學(xué)生準(zhǔn)備:
(1)復(fù)習(xí)已學(xué)過(guò)的反比例函數(shù)的圖象和性質(zhì)
(2)預(yù)習(xí)本節(jié)課的內(nèi)容,嘗試收集有關(guān)本節(jié)課的情境資料.
復(fù)習(xí):反比例函數(shù)圖象有哪些性質(zhì)?
反比例函數(shù) y?k
x 是由兩支曲線組成,
當(dāng)k0時(shí),兩支曲線分別位于第一、三象限內(nèi),在每一象限內(nèi),y隨x的增大而減少;
當(dāng)k0時(shí),兩支曲線分別位于第二、四象限內(nèi),在每一象限內(nèi),y隨x的增大而增大.
[例1]市煤氣公司要在地下修建一個(gè)容積為104m3的圓柱形煤氣儲(chǔ)存室.
(1)儲(chǔ)存室的底面積s(單位:m2)與其深度d(單位:m)有怎樣的函數(shù)關(guān)系?
(2)公司決定把儲(chǔ)存室的底面積s定為500m2,施工隊(duì)施工時(shí)應(yīng)該向下挖進(jìn)多深?
(3)當(dāng)施工隊(duì)按(2)中的計(jì)劃挖進(jìn)到地下15m時(shí),碰上了堅(jiān)硬的巖石,為了節(jié)約建設(shè)資金,公司臨時(shí)改變計(jì)劃把儲(chǔ)存室的深改為15m,相應(yīng)的,儲(chǔ)存室的底面積應(yīng)改為多少才能滿足需要(保留兩位小數(shù))。
設(shè)計(jì)意圖:讓學(xué)生體驗(yàn)反比例函數(shù)是有效地描述現(xiàn)實(shí)世界的重要手段,讓學(xué)生充分認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問(wèn)題和進(jìn)行交流的重要工具,此活動(dòng)讓學(xué)生從實(shí)際問(wèn)題中尋找變量之間的關(guān)系.而關(guān)鍵是充分運(yùn)用反比例函數(shù)分析實(shí)際情況,建立函數(shù)模型,并且利用函數(shù)的性質(zhì)解決實(shí)際問(wèn)題.
師生行為:
先由學(xué)生獨(dú)立思考,然后小組內(nèi)合作交流,教師和學(xué)生最后合作完成此活動(dòng).
在此活動(dòng)中,教師有重點(diǎn)關(guān)注:
①能否從實(shí)際問(wèn)題中抽象出函數(shù)模型;
②能否利用函數(shù)模型解釋實(shí)際問(wèn)題中的現(xiàn)象;
③能否積極主動(dòng)的闡述自己的見(jiàn)解.
生:我們知道圓柱的容積是底面積×深度,而現(xiàn)在容積一定為104m3,所以s·d=104.變形就可得到底面積s與其深度d的函數(shù)關(guān)系,即s=
所以儲(chǔ)存室的底面積s是其深度d的反比例函數(shù).
104 生:根據(jù)函數(shù)s= ,我們知道給出一個(gè)d的值就有唯一的s的值和它相d
對(duì)應(yīng),反過(guò)來(lái),知道s的一個(gè)值,也可求出d的值.
題中告訴我們“公司決定把儲(chǔ)存室的底面積5定為500m2,即s=500m2,”施工隊(duì)施工時(shí)應(yīng)該向下挖進(jìn)多深,實(shí)際就是求當(dāng)s=500m2時(shí),d=?m.根據(jù)s=104104 ,得500=,解得d=20. dd
即施工隊(duì)施工時(shí)應(yīng)該向下挖進(jìn)20米.
生:當(dāng)施工隊(duì)按(2)中的計(jì)劃挖進(jìn)到地下15m時(shí),碰上了堅(jiān)硬的巖石.為了節(jié)約建設(shè)資金,公司臨時(shí)改變計(jì)劃,把儲(chǔ)存室的深度改為15m,即d=15m,相應(yīng)的儲(chǔ)存室的底面積應(yīng)改為多少才能滿足需要;即當(dāng)d=15m,s=?m2呢?
