當(dāng)工作或?qū)W習(xí)進(jìn)行到一定階段或告一段落時,需要回過頭來對所做的工作認(rèn)真地分析研究一下,肯定成績,找出問題,歸納出經(jīng)驗教訓(xùn),提高認(rèn)識,明確方向,以便進(jìn)一步做好工作,并把這些用文字表述出來,就叫做總結(jié)。那么我們該如何寫一篇較為完美的總結(jié)呢?以下我給大家整理了一些優(yōu)質(zhì)的總結(jié)范文,希望對大家能夠有所幫助。
高二數(shù)學(xué)重點知識歸納筆記 高二數(shù)學(xué)知識點總結(jié)(非常全面篇一
反函數(shù)求導(dǎo)方法
若f(x),g(x)互為反函數(shù),
則:f'(x)_'(x)=1
e。g。:y=arcsin=siny
y'_'=1(arcsinx)'_siny)'=1
y'=1/(siny)'=1/(cosy)=1/根號(1—sin^2y)=1/根號(1—x^2)
其余依此類推
高二數(shù)學(xué)重點知識歸納筆記 高二數(shù)學(xué)知識點總結(jié)(非常全面篇二
1、學(xué)會三視圖的分析:
2、斜二測畫法應(yīng)注意的地方:
(1)在已知圖形中取互相垂直的軸ox、oy。畫直觀圖時,把它畫成對應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x軸的線段長不變,平行于y軸的線段長減半。(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度。
3、表(側(cè))面積與體積公式:
⑴柱體:①表面積:s=s側(cè)+2s底;②側(cè)面積:s側(cè)=;③體積:v=s底h
⑵錐體:①表面積:s=s側(cè)+s底;②側(cè)面積:s側(cè)=;③體積:v=s底h:
⑶臺體①表面積:s=s側(cè)+s上底s下底②側(cè)面積:s側(cè)=
⑷球體:①表面積:s=;②體積:v=
4、位置關(guān)系的`證明(主要方法):注意立體幾何證明的書寫
(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。
(2)平面與平面平行:①線面平行面面平行。
(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線
5、求角:(步驟———————ⅰ。找或作角;ⅱ。求角)
⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;
⑵直線與平面所成的角:直線與射影所成的角
高二數(shù)學(xué)重點知識歸納筆記 高二數(shù)學(xué)知識點總結(jié)(非常全面篇三
1、不等式證明的依據(jù)
(2)不等式的性質(zhì)(略)
(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a—b)2≥0(a、b∈r)
②a2+b2≥2ab(a、b∈r,當(dāng)且僅當(dāng)a=b時取“=”號)
2、不等式的證明方法
(1)比較法:要證明a>b(a0(a—b<0),這種證明不等式的方法叫做比較法。
用比較法證明不等式的步驟是:作差——變形——判斷符號。
(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法。
(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法。
證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等。
【本文地址:http://mlvmservice.com/zuowen/1716991.html】