104 根據(jù)s=,把d=15代入此式子,得 d
s=104 ≈666.67. 15104. d
當(dāng)儲(chǔ)存室的探為15m時(shí),儲(chǔ)存室的底面積應(yīng)改為666.67m2才能滿足需要. 師:大家完成的很好.當(dāng)我們把這個(gè)“煤氣公司修建地下煤氣儲(chǔ)存室”的問(wèn)題轉(zhuǎn)化成反比例函數(shù)的數(shù)學(xué)模型時(shí),后面的問(wèn)題就變成了已知函數(shù)值求相應(yīng)自變量的值或已知自變量的值求相應(yīng)的函數(shù)值,借助于方程,問(wèn)題變得迎刃而解,
1、(基礎(chǔ)題)已知某矩形的面積為20cm2:
(1)寫(xiě)出其長(zhǎng)y與寬x之間的函數(shù)表達(dá)式,并寫(xiě)出x的取值范圍;
(2)當(dāng)矩形的長(zhǎng)為12cm時(shí),求寬為多少?當(dāng)矩形的寬為4cm,
求其長(zhǎng)為多少?
(3)如果要求矩形的長(zhǎng)不小于8cm,其寬至多要多少?
2、(中檔題)如圖,某玻璃器皿制造公司要制造一種窖積為1升(1升=1立方分米)的圓錐形漏斗.
(1)漏斗口的面積s與漏斗的深d有怎樣的函數(shù)關(guān)系?
(2)如果漏斗口的面積為100厘米2,則漏斗的深為多少?
設(shè)計(jì)意圖:
讓學(xué)生進(jìn)一步體驗(yàn)反比例函數(shù)是有效地描述現(xiàn)實(shí)世界的重要手段,讓學(xué)生充分認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問(wèn)題和進(jìn)行交流的重要工具,更進(jìn)一步激勵(lì)學(xué)生學(xué)習(xí)數(shù)學(xué)的欲望.
師生行為:
由兩位學(xué)生板演,其余學(xué)生在練習(xí)本上完成,教師可巡視學(xué)生完成情況,對(duì)“學(xué)困生”要提供一定的幫助,此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:①學(xué)生能否順利建立實(shí)際問(wèn)題的數(shù)學(xué)模型;②學(xué)生能否積極主動(dòng)地參與數(shù)學(xué)活動(dòng),體驗(yàn)用數(shù)學(xué)模型解決實(shí)際問(wèn)題的樂(lè)趣;③學(xué)生能否注意到單位問(wèn)題.
生:解:
(1)根據(jù)圓錐體的體積公式,我們可以設(shè)漏斗口的面積為scm,,漏斗的深為dcm,則容積為1升=l立方分米=1000立方厘米.
13000 所以,s·d=1000, s= . 3d
(2)根據(jù)題意把s=100cm2代入s=30003000中,得 100= .d=30(cm). dd
所以如果漏斗口的面積為100c㎡,則漏斗的深為30cm.
3、(綜合題)新建成的住宅樓主體工程已經(jīng)竣工,只剩下樓體外表面需要貼瓷磚,已知樓體外表面的面積為5x103m2.
(1)所需的瓷磚塊數(shù)n與每塊瓷磚的面積s又怎樣的函數(shù)關(guān)系?
(2)為了使住宅樓的外觀更加漂亮,開(kāi)發(fā)商決定采用灰、白和藍(lán)三種顏色的瓷磚,每塊磚的面積都是80cm2,灰、白、藍(lán)瓷磚使用比例為2:2:1,則需要三種瓷磚各多少塊?
1、通過(guò)本節(jié)課的學(xué)習(xí),你有哪些收獲?
列實(shí)際問(wèn)題的反比例函數(shù)解析式
(1)列實(shí)際問(wèn)題中的函數(shù)關(guān)系式首先應(yīng)分析清楚各變量之間應(yīng)滿足的分式,即實(shí)際問(wèn)題中的變量之間的關(guān)系立反比例函數(shù)模型解決實(shí)際問(wèn)題;
(2)在實(shí)際問(wèn)題中的函數(shù)關(guān)系式時(shí),一定要在關(guān)系式后面注明自變量的取值范圍。
2、利用反比例函數(shù)解決實(shí)際問(wèn)題的關(guān)鍵:建立反比例函數(shù)模型.
p54—55.第2題、第5題
本節(jié)課是用函數(shù)的觀點(diǎn)處理實(shí)際問(wèn)題,并且是蘊(yùn)含著體積、面積這樣的實(shí)際問(wèn)題,而解決這些問(wèn)題,關(guān)鍵在于分析實(shí)際情境,建立函數(shù)模型,并進(jìn)一步明確數(shù)學(xué)問(wèn)題,將實(shí)際問(wèn)題置于已有的知識(shí)背景之中,用數(shù)學(xué)知識(shí)重新解釋這是什么?可以是什么?逐步形成考察實(shí)際問(wèn)題的能力,在解決問(wèn)題時(shí),應(yīng)充分利用函數(shù)的圖象,滲透數(shù)形結(jié)合的思想.
【本文地址:http://mlvmservice.com/zuowen/1722918.html